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Abstract

In this article, we combine results from the theory of linear exponential families, polyhedral ge-
ometry and algebraic geometry to provide analytic and geometric characterizations of log-linear
models and maximum likelihood estimation. Geometric and combinatorial conditions for the
existence of the Maximum Likelihood Estimate (MLE) of the cell mean vector of a contingency
table are given for general log-linear models under conditional Poisson sampling. It is shown
that any log-linear model can be generalized to an extended exponential family of distributions
parametrized, in a mean value sense, by points of a polyhedron. Such a parametrization is
continuous and, with respect to this extended family, the MLE always exists and is unique. In
addition, the set of cell mean vectors form a subset of a toric variety consisting of non-negative
points satisfying a certain system of polynomial equations. These results of are theoretical and
practical importance for estimation and model selection.

1 Introduction

Log-Linear models are a powerful statistical tool for the analysis of categorical data with appli-
cations in a variety of scientific areas, ranging from social and biological sciences, to medicine,
disclosure limitation problems, data-mining, image analysis, finger-printing, language processing
and genetics. In the last years, their importance and usage have increased greatly with the com-
pilation and diffusion of large databases in the form of sparse contingency tables, where most of
the cell entries are very small or zero counts. In these instances, the the Maximum Likelihood
Estimate (MLE) of the expected value of the cell mean vector, fundamental for assessment of fit,
model selection and interpretation, is very likely to be undefined, or nonexistent.

In log-linear modeling, the existence of the MLE is essential for the usual derivation of large
sample χ2 approximations to numerous measures of fit (Bishop et al., 1975; Agresti, 2002; Cressie
and Read, 1988) which are utilized to perform hypothesis testing and model selection. If the
distribution of the goodness of fit statistics is instead derived from the “exact distribution”, i.e. the
conditional distribution given the sufficient statistics, namely the margins, it is still necessary in
most cases to have an MLE or some similar type of estimate in order to quantify the discrepancy of
the the observed data from the fitted values. In addition, the existence of the MLE is required for
obtaining a limiting distribution in the double-asymptotic approximations of the likelihood ratio
and Pearson’s χ2 statistic for tables in which both the sample size and the number of cells are
allowed to grow unbounded, a setting studied, in particular, by Morris (1975), Haberman (1977)
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and Koehler (1986) (see Cressie and Read, 1988, for a complete literature review). If the MLE is
not defined, the inferential procedures mentioned above may not be applicable or, at a minimum,
require alteration.

The problem of nonexistence of the MLE has long been known to relate to the presence of zero
cell counts in the observed table (see, in particular, Haberman, 1974; Bishop et al., 1975). Sampling
zeros may be thought of as missing bits of information. When they occur in specific patterns inside
the table, such as those in the tables of Section 3.1, the maximum of the likelihood function occurs
at the boundary of the parameter space, where some subset of the expected values are also zero. In
such cases the MLE does not exist. Even if a zero entry in the margins is a sufficient condition for
the nonexistence of the MLE, little has been known about other pathological cases of tables with
positive margins but where the MLE still does not exist. The most famous, and until recently, the
only published example of this kind is the 23 table and the model of no-second-order interaction
described by Haberman (1974) and discussed in Table a) of Section 3.1. Although Haberman
(1974) gave necessary and sufficient conditions for the existence of the MLE, his characterization is
nonconstructive in the sense that it does not lead directly to implementable numerical procedures
and also fails to suggest alternative methods of inference for the case of an undefined MLE. Despite
these deficiencies, Haberman (1974)’s results have not been improved or extended in the published
statistical literature. Furthermore, to our knowledge, no numerical procedure specifically designed
to check for existence of the MLE has been developed yet and the only indication of nonexistence is
a lack of convergence of whatever algorithm is used to compute the MLE. As a result, the possibility
of the nonexistence of the MLE, even though well known, is rarely a concern for practitioners and
is largely ignored, so that results and decisions stemming from the statistical analysis of tables
containing zero counts are based on a possibly incorrect, faulty methodology. See, in particular, the
examples in Fienberg and Rinaldo (2006b) and Rinaldo (2005, Chapter 1). Identifying the cases
in which the MLE is not defined has immediate practical implications and is crucial for modifying
traditional procedures of model selection based on both asymptotic and exact approximations of
test statistics and, more generally, for developing new inferential methodologies to deal with sparse
tables.

In this article, we we propose a general framework for log-linear model analysis and we derive
analytic and geometric properties of the maximum likelihood estimation for log-linear models.
Motivated by the the recent advances in the field of algebraic statistics (Diaconis and Sturmfels,
1998; Pistone et al., 2000; Pachter and Sturmfels, 2005), throughout this article, we demonstrate
and then take advantage of some connections between algebraic and polyhedral geometry and
the theory of exponential families. First, we derive novel geometric and combinatorial conditions
for the existence of the MLE for a large class of log-linear models that generalize results currently
available in the statistical literature and that are suited to numerical implementation. We then show
that log-linear models can be associated with extended linear exponential families of distributions
parametrized, in a mean value sense, by non-negative points lying on toric varieties. Within the
framework of extended exponential families, the MLE, which we call extended MLE, always exists
and is unique. We then derive various analytical and geometric properties of the extended MLE
and discuss their implications. Our results build upon important contributions of many authors. In
particular, we mention Haberman (1974), Bardorff-Nielsen (1978), Brown (1986), Fienberg et al.
(1980), Lauritzen (1996), Diaconis and Sturmfels (1998), Geiger et al. (2006), Sturmfels (2003),
Csiszár and Matúš (2001, 2003, 2005) and Eriksson et al. (2005).

The article is organized as follows. In Section 2 we introduce linear exponential families for

2



discrete distributions over finite sets. We show how this hypothesis leads naturally to the study of
contingency tables and the formulation of a log-linear representation on the cell mean vector. We
consider sampling schemes specified by linear constraints on the cell counts and determine their
effects on the estimability of the parameters of interest. Section 3 provides general results for ex-
istence of the MLE for log-linear models using the theory of exponential families and basic results
from polyhedral geometry. We show that the existence of the MLE is equivalent for the vector of the
observed sufficient statistics to belong to the relative interior of a polyhedron determined by the
underlying log-linear model parameters and the sampling constraints. Section 4 defines extended
exponential families for the sufficient statistics and cell counts. The construction proceeds through
various steps. First, we show that maximizing the log-likelihood function is a well defined problems
which, under mean value parametrization, has always a limiting solution. Then, we show how to
take advantage of the geometric properties of the convex support to define the extended expo-
nential families for the sufficient statistics and we describe their properties. Finally, we derive an
extended exponential family of distribution for the cell counts and prove that it can be conveniently
parametrized by a set of points homeomorphic to a polyhedral cone. These points are called the
extended MLEs and, for Poisson and product-multinomial scheme, corresponds to the sequential
closure of the set of all cell mean vectors. In Section 5 we show that the set of all extended MLEs
can be represented as a toric variety and we give a geometric characterization of the parameter
space for log-linear models, under mean value parametrization.

We conclude this introduction by describing the notation used throughout the article. Con-
sider K categorical random variables, (X1, . . . , XK), each taking values on a finite set of labels,
Ik = {1, . . . , Ik}, with Ik ∈ N+, k = 1, . . . ,K. Their cross-classification generates a set of label
combinations, each called a cell, which is represented by the product set I =

⊗K
k=1 Ik. Every cell

is uniquely identified by a K-dimensional multi-index (i1, . . . , iK) = i ∈ I, whose k-th coordinate
indicates the value taken on by the k-th variable. To simplify the notation, the set of cells I will
be represented as a lexicographically ordered linear list. This ordering is obtained through the
bijection from I into

{
1, 2, . . . ,

∏K
k=1 Ik

}
given by

< i >=< i1, . . . , iK >→ iK +
K−1∑
k=1

 K∏
j=k+1

Ij

 , (1)

so that each K-tuple i will be unambiguously identified with its image i =< i > under the map (1).
Any set operation involving i will be expressed using the corresponding index i; for example, for
S ⊆ I, i ∈ S will be written i ∈ S. Adopting this convention, I can be more conveniently
thought of as the coordinate vector of RI , the vector space of real-valued functions defined on I.
Then, the value of any x ∈ RI corresponding to the cell combination i ∈ I will be indicated as
x(i) or xi, where i =< i > is defined in (1). The standard inner product on RI is denoted with
(x,y) =

∑
i∈I xiyi, with x,y ∈ RI . If s ⊂ {1, . . . ,K}, then the coordinate projection of i onto

Is =
⊗

k∈s Ik is the ordered list is = {ik : k ∈ s}, and will be written as is =< is >. The set of
vectors in RI with non-negative coordinates will be denoted with RI

≥0 and the support supp(x)
of a vector x ∈ RI

≥0 is the set {i ∈ I : xi 6= 0}. Functions and relations on vectors will be taken
component-wise, unless otherwise specified. For example, for x ∈ RI , expx = {expxi : i ∈ I}. The
cardinality of a numerable set B will be denoted by |B|.
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2 Exponential Families, Contingency Tables and Sampling Schemes

Log-linear model analysis is concerned with the study and characterization of the joint distribution
of the K categorical variables (X1, . . . , XK). This distribution is assumed to belong to the expo-
nential family of probabilities {Pη} on I with density with respect to the counting measure of the
form

pη(i) = Pη({i}) = exp(η,T (i))−φ(η), (2)

where T : I 7→ Zd \ {0} is given by T (i) = ai, φ is a read-valued function from Rd into R
which serves as a normalizing constant and η belongs to the natural parameter space H = {η ∈
Rd : exp{φ(η)} <∞} (see Diaconis and Sturmfels, 1998; Geiger et al., 2006).

Data are collected by observing N independent realizations of the K variables and typically
take the form of an unordered random sequence of label combinations (L1, . . . , LN ), with Lj ∈ I
for each j = 1, . . . , N , where N too can be random. A contingency table n is a (non-minimal)
sufficient statistic for η obtained by counting the number of times each cell has appeared in the
sample. Formally, a contingency table is a random function n ∈ RI given by n(i) = |{j : Lj = i}|.
A minimal sufficient statistic for η is instead t =

∑N
j=1 T (Lj) =

∑
i∈I n(i)ai = An, where A is

the d × |I| design matrix whose i-th column is the vector ai. Inference on η is performed, more
conveniently, by studying the distribution of the random vector of counts n. Specifically, given a
σ-finite measure ν on NI , defined below, the distribution of n belongs to the standard exponential
family of probability distributions {Pη}η∈E generated by A and ν with ν-density

pη(x) = exp{(t,η)− ψ(η)}, (3)

where t = Ax is the sufficient statistic, ψ(η) = log
∫

e(η,t)ν(dx) is the function and H = {η :
ψ(η) <∞} ⊆ Rd the natural parameter space.

The log-linear modeling framework is based on the representation of the cell mean vector m =
E[n] by means of the linear subspace M of RI , called log-linear subspace, spanned by the rows
of the design matrix A. Specifically, M consists of all the log cell mean vectors µ = log(m). By
Proposition 2.1 below, this is in fact equivalent to assuming the family of distribution (2) over I.

The distributions of the cell counts and the quality of the inference depend on M and also
on the type of sampling scheme utilized in the collection of the data. This work considers only
sampling designs specified by linear constraints, requiring each observed table n to satisfy linear
forms. Formally, let N ( M be a linear subspace and denote by PN the projection matrix onto N .
Then, N specifies sampling restrictions of the form c = PNn for a constant vector c. Equivalently,
if (γ1, . . . ,γm) are m vectors spanning N , the sampling constraints are (γj ,n) = cj , for constants
cj , j ≤ 1 ≤ m. Let S(N ) = {x ∈ NI : PNx = c} denote the set of all possible tables compatible
with the constraints determined by N and assume that S(N ) 6= ∅. Note that, if N = {0}, then the
sampling is unconstrained. Given a constraint subspaceN , the base measure νN for the exponential
family (3) is defined as

νN (x) =

{
ν(x) := 1Q

i x(i)!1x∈NI+
if N

restriction of ν on S(N ) otherwise,
(4)

where, 1x∈B is the indicator function of the setB. Note in particular that, for any subspaceN ⊆ RI ,
νN (RI) ≤ e|I| <∞. Letting M	N = M∩N⊥, we will be making the following assumption:
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Sampling assumption (S): there does not exist any vector γ ∈ M	N , such that (γ,n) = c a.e.-
νN , for any c ∈ R.

Assumption (S) guarantees that the constraint subspaceN encodes all possible affine dependencies
among the observable tables.

Sampling schemes of this type are called conditional Poisson sampling schemes (Haberman,
1974) because they induce a Poisson conditional distributions of the counts n given S(N ). A
general expression for the conditional Poisson distribution is

pη(x)dνN (x) =

1∏
i x(i)!

exp{(t,η)}∑
x′∈S(N )

1∏
i x

′(i)!
exp{(t′,η)}

dνN
dν

(x), (5)

where t′ = Ax′ and dνN
dν (x) = 1x∈S(N ). Equation (5) defines an exponential family of distributions

with log-partition function ψνN given by the denominator of the right hand side expression in (5)
and corresponding parameter space

HνN = {η : ψ(η) <∞} ⊆ Rd}.

Note that the probability mass functions for these conditional distributions, and their moments,
typically do not have closed forms. The most common sampling schemes, which happen to posses
densities in closed form, are:

• Poisson scheme
N = {0}. There are no restrictions on n.

• Multinomial sampling
N is the set of constant functions on I. There is only one linear restriction on n of the
form (1I ,n) = N , where 1I ∈ RI is the vector of ones, and the grand total is a positive
integer N fixed by design. The conditional distribution of the counts n given the constraints
is multinomial with size N .

• Product-multinomial sampling
Let B1, . . . ,Br be a partition of I. Under the product-multinomial sampling, the conditional
distribution of the cell counts n is the product of independent multinomials of sizes Nj ,
j = 1, . . . , r, each supported on the corresponding class Bj . Formally, let χj be the indicator
function of Bj given by

χj(i) =
{

1 if i ∈ Bj

0 otherwise,
(6)

and defineN to be the r-dimensional subspace spanned by the orthogonal vectors (χ1, . . . ,χr).
The product-multinomial sampling constraints are (n,χj) = Nj , for integer constants Nj .
The spanning vectors of N are often defined in a simpler way. Specifically, let b ⊂ {1, . . . ,K}
and Ib =

⊗
k∈b Ik and, for each j ∈ Ib, define Bj = {i ∈ I : ib = j}. Then, the sets Bj

form a partition of I, and N is the r-dimensional subspace spanned by the vectors {χj}j∈Ib
,

where χj is defined as in (6) and r = |Ib|. Some authors, such as Lauritzen (1996), use this
partitions to define product-multinomial scheme. The multinomial scheme is a special case
of product-multinomial schemes, corresponding to the trivial one-class partition of I with
indicator function 1I .
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The following results shows that assuming the linear exponential family representation (2) for
the joint distribution of the variables is equivalent to specifying a log-linear models for the cell
counts n.

Proposition 2.1. Let µ = log m, where m is the unconditional cell mean vector corresponding to
Poisson sampling. Then,

i. Model (2) holds if and only if µ ∈M.

ii. The conditional distribution of the table n given the sampling constraints belongs to a linear
exponential family parametrized by PM	Nµ and for which PM	Nn is a minimal sufficient
statistic.

If M = N , the constraints are so restrictive that no inference is possible because the sufficient
statistics are constant functions over S(N ). This situation is characteristic of generalized hyper-
geometric types of distributions, which can be seen as special cases of conditional Poisson sampling.
Those cases are uninteresting from the point of view of maximum likelihood estimation, as the
distribution of the counts does not depend on the parameters of interest.

We conclude this section by pointing out that the sampling constraints may be chosen to be so
restrictive that no tables with all positive entries can be observed. In this case, the sampling scheme
is said to be improper. Formally,

Definition 2.2. A sampling scheme defined by the subspace N ( M is called proper if there is no
coordinate i ∈ I such that n(i) = 0 a.e.-νN and improper otherwise.

Under improper schemes, some cells have zero probability of being observed only because of
sampling constraints. The notion of improper sampling scheme is completely different than the
one of structural zeros, which are in fact independent of the sampling scheme adopted. We assume
here that there are no structural zeros, namely each cell has a strictly positive probability of being
observed, prior to imposing sampling limitations. Indeed, this assumption was implicitly used at
the beginning of this section. Using Lemma 4.6 we will show how to use improper sampling to
formalize a reduced information content in the sufficient statistics and, in particular, to identify the
set of cell mean counts for which the MLE cannot be computed. For the remainder of this article,
we will always assume proper sampling, unless otherwise stated.

3 Exponential Families for Count Data and MLE

The study of log-linear models and the conditions for the existence of the MLE can be cast inside
the more general framework of the theory of standard exponential families (see, in particular,
Bardorff-Nielsen, 1978; Brown, 1986).

Consider the exponential family of distribution (3) and let µN be the finite measure on Zd

induced by νN and the linear transformation determined by the matrix A.

Definition 3.1. The convex support CN associated with νN and A is the closure of the convex hull
of the points in the support of the induced measure µN .

Csiszár and Matúš (2001, 2005) prove that it is more convenient to examine instead the convex
core of the induced measure µN , defined as the intersection of all convex closed sets of full µN -
measure. In general, the convex core can be smaller than the convex support, although they have
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the same relative interior and closure. However, for the present settings, convex core and convex
support coincide, a fact of immediate verification.

Definition 3.2. The mapping Λ : HνN → CN given by Λ(η) = Eη(Ax) = ∇ψ(η) is called the
mean-value parametrization, where ∇ denotes the gradient.

Under minimality and regularity, Λ defines a homeomorphism between the interior of the nat-
ural parameter space and the relative interior ri(CN ) of the convex support. When the exponential
family is not expressed in minimal form, the mean value parametrization is no longer a homeomor-
phism but it is a surjective map over ri(CN ). This means that distributions belonging to the same
linear exponential family are different if and only if they have different means.

Definition 3.3. Let `(η,x) = log pη(x) and η̂(x) = {η ∈ HνN : `(η,x) = supη∈HνN
`(η,x)}. Any

point η̂ ∈ η̂(t) is called a maximum likelihood estimate of η. If η̂(x) = ∅, then we say that the MLE
does not exist.

A fundamental result for the existence of the MLE for minimal, full and regular exponential
families is stated in the next theorem.

Theorem 3.4 (Brown, 1986, Theorem 5.5). The MLE η̂ exists and is unique if and only if t ∈ ri(CN )
and, if existent, it satisfies the moment equation Λ(η̂) = Ê(An) = t ∈ ri(CN ).

Since the exponential family (5) for the cell counts is typically neither minimal nor full, we
choose to study instead the distribution of the minimal sufficient statistic. Let A∗ be a k × |I| full
row-rank integer matrix whose rows span M	 N , where k = dim(M	 N ). Then, PM	Nµ =
(A∗)>θ, for some natural parameter θ ∈ Rk. Note also that, by the sampling assumption (S), the
linear map from RI into Rk specified by A∗ does not induce any affine dependencies on its image.

The following theorem provides conditions for the existence of the MLE for the natural param-
eter of the family (5). It exploits Theorem 3.4 and the geometric properties of the convex supports.

Theorem 3.5. The conditional Poisson model with constraint subspace N induces for z = A∗n a
minimal, regular and full linear exponential family of order k = dim(M	N ) and natural parameter
space Rk. The MLE of PM	Nµ exists and is unique if and only if t = An belongs to the relative interior
of the k-dimensional polyhedron PA = {Ax : x ≥ 0, (γj ,x) = cj , j = 1, . . . ,m}.

Equation (26) in the proof of Theorem 3.5 gives a more refined result. Since every polyhedron
is in fact the Minkowski sum of a polytope and a polyhedral cone (see, for example, Theorem
1.2 in Ziegler, 1998), we can conclude that the convex support CN for the sufficient statistic of
a conditional Poisson sampling scheme is a polyhedron which can be obtained as the coordinate
projection of the Minkowski sum of a polyhedral cone and a polytope. In particular, the polytope
component arises from the linear forms defining the sampling constraints.

Under Poisson sampling there are no constraints, hence the convex support is the polyhedral
cone CA = cone(A) generated by the columns of the A, called the marginal cone (Eriksson et al.,
2005). For multinomial sampling the convex support is instead a polytope, whose homogeneization
is precisely CA. As a result, the two polyhedra are combinatorially equivalent. Under product-
multinomial sampling, the convex support is a polytope whose dimension is smaller than the one
arising from the multinomial scheme. For general sampling schemes, the combinatorial equivalence
with CA is not preserved because typically the cone CA has more faces than any other polyhedron
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combinatorially equivalent to the convex support CN , as the next example shows (see also Lemma
3.9 below). In general, a sufficient condition for CN to be bounded (hence a polytope) is that N
contains vectors of the same sign, as it is the case with standard hierarchical models.

Example 3.6. Consider the simple case of a 22 table under the model of independence, for which
the matrix A can be taken to be

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 . (7)

The cell labels set I = {(11), (12), (21), (22)} is identified with the list {1, 2, 3, 4} determined by
Equation (1). Under both Poisson and multinomial sampling, the marginal cone A has 4 facets,
with vertex-facet incidence vectors corresponding precisely to the rows of A. If we use instead
product-multinomial sampling with constraint subspace spanned by the columns of the matrix

1 0
1 0
0 1
0 1


then only the two facets corresponding to the last two rows of A can be observed. �

It is worth to point out that mixed sampling schemes such as the Poisson-multinomial schemes
proposed by Lang (2004), can be naturally accommodated within this framework. In fact, any
sampling scheme requiring the cell counts to satisfy linear constraints will produce a polyhedral
representation of the convex support.

As an illustration of the exponential family approach, a novel proof of the well known result on
the equivalence of the MLE for the mean vector under Poisson and product-multinomial schemes
(see, in particular, Birch, 1963; Haberman, 1974) is given in the following theorem.

Theorem 3.7. Provided that N ⊂ M, the MLE m̂ of the cell mean vector under Poisson sampling
scheme exists if and only if the MLE of the conditional cell mean vector under product-multinomial
sampling schemes exists. In this case, they coincide, are unique and satisfy the moment equations
PMm̂ = PMn.

Note that the equivalence is not guaranteed if the condition N ⊂M fails (see also Lang, 1996).
The previous result implies that the sampling constraints for product-multinomial schemes are mild,
in the sense that the MLE of the conditional mean vector is identical to the unconditional one. In
general, this is not the case under general conditional Poisson schemes, because, although the MLE
of the conditional cell mean vector m̂ satisfies the moment equations, it does not necessarily satisfy
log m̂ ∈M.

The density of the minimal sufficient statistics z = A∗n with respect to µN is

pθ(z) = exp{(z,θ)− ψ(θ)} θ ∈ Θ, (8)

where ψ(θ) =
∫

Rk exp(θ,z) dµN (z) and Θ = {θ : ψ(θ) <∞} = Rk. We will be denoting the convex
support for this family with the same symbol CN , although it is now clear that this polyhedron is
full-dimensional, A∗ being of full-row rank. The densities in (8) and (5) are related in the following
way.
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Lemma 3.8. Assume, without loss of generality that A is of full-row rank. For all n ∈ S(N ) and for
any θ ∈ Rk,

pθ(z) = pη(n), ∀η ∈ HνN such that Hη = θ, (9)

where H is a matrix independent of η.

Lemma 3.8 shows that imposing sampling constraint results in lack of parameter identifia-
bility. However we will see at the end of Section 4.2 that it is always possible to resolve this
non-identifiability, i.e. H defines in fact a bijection on HνN , so that the MLE of PM	Nµ always
identifies one vector in M.

There is a correspondence between the convex support CN and the marginal cone CA. In fact,
CN is isomorphic to the polyhedron resulting from the intersection of CA with the hyperplane
defined by the sampling constraints. More formally,

Lemma 3.9. There exists a linear injection fA of CN into CA such that each face of CN is mapped into
a face of CA.

The map fA is never a bijection unless N is the trivial subspace {0}. In this case, A∗ and A
have the same rank and the corresponding marginal cones CA and CA∗ are isomorphic. Using the
previous lemma, a general condition for the existence of the MLE of PM	Nµ and, hence, of the
natural parameter θ, can be established using the marginal cone CA.

Corollary 3.10. Under proper sampling, the MLE of PM	Nµ exists and is unique if and only if
t ∈ ri(CA).

This result generalizes Theorem 2.2 and 2.5 in Haberman (1974) (see Appendix B) and Corol-
lary 3 in Eriksson et al. (2005).

3.1 Examples

The polyhedral characterization of the conditions for the existence of the MLE permits to generate
novel examples of patterns of sampling zeros causing non-existence of the MLE without producing
null margins. The examples presented below were obtained using polymake (Gawrilow, 2000), a
software for the algorithmic treatment of convex polyhedra. These examples suggest that the com-
binatorial complexity of hierarchical log-linear models can be quite significant. Below we denote
the generating class of a hierarchical log-linear model on K variables as represented as a class of
subsets of {1, . . . ,K}.

a) 23 table and the model {{1, 2}, {2, 3}, {1, 3}} of no-second-order interaction (Haberman,
1974). The MLE is not defined because the pattern zeros exposes one of the 16 facets of
the marginal cone. See Table 1 in Eriksson et al. (2005) and Section 5 in Fienberg and Ri-
naldo (2006b) for a more general result concerning binary variables and log-linear models of
no-(K−1)st interaction. This example has been for a long time the only published instance of
“pathological” (Bishop et al., 1975, page 115) tables with positive margins and non-existent
MLE.

0
0

9



b) 33 table and the model {{1, 2}, {2, 3}, {1, 3}}. The MLE is not defined because the pattern of
zeros exposes one of the 207 facets of the marginal cone.

0 0
0 0

0 0
0 0

0

Another facet of the same marginal cone is given by

0

0 0
0 0
0

0 0
0

In this third and final example, two sampling zeros in the left table are not reported in the
right table because they don’t affect the existence of the MLE and, in fact, correspond to
positive cell mean values for the extended MLE (see later Section 4). The table on the right
exposes a facet of the marginal cone.

0
0 0

0 0

0 0
0 =⇒

0
0

0 0

0
0

c) 4 × 3 × 6 table and the model {{1, 2}, {2, 3}, {1, 3}}. The MLE is not defined because the
pattern of zeros exposes one of 153,858 facets of the marginal cone.

0

0 0
0 0

0 0
0

0 0

0
0 0
0 0

0
0 0
0 0

0 0
0

0 0

0 0
0

0

d) 24 table and the non-graphical model {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 3}}. The MLE is
not defined because the pattern of zeros exposes one of the 56 facets of the marginal cone.

0 0
0

0

0
0

e) 24 table and the 4-cycle model {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. The MLE is not defined because
the pattern of zeros exposes one of the 24 facets of the marginal cone.
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0 0
0

0

0
0
0 0

f) 34 table and the 4-cycle model {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. The MLE is not defined because
the pattern of zeros exposes one of the 1,116 facets of the marginal cone.

0 0
0

0 0 0
0 0 0
0 0

0 0 0
0 0
0

0 0
0 0 0
0 0 0

0
0 0 0
0 0

0 0
0

0 0
0

0 0 0

0

0 0

0 0 0
0 0

0 0 0

g) 33 table and the model {{1, 2}, {2, 3}, {1, 3}} (Fienberg and Rinaldo, 2006b). The MLE is
defined, despite the table being very sparse, because no facet of the marginal cone is exposed.

0 0
0 0
0 0

0 0
0 0

0 0

0 0
0 0

0 0

4 Extended Exponential Families and the Extended MLE

This section defines extended linear exponential families for discrete data and describes some of
their properties. The construction builds on results by Bardorff-Nielsen (1978), Brown (1986) and
Csiszár and Matúš (2003, 2005).

4.1 Extended Exponential Families for Sufficient Statistics

Consider the minimal, regular and full exponential families (8) and recall that the natural parame-
ter space Θ is Rk and the convex support CN is a polyhedron defined by the design matrix and the
sampling linear constraints implied by the subspace N ( M.

We first show that the supremum of the log-likelihood function is always finite and attainable.
In fact, as noted by Haberman (1974), the non-existence of the MLE does not imply that the log-
likelihood function explodes. In fact, it only implies that the supremum is realized in the limit
by sequences of points in the natural parameter space with exploding norm. The same result, in
less generality, was also proved by Lauritzen (1996, Section 4.2.3). To this extent, consider the
sup-log-likelihood function, introduced by Bardorff-Nielsen (1978).
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Definition 4.1. The map ψ∗ : Rk → R given by ψ∗(ξ) = supθ∈Rk ln pθ(ξ) is called the sup-log-
likelihood function.

Let dom(ψ∗) = {ξ ∈ Rk : ψ∗(ξ) < ∞} denote the effective domain of ψ∗. Note that the
sup-log-likelihood function, being the conjugate function of the function ψ, is defined on the whole
Rk rather than just on supp(µN ). Although the sufficient statistic z may lie on the boundary of the
convex support (hence causing the MLE not to be defined), the supremum of the log-likelihood is
always finite, i.e. dom(ψ∗) ⊂ CN . In fact, the last inclusion is an identity.

Theorem 4.2. The sup-log-likelihood function ψ∗ is a closed, essentially smooth strictly convex function
such that dom(ψ∗) = CN .

The proof of the last result, given in the appendix, relies on standard results in convex analysis
(see, in particular, Rockafellar, 1970).
Remark. From Equation (28) in the proof of Theorem 4.2, a well known fact can be derived
(see, for example, Jordan and Wainwright, 2003), linking maximum likelihood estimation and the
Bolzmann-Shannon entropy, given, for θ ∈ Θ, by

H(θ) = −
∫ (

log pθ(z)
)
pθ(z)dµN (z).

Corollary 4.3. If ξ ∈ ri(CN ), ψ∗(ξ) = −H(Λ−1(ξ)). If ξ ∈ bd(CN ), then for any sequence {ξi} ⊂
ri(CN ) with limi ξi = ξ, ψ∗(ξ) = limi−H(Λ−1(ξi)). If ξ 6∈ CN , ψ∗(ξ) = ∞.

The previous result is used in Grunwald and Dawid (2004), where connections between maximum
likelihood estimation, information theory and minimaxity are explored.

Let F be any proper face of CN and µF be the restriction of µN on F . Associate to F a new
linear exponential family of distributions having base measure µF and convex support F , with log-
partition function ψF (θ) = log

∫
e(θ,x)dµF (x), parameter space ΘF = {θ ∈ Rk : ψF (θ) < ∞} and

densities
pθ(z) = exp{(z,θ)− ψF (θ)}, z ∈ F.

This new family is no longer minimal because dim(F ) < dim(CN ) but it is still full and regular
because Rk = Θ ⊆ ΘF = Rk. Lack of minimality follows form the fact that, since F is a face of CN ,
there exists a vector ζF and a constant cF such that (z, ζF ) = cF , a.e.-µF . Then, for any θ1, θ2 in
Rk such that ζF = θ1 − θ2, (z,θ1) = (z,θ2) + cF , a.e.-µF . This, in turn, implies

(z,θ1)− ψF (θ1) = (z,θ2)− ψF (θ2)

and, therefore, pθ1
= pθ2

, so that Eθ1
[A∗n] = Eθ2

[A∗n] = ξ, for some ξ ∈ ri(F ). Note that, by
Hölder’s inequality, this is equivalent to the function being no longer strictly convex. We conclude
that for any ξ ∈ ri(F ), Λ−1

F (ξ) := {θ ∈ ΘF : ∇ψF (θ) = ξ} is a subset of ΘF , so that the MLE of
θ, if existent, will be an affine subspace in Rk. Nevertheless, despite lack of minimality, each point
ξ ∈ ri(F ) identifies one probability distribution. Explicitly, if ξ1, ξ2 ∈ ri(F ), with ξ1 6= ξ2, then
pθ1

6= pθ2
, for every θ1 ∈ Λ−1

F (ξ1) and every θ2 ∈ Λ−1
F (ξ2).

Let L(CN ) be the face lattice of CN , i.e. of the set of all faces of CN , ordered by inclusion. For
each F ∈ L(CN ), define as above the non-minimal exponential family of distributions with convex
support F .
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Definition 4.4. The union of all such families as F ranges in L(CN ) is called the extended expo-
nential family. (Brown, 1986, denote these families as aggregate families.)

Next, since
CN =

⊎
F∈L(CN )

ri(F ).

(see, for example, Ziegler, 1998), where
⊎

denotes union of disjoint sets, for each point ξ ∈ CN
there exists only one face F containing ξ in its relative interior and hence only one sub-family
of distributions whose convex support is precisely F . In fact, as noted above, for any face F ,
the points in ri(F ) define a partition of ΘF = Rk into equivalence classes of affine subspaces{
Λ−1

F (ξ), ξ ∈ ri(F )
}

, each identifying one distribution of exponential type parametrized by ξ, i.e.
such that Eθ[z] = ξ, for all θ ∈ ΘF .

Combining these considerations, we see that the family of densities of the aggregate exponential
family is, under the mean value parametrization,{

pξ

}
ξ∈CN

, (10)

where, for any ξ ∈ CN ,

pξ(z) =
exp

(θξ ,z)

∫
exp

(θξ ,x)
dµF (x)

,

θξ is any point in Λ−1
F (ξ) and F is the face (possibly improper) of CN such that ri(F ) 3 ξ. The

subset of the densities from (10) given by {
pξ

}
ξ∈ri(CN )

exhausts the regular linear exponential family of distributions (8) since, for each ξ ∈ ri(CN ), the
mean value parametrization is a bijection between Θ and ri(CN ). The extended exponential family
is an enlargement of the family (8) obtained by adding distributions, expressible in exponential
from, that are parametrized by the points on the boundary of the convex support.

The next Theorem gives regularity properties of this extended family. The proof relies mostly
on results due to Brown (1986).

Theorem 4.5. Assume the extended exponential family with densities as in (10). Then, for any
z = A∗n ∈ CN ,

i. The MLE of E[z] exists always, is unique and is z, i.e. pz(z) = supξ∈CN pξ(z).

ii. pξ(z) is a continuous function of ξ ∈ CN .

iii. ψ∗(z) = supξ∈CN pξ(z).

More generally, the theorem holds for any real valued ξ ∈ CN and not just for the integer-
valued sufficient statistics z. The first part of the Theorem shows that the MLE of the mean value
is always defined for the extended family and satisfies trivially the moment equations. The second
part says that the densities are parametrized continuously by the expectation parameters and the
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third statement that the supremum over over the densities (10) coincides with the corresponding
value of the sup-log-likelihood function.

Theorem 4.2 and part iii. of Theorem 4.5 complement each other. In fact, the former shows that
the log-likelihood in a regular exponential family always admits a supremum, attainable in the limit
of sequences {ξi} of points inside the relative interior of the convex support. The latter implies that
such a limit is a valid mean vector of the restricted exponential sub-family whose convex support is
the face of CN containing it in its relative interior.

4.2 Extended Exponential Families for Cell Counts and Extended MLE of the Cell
Mean Vector

In this section, we will show that the family (10) corresponds to an extended family of distributions
for the cell counts n, where the correspondence is given by a bijection between the mean vectors
of the sufficient statistics and the unconditional cell mean vectors. This new family enjoys all the
properties of the family (10). In particular, the maximum likelihood estimate of the cell mean
vector is always defined.

We first show that the sub-families parametrized by points inside a face F of the convex support
corresponds to distribution for cell counts specified by certain improper Poisson sampling (see
Definition 2.2).

Lemma 4.6. Each face F of CN corresponds to an improper conditional Poisson model with constraint
subspaceNF such thatN ( NF ( M and a set F ( I such that, a.e.-νNF

, n(i) = 0 for each i ∈ I\F .

The sets F corresponding to the faces F , called facial sets, were introduced by Geiger et al.
(2006). The proof of Lemma 4.6 shows that a subset of I is a facial set F for the polyhedral cone
CA if and only if there exists a vector ζF ∈ Rd such that (ζF ,ai) = 0 for each i ∈ F and (ζF ,ai) < 0
for each i 6∈ F , where ai denotes the i-the column of the matrix A. Furthermore, the proof can be
reversed to show that, if there exists a set F ( I and a subspace N ( NF ( M such that, a.e.-νNF

,
n(i) = 0 for each i ∈ I \ F , then F identifies a face F of CN .

By Lemma 3.9, if F is a facial set corresponding to a face of CN , then F is also a facial set
for a face of the marginal cone CA. Then, using facial sets it is possible to obtain a combinatorial
restatement of Corollary 3.10 and of Theorem 2.2 in Haberman (1974) (see the end of the Appendix
B).

Corollary 4.7. The MLE does not exist if and only if supp(n) ⊆ F for some facial set F corresponding
to a proper face of the marginal cone CA.

The examples in Section 3.1 present facial sets corresponding to facets of the marginal cones
for various hierarchical log-linear models. The combinatorial complexity of these marginal cones
appear to be rather big, as indicated by the large number of facets associated to tables of small
dimensions. See Eriksson et al. (2005) for a combinatorial analysis of the marginal cones corre-
sponding to the hierarchical model of no-3-factor effects under Poisson sampling scheme for various
3-way tables.

We derive a more convenient characterization of the proper faces F of CN than the one pre-
sented in Lemma 4.6. In fact, each face of CN with facial set F can be described as the convex
support for the sufficient statistics of a proper conditional Poisson model defined as in Section 3
by a sub-matrix AF of A obtained by considering only the columns of A with indexes in F . The
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cells not in F are then modeled as structural zeros. Formally, let πF : RI → RF be the coordinate
projection onto F given by

πF (x) = {x(i), i ∈ F} (11)

and notice that πF (M) is the row range of AF . This argument is made rigorous in the next result.

Corollary 4.8. Each face F of CN is the convex support of a proper conditional Poisson model with
design matrix AF and constraint subspace πF (N ).

Therefore, the distributions in (10) corresponding to faces of the convex support can equiv-
alently be described using proper conditional Poisson schemes with structural zero or improper
schemes in which additional sampling constraints force some of the cells counts to be zero. The
former representation will be adopted here for convenience, although the latter provide a better
interpretation for the extended MLE of the cell mean vector as a non-negative vector with data-
dependent support.

We now proceed with the construction of the extended family for the cell counts by defining
densities for the cell counts parametrized by CN . We show that there exists a one-to-one correspon-
dence between the points in CN and the unconditional cell mean vectors arising from the log-linear
models πF (M), with F ∈ L(CN ). To this end, we assume initially Poisson sampling, so that convex
support is the marginal cone CA, where A is full row-rank (this assumption is inessential, but it
simplifies the arguments below). We distinguish two cases:

1. If ξ ∈ ri(CA), the vector θξ = Λ−1
F (ξ) ∈ Rk is unique, with k = dim(M). Set µξ = (A)>θξ

and mξ = exp{µξ}, so that supp(mξ) = I. Since µξ ∈ M, Proposition 2.1 implies that mξ
is a mean vector for the contingency table n corresponding to the model (15). Moreover, mξ
satisfies the moment equations ξ = Amξ. Conversely, if m is a mean vector for the log-linear
model M, there exists a unique ξ ∈ ri(CA) such that ξ = Am.

2. The argument carries over almost unchanged if ξ ∈ ri(F ), for some face F with facial set F .
Consider the log-linear subspace πF (M) spanned by the rows of the sub-matrix AF . Then
everything takes place within this reduced exponential family for contingency tables defined
over the cells in F . Specifically, each ξ ∈ ri(F ) corresponds to a unique strictly positive cell
mean vector mξ ∈ RF such that ξ = AFmξ and vice versa, for every mean vector m whose
logarithm belongs to πF (M), there exists a unique point ξ ∈ ri(F ) such that ξ = AFm, where
AF is a (now non full rank) matrix whose rows span πF (M), with rank(AF ) = dim(πF (M)).

We proved in Lemma 3.9 that the points of the corresponding convex support CN are mapped
injectively by the linear map fA into CA and that the facial sets for CN are also facial sets for CA.
Then, for each ξ ∈ CN , we will write mξ for the nonnegative vector determined by fA(ξ) ∈ CA,
in the sense that supp(mξ) = F is the appropriate facial set for CN and fA(ξ) = AFm. Existence
and uniqueness of mξ follow from the above considerations regarding the Poisson case. Therefore,
for the sampling subspace N , the extended exponential family of distributions for the cell counts n
with densities {

pmξ

}
ξ∈CN

, (12)

is well defined, where

pmξ
(x) = exp

(θξ ,A∗Fx)∫
RI exp

(θξ ,A∗Fx)
dνNF

(x)
,
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with ξ ∈ ri(F ), θξ ∈ Λ−1
F (ξ) and F is the facial set corresponding to F .

Note that the distributions parametrized by points mξ, with ξ ∈ ri(F ), are, by construction,
defined only over RF . It is more convenient to have them defined over the whole RI instead. For
this purpose, consider, for every facial set F ,the log-partition function τF : RF → RI given by

τF (x) =
{

x(i) i ∈ F
0 i ∈ I\F . (13)

For ξ ∈ ri(F ), we will identify mξ with τF (mξ), so that the corresponding distribution in (12) is
defined over RI , with the understanding that the cells not in F are to be treated like structural
zeros, hence not affecting the likelihood.

The regularity properties of the extended family of distributions for the sufficient statistics from
the previous section derive essentially from the topological properties of the polyhedron CN . The
next theorem shows that such properties are in fact preserved for the set of vectors {mξ}ξ∈CN
parametrizing the family (12). For an explicit geometric representation of the set {mξ}ξ∈CN , and
for a different proof of the next result, see Section 5.

Theorem 4.9. The sets CN and {mξ}ξ∈CN are homeomorphic.

As a result, the families (12) and (10) have identical properties.

Theorem 4.10. Assume the extended exponential family with densities as in (12). Then for any n,

i. The MLE m̂ of the conditional cell mean always exists, is unique and satisfies the moment equa-
tions A∗m̂ = z = A∗mz. Furthermore, pmz(n) = supξ∈CN pmξ

(n).

ii. pmξ
(n) is a continuous function of mξ, ξ ∈ CN .

iii. ψ∗(z) = supξ∈CN pmξ
(n).

As it was the case with Theorem 4.5, the above results hold for any x ∈ RI
≥0. In summary, using

Proposition 2.1 and Theorem 4.10, it is easy to see that the set of vectors {mξ}ξ∈CN satisfies two
defining conditions:

ξ = A∗mξ,

lnπF (mξ) ∈ πF (M),
(14)

where F is the facial set for the face F of CN for which ri(F ) 3 ξ.
The construction carried out so far leads naturally to the following definition of Extended MLE.

Definition 4.11. For any observed value of the sufficient statistics z, m̂e = mz is the Extended
Maximum Likelihood Estimate of mξ.

Remarks.

a) The parametrization used to construct the family (12) is based on the unconditional cell mean
vectors mξ, i.e. the cell mean vectors arising from the Poisson sampling. As pointed out in
the remark following Theorem 3.7, for general conditional Poisson schemes, the conditional
cell mean vectors, and consequently their MLEs, may not belong to the set {mξ}ξ∈CN . In fact,
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the MLEs of the conditional cell mean vectors satisfy the moment equation, as shown in part
i. of Theorem 4.10, but not necessarily the second condition in Equation (14). Nevertheless,
Theorems 4.9 and 4.10 combined show that, in a conditional Poisson model, the MLE of
PM	Nµ, if existent, identifies one µ ∈ M such that expµ = mz, with z being the observed
sufficient statistic. When z belongs to the boundary of the convex support, then, with respect
to the extended family, the MLE of PπF (M	N )πF (µ) always exists, is unique and identifies
one point µ ∈ πF (M) such that expτF (µ) = mz, where F is the facial set determined by
z. Equivalently, the matrix H of Lemma 3.8 indirectly defines a bijection between M and
M	N , because the sampling constraints fix the parameters determining N . Furthermore,
the extended MLE mz is not in general the MLE of the unconditional mean of the extended
family, since the sampling constraints do not allow to estimate the entire parameter space,
but only the portion associated to M	N . By the same token, within the extended family, if
PNm can be determined, then the MLE of m could be recovered from the MLE of PM	Nµ
(see also Haberman, 1974, Theorem 2.6).

b) For the special cases of product-multinomial and multinomial-Poisson (Lang, 2004) sampling
schemes, the extended MLE is the MLE of the conditional mean vector, with respect to the
extended family, and it also coincides with the extended MLE of the unconditional mean.
In fact, it is easy to see that Theorem 3.7 holds true for the extended MLE as well. For
these sampling schemes, the definition of extended MLE proposed here generalizes the notion
of extended MLE for the cell mean vector originally suggested by Haberman (1974) and
further developed by Fienberg et al. (1980) and Lauritzen (1996). In particular, the set
{mξ}ξ∈CN can be more conveniently thought as the limit closure of all possible positive cell
mean vectors. Then, for any observed table n and any sequence {ξn} ⊂ ri(CN ) such that
A∗n = limn ξn, one can equivalently compute the extended MLE m̂e as the limit

m̂e = lim
n

mξn
,

where each mξn
is a positive cell mean vector. This is precisely how the iterative proportional

fitting algorithm works (see discussion at the end of the next Section 5).

c) By construction, the extended MLE satisfies the moment equation, namely PMm̂e = PMn, a
feature proved by Fienberg et al. (1980) and Lauritzen (1996), in less generality.

We conclude this section by showing that the extended exponential family for cell counts arises
in a natural way as the closure of the regular exponential family with respect to the total variation
and the reverse information metric. See Csiszár and Matúš (2003, 2005) for an exhaustive account
and generalization of these notions of closure. Determining the point mz corresponds to computing
a “reverse” Kullback-Lieber projection onto the set of all probability measures which are absolutely
continuous with respect to the base measure µN and whose mean parameter satisfies the moment
equations. Let P and Q be two probability measures defined on the same probability space. The
I-divergence of P from Q is defined as

D(P||Q) =
{ ∫

ln dP
dQdP if P << Q

+∞ otherwise,

and the total variation distance between P and Q is a metric || · ||tv given by

||P−Q||tv = 2 sup
B
|P(B)−Q(B)|,
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(a)
ε 1 5
ε 2 5
ε 4 1

4 2 3
3 5 2
1 2 3

5 1 2
3 2 3
2 4 4

(b)
ε 5 2
1 5 3
ε ε 3

1 3 1
5 ε ε

1 ε 3

ε 4 ε

3 5 ε

3 5 5

Table 1: 33 table and the model {{1, 2}, {2, 3}, {1, 3}}. (a): The ε-cells correspond to a null margin.
(b): The ε-cells determine a co-facet for the corresponding marginal cone (see example b) in
Section 3.1).

Figure 1: Sequence {mξε
} of the cell mean vectors as ε → 0 for the Tables 1(a) and 1(b), in part

a) and b), respectively.
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where the supremum is taken over all measurable Borel sets B. A sequence {Qn} of probability
measures is said to rI-converge to a probability measure P if

lim
n
D(P||Qn) = 0,

while is said to converge in total variation when

lim
n
||Qn − P||tv.

Theorem 4.12. The family (12) is closed with respect to the rI diverge and total variation metric. In

fact, it is the rI-closure and the and total variation closure of the family
{
pmξ

}
ξ∈ri(CN )

.

Example 4.13 (The Extended MLE). This example exemplifies the nature of the extended MLE as
a point in the sequential closure of the set {expµ : µ ∈M}. Assume the model of no-3-factor effect
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Figure 2: Sequences of u-term expansions of the points in mε as ε → 0 for the Table 1(a) and the
model {{1, 2}, {2, 3}, {1, 3}} of Example 4.13.
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{{1, 2}, {2, 3}, {1, 3}} and Poisson sampling for the 33 contingency tables of Tables 1(a) and 1(b).
Both tables contain positive integer entries (randomly generated from a uniform distribution on
{1, 2, . . . , 5}) except along patterns of cells corresponding to two different co-facets of the marginal
cone, which contain instead the same positive real number ε. (A co-facet is the complement in I
of facial set corresponding to a facet.) The number ε is then let decrease monotonically to zero. In
both cases, for every positive ε, the corresponding table margins define a point ξε inside the relative
interior of CA. As ε ↓ 0, the sequence {ξε} tends to the point on the appropriate facet representing
the integer-valued margins for which the MLE is not defined.

For every ε > 0, the corresponding vector ξε identifies, in a mean value sense, one probability
distribution for the cell counts with cell mean vector mξε

. In the limit, the MLE does not exist,
but the extended MLE, which is limε↓0 mξε

, is well defined. Figure 1 shows the two sequences
{mξε

}ε for the Tables 1(a) and 1(b), as a function of ε. In both cases, as the margins approach
the boundary of the marginal cone, the values of the coordinates of mε defining the co-facet tend
to 0 in a continuous fashion. In contrast, Figures 2 and 3 show the sequences of the u-terms (see,
for example, Bishop et al., 1975) for the expansions of the points {log mε}ε, for the Tables 1(a)
and 1(b), respectively. It is easy to see that some of the u-terms explode to infinity as ε approaches
0, an indication of the fact that they cannot be estimated. The rate at which the diverging terms
tend to infinity is 1

ε . It is interesting to point out that for Table 1(a), among the u-terms of highest
order, only some of the u(2,3)-terms diverge. Because of the hierarchical nature of the model, this
discontinuity at 0 also affects the lower order terms u(2) and u(3) as well. It is immediate to see
why only the u(2,3) terms are involved: the zero margin, achieved in the limit, is one of the {2, 3}
marginal configurations. The computations were performed in R (R Development Core Team, 2005)
using the loglin routine.
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Figure 3: Sequences of u-term expansions of the points in mε as ε → 0 for the Table 1(b) and the
model {{1, 2}, {2, 3}, {1, 3}} of Example 4.13.
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The explosive behavior of the estimates of u-terms when the MLE is non-existent takes place
also with the estimates of natural parameters. In particular, Lemma 7.1 in the Appendix A illustrates
why the Newton-Raphson procedure for maximizing the log-likelihood function, utilized for fitting
generalized linear models, can be affected by numerical instabilities. In fact, as the log-likelihood
approaches its supremum, some of the coordinates of the estimated vector of natural parameters
will necessarily explode. These directions of recession of the log-likelihood function are determined
by the normal cone at the observed sufficient statistics to the supporting hyperplane for the face
of the marginal cone containing it (see Lemma 7.2 in the Appendix A). Figure 4 displays the se-
quences of natural parameters for the Tables 1(a) and 1(b) versus both ε and log ε (we chose to plot
the estimates also on the log scale to improve the readability). Like with the u-terms parametriza-
tion, some parameters in the linear expansion of the logarithm of the sequence {mε}ε diverge to
infinity as ε ↓ 0. In fact, inspection of the hessian of both the Poisson and product-multinomial
log-likelihood functions reveals that, as the algorithm progresses, they become closer to be singular
(see Fienberg and Rinaldo, 2006a), thus causing potential numerical instabilities. In this example,
the natural parameters were computed using the glm routine in R with the parameter family set
to poisson. (The weighted least square procedure implemented in the glm routine is a specialized
version of the Newton-Raphson procedure). The full rank design matrix was also computed in R,
using sum-zero contrasts.

Note that the previous examples can be carried out in more elaborated settings in which the
ε-cells are replaced by different sequences vanishing, not necessarily in a monotone fashion, at
different rates. The conclusions would remain unchanged. �
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Figure 4: Sequence of the natural parameter coefficients computed by the glm routine for the points
in mε versus ε and log ε for the Table 1(a) (parts a) and b), respectively) and Table 1(b) (part c)
and d), respectively) for and the model {{1, 2}, {2, 3}, {1, 3}}.
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5 Extended Exponential Families and Toric Varieties

In this section we will derive a geometric characterization of the mean vectors
{
mξ

}
ξ∈CA

, where

CA is the marginal cone determined by an integer-valued design matrix A not necessarily of full
rank. It will be convenient to think of CA as the convex support associated with the sufficient
statistics for the log-linear model specified by A under Poisson sampling scheme. The assumption
that A has integer entries is hardly restrictive, as the most common log-linear models are in fact
defined in this way. The matrix A determines a monomial map φA : Rd

>0 7→ RI
>0 given by

z = (z1, . . . , zd) 7→

 d∏
j=1

z
aj,1

j , . . . ,

d∏
j=1

z
aj,|I|
j

 = (za1 , . . . , za|I|), (15)

where aj,l denotes the (j, l)-th element of A. The terminology “monomial map” is appropriate
since the image of φA is a positive vector whose coordinates are obtained by evaluating monomial
expressions. The relationship between the linear exponential family (2) and the monomial map
(15) is straightforward and is given in in the following lemma.

Lemma 5.1. The following facts hold true:
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i. log (im(φA)) = M.

ii. The family of distributions {Pη}η∈E is the linear exponential family as in (2) if and only if, for
every η ∈ E, pηcη ∈ im(φA), for some constant cη depending on η.

As a result, for any µ ∈M, m = expµ ∈ im(φA). That is, the image of the monomial map (15)
is the set of all positive cell mean vectors. Statistical models described by monomial equations as
in (15) are called toric models, a terminology introduced by Geiger et al. (2006).

The following example shows how monomial maps offer a different, equivalent representation
of hierarchical log-linear models (see, for example, Darroch and Speed, 1983). The generalization
to any hierarchical models is immediate.

Example 5.2. Consider the 23 table and the decomposable model ∆ = {{1, 2}, {2, 3}}. The cell set
I = {1, 2} ⊗ {1, 2} ⊗ {1, 2} is linearized according to Equation (1), and the 8× 8 matrix

A =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


used in the map (15), gives

φA(z) = (za1 , . . . , za|I|) = (z1z5, z1z6, z2z7, z2z8, z3z5, z3z6, z4z7, z4z8) , (16)

where the coordinates of z are ordered according to the row ordering of A, shown in Table 2 and
determined using Equation (1).

d id zi
{1, 2} 11 z1
{1, 2} 12 z2
{1, 2} 21 z3
{1, 2} 22 z4
{2, 3} 11 z5
{2, 3} 12 z6
{2, 3} 21 z7
{2, 3} 22 z8

Table 2: Row ordering for the matrix A in Example 5.2.

Let Fd denote the subspace of RI consisting of the set of functions that depends on i ∈ I only
through id, d ∈ ∆ (i.e. f(i) = f(j) if and only if id = jd). For any p ∈ im(φA), from (16) it follows
that

log(p) =
∑
d∈∆

fd(id), (17)
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where each function fd belongs to the corresponding subspace Fd, d ∈ ∆. Equation 17 implies that
log(p) belongs to the factor-interaction subspace defined by the decomposable generating class ∆,
in the terminology of Darroch and Speed (1983) and Lauritzen (1996). �

Monomial maps allow for a parametrization of the set of positive probability distributions de-
fined by the log-linear subspace M that is alternative to the one specified by the corresponding
linear exponential family. The key difference between these two approaches is that, while linear
exponential families are structurally linked to log-linear subspaces, monomial maps produce in-
stead direct representations of the distributions of interest. More importantly, the set im(φA) can
be characterized geometrically using the solution set of a system of polynomials equations (see,
in particular, Cox et al., 1996; Sturmfels, 1996; Diaconis and Sturmfels, 1998). For each i ∈ I
introduce the indeterminate xi in the ring of polynomial equations k[x], where the field k in the
present context can be taken to be R. Consider the lattice LA = kernel(A) ∩ ZI and the system of
polynomial equations

IA := 〈xu+ − xu− : u ∈ LA〉,

where u+ = {max (u(i), 0) , i ∈ I} and u− = {−min (u(i), 0) , i ∈ I} The ideal IA is called toric
ideal (Sturmfels, 1996). The set of non-negative real solution of the polynomial system IA is the
irreducible affine toric variety

VA,≥0 = V(IA) ∩ RI
≥0.

The defining condition satisfied by all non-negative real valued points of VA,≥0 is

m ∈ VA,≥0 ⇐⇒ mu+
= mu− , ∀u ∈ LA (18)

The following examples, along with others which can be found, for example in Diaconis and Sturm-
fels (1998), Geiger et al. (2006) and Pachter and Sturmfels (2005), illustrate this polynomial rep-
resentation.

Example 5.3. Consider the 2× 2 table with cell mean vector, in tabular notation,

m11 m12

m21 m22

and the model of independence ∆ = {{1}, {2}}, with the usual cell ordering as in Example 3.6.
The 3-dimensional log-linear subspace M is spanned by the 4 vectors defining the row and column
sums (see Example 3.6 above), which are

1 1
0 0

,
0 0
1 1

,
1 0
1 0

and
0 1
0 1

.

These 4 spanning vectors are the rows of the associated design matrix A in Equation (7). The
1-dimensional orthogonal subspace of M in R4 is spanned by the vector

+1 −1
−1 +1

.
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The toric ideal for this model is the principal ideal IA = 〈x1x4 − x2x3〉. It is immediate to see that
the associated toric variety

VA,≥0 =
{
m ∈ RI

≥0 : m11m22 = m12m21

}
. (19)

The variety VA,≥0 is known in algebraic geometry as Segre variety and its restriction to the
interior of the simplex in R4 is renown in statistics as the surface of independence(Fienberg and
Gilbert, 1970). In fact, points in the (interior of the) simplex satisfying Equation (19) are the set of
all distributions on the set I with odds ratio equal to 1, i.e.

p11p22

p12p21
= 1. � (20)

Example 5.4. For a more sophisticated example, consider a 23 table and the model ∆ = {{1, 2}, {2, 3}, {1, 3}}
with cell mean vector

m111 m121

m211 m221

m112 m122

m212 m222
.

The dimension of the log-linear subspace M is 7 and its orthogonal complement in RI is spanned
by the one vector

+1 −1
−1 +1

−1 +1
+1 −1

.

Using this vector and Equation (18), it can be seen that the corresponding toric variety for this
model is

VA,≥0 = {m ∈ RI : m111m221m122m212 = m121m211m112m222},
The positive points in this variety will satisfy Equation (3.3-12) of Bishop et al. (1975) for the
hypothesis of no-three-factor effect follows,

mijkmrsk

mrjkmisk
=
mijtmrst

mrjtmist
(21)

for i 6= r, j 6= s, k 6= t. �

The previous examples show that every positive cell mean vector for the log-linear subspace
M lies in VA,≥0, an immediate consequence of Equation(18). The traditional log-linear settings
hinge upon representing log m as a point in the vector space spanned by the rows of A. Despite its
apparent simplicity, this approach is severely limited by the constraint that all permissible points m
must be strictly positive. In the above examples, only strictly positive cell mean vector can, in fact,
satisfies Equations (20) and (21). In contrast, distributions for which, for example, m11 = m21 = 0,
will satisfy (19). In fact, the toric variety representation enjoys the crucial advantage of naturally
providing an explicit representation of the closure of the parameter space. This closure consists of
of points that belong to the toric variety and have some zero coordinates. It is the possibility of
identifying these points, both analytically (polynomials are continuous function) and geometrically,
that allows for a full description of all possible patterns of sampling zeros leading to a nonexistent
MLE and the definition of extended exponential family and extended MLE. Geiger et al. (2006)
proved this far-reaching results that hypersurface VA,≥0 is the sequential closure of the open set
im(φA).
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Theorem 5.5 (Geiger et al. (2006)). cl(im(φA)) = VA,≥0.

The next logical step is to verify that VA,≥0, being the closure of im(φA), indeed parametrizes
the extended family (12). This is shown in Theorem 5.8, whose formulation and proof rely on
some other geometric quantities that are now introduced.

The equivalence in Equation (18) is used to show the following combinatorial result, which
demonstrates that, for each m ∈ VA,≥0, supp(m) is a facial set of A and, conversely, each facial set
of A is the support set of points in VA,≥0.

Lemma 5.6. For any m ∈ VA,≥0, supp(m) is a facial set of A and, conversely, for any facial set F of
A, there exist points in VA,≥0 with supp(m) = F .

For any ξ ∈ CA, consider the polyhedron

Pξ = {x ∈ RI
≥0 : Ax = ξ}. (22)

For any integer t ∈ CA, the integer points in Pt, called the fiber of t, are the set of all tables with
the same margins t, i.e. the set of tables in the support of the conditional distribution of n given
the observed statistics. The polyhedron (22) is, in most situation, bounded, i.e. it is a polytope, but
this does not necessarily hold for general log-linear models.

Example 5.7. Consider a 33 contingency tables for the variables 1, 2 and 3 under Poisson sampling
and the non-hierarchical log-linear model specifying just the interaction {1, 2} and the main effect
{3}. The transpose of the design matrix A∗ for this model can be chosen to be of the form [A∗

1|A∗
2],

where

A∗
1 =

 1 0
−1 1

0 −1

⊗
 1 0
−1 1

0 −1

⊗
 1

1
1


and

A∗
2 =

 1
1
1

⊗
 1

1
1

⊗
 1 0
−1 1

0 −1

 .
See Fienberg and Rinaldo (2006a) for more details. Then, kernel(A) contains the set of constant
functions in RI , so that, for any ξ ∈ CA, Pξ contains the ray λ · 1I , for any real scalar λ ≥ 0 and is
therefore unbounded. As a result, for this models, the MLE of the cell mean vector associated with
any table with positive constant entries is always the vector 1I , no matter how large the entries in
the tables are. Generally, if kernel(A) contains vectors of the same sign, the polyhedra Pξ, ξ ∈ CA,
will be unbounded. For the class of non-hierarchical log-linear models generated by the subspaces
of interactions (see Darroch and Speed, 1983), they will be polytopes if and only if the subspace
M contains the constant functions. If the models is hierarchical, this condition is satisfied. �

The main result of this section is the following theorem which relates toric varieties, marginal
cones and the polytopes obtained as the convex hull of the points in the fibers.

Theorem 5.8.
{
mξ

}
ξ∈CA

= VA,≥0 and, for each ξ ∈ CA, Pξ ∩ VA,≥0 = {mξ} ∈ ri(Pξ).

25



Theorem 5.8 gives a purely geometric interpretation of both the MLE and the extended MLE for
log-linear models as the unique points realizing the intersections between the polytopes

{
Pξ

}
ξ∈CA

and the variety VA,≥0. These points happen to be also the optimizers of the log-likelihood functions
parametrized by the cell mean vectors for the extended exponential family with convex support
CA. Both the geometric and the analytic characterizations of the extended MLE are illustrated in
Figures 5 and 6, where the log-likelihood function, denoted by `, is parametrized for convenience
by µ. Figure 5 deals with the MLE, which exists if and only if the vector t of the observed sufficient
statistics lies in the relative interior of the marginal cone CA. In that case, the intersection between
the corresponding polytope Pt, represented as a 3-dimensional polygon, and the variety VA,≥0 is a
unique strictly positive cell mean vector m̂ whose logarithm is the MLE of µ. The characterization
of the extended MLE, presented in Figure 6, is more elaborated but utilizes the same framework.
When the vector of observed margins t lies on the relative interior of a face F of the marginal cone,
it is still true that the intersection VA,≥0 ∩Pt is realized by a unique non-negative vector m̂e. How-
ever, since Pt is not of full dimension (and this is why it is depicted as a 2-dimensional polygon),
some of the coordinates of m̂e are 0. Specifically, supp(m̂e) = F , with F being the facial set for the
face F . As in the previous case, the log-likelihood function, parametrized using the logarithm of
the cell mean vector, achieves its supremum along sequences of points {µn} with exploding norm
satisfying limn expµn = m̂e. This unique limit point m̂e parametrizes, in a mean value fashion,
one distribution of to the restricted linear exponential family whose sufficient statistics have F as
a convex support, and furthermore, it satisfies the moment equation, An = Am̂e. This point is the
extended MLE.

Figure 5: The geometry of the MLE.
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Theorem 5.8 also provides a geometric re-interpretation of the generalized iterative propor-
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Figure 6: The geometry of the extended MLE.
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tional fitting (IPF) algorithm (Darroch and Ratcliff, 1972). By performing cyclical adjustments of
the fitted values in such a way that the vector of marginal totals tend to the observed margins,
the IPF procedure generates a sequence {ξε} of points in ri(CA) such that limε→0 ξε = t, where
ξε = t + ε, for some vanishing perturbation sequence of values ε like the scalar values in Tables
1(a) and 1(b). The sequence{ξε} is mirrored, in a one-to-one way, by a sequence of strictly positive
points {mε} on the toric variety VA,≥0 which tend to the extended MLE m̂e. This correspondence,
is represented in Figure 7. Note that, by construction, the IPF algorithm will produce the extended
MLE, a results which follows from Theorem 4.13 in Lauritzen (1996), although the convergence
has been observed to be extremely slow (see, e.g., Fienberg and Rinaldo, 2006b).

The distribution over the fiber of lattice points inside the polytope Pt is well known in statistics
as the “exact distribution” of the set of all contingency tables possessing the same sufficient statistics
t. The study of the geometric and combinatorial properties of Pt is crucial to many algorithms
for sampling from this conditional distributions, in particular to Markov Bases methods (see, for
example, Diaconis and Sturmfels, 1998; Takemura and Aoki, 2004; Chen et al., 2006). We remark
here that the problem of computing a Markov Bases is in general much harder than determining
the existence of the MLE and computing the extended MLE; in fact, if a Markov Basis is available, it
can be used to decide whether the MLE exists and to determine the appropriate facial set (Rinaldo,
2005). On the other hand, if one knows the facial set corresponding to the observed sufficient
statistics, it is apparent that some Markov moves, namely the ones specified by vectors in the basis
with support not inside the facial set, are not applicable and hence need not to be computed.

In general, for conditional Poisson models with convex support CN , the polyhedra Pξ, ξ ∈ CN ,
consist each of the sets of all conditional cell mean vectors m arising from distributions absolutely
continuous with respect to µN and satisfying the linear constrains A∗m = ξ. In this respect, they
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represented the equivalent of convex cores for the sufficient statistics (see Csiszár and Matúš, 2001,
Theorem 3), though Pξ can be strictly larger than (the closure of) the convex hull of its fiber. Under
Poisson and product multinomial schemes, the extended maximum likelihood estimates are the
only mean vectors that satisfy both the polynomial equations defining the log-linear model variety
and the linear equations implied by the sufficient statistics. In the spirit of (Csiszár and Matúš,
2003, Section VI), the extended MLE can then be interpreted as the rI-projection over the set of
all possible distributions over contingency tables having cell mean values satisfying the moment
equations.

Figure 7: Homeomorphic correspondence between VA,≥0 and CA and visual demonstration of the
IPF algorithm for computing the extended MLE.
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Provided that M contains the subspace of constant functions, the proof of Theorem 5.8 shows
that each point m in the non-negative toric variety VA,≥0 is the maximizer of the entropy function
over the polytope Pξ, with ξ = Am. This result should be related to Corollary 4.3, stating the
well known result that MLEs for linear exponential families correspond to distributions maximizing
Shannon’s entropy given the linear constraints associated with the sufficient statistics (see Cover
and Thomas, 1991, Section 11.1). Then this result holds also for the extended maximum likelihood
estimates.

6 Conclusions

In this article, we make use of various connections between polyhedral geometry, algebraic ge-
ometry and statistics to provide analytic and geometric characterizations of maximum-likelihood
estimation for log-linear models. Some of these connections are already renown and their usage
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is well established among researchers in the field of algebraic statistics. Others, such as the link
between toric varieties, marginal cones and extended exponential families, and the consequent
geometric representation of both the MLE and the extended MLE, are novel contributions.

We derive new, constructive conditions for the existence of the MLE of the cell mean vector
that hold for a variety of sampling schemes, which generalize the results by Haberman (1974)
and Eriksson et al. (2005). This new characterization relies on the geometric and combinatorial
properties of the marginal cone generated by the design matrix and allows for a unambiguous
identification of all the patterns of sampling zeros causing the MLE to be nonexistent. The examples
from Section 3.1 exemplify this kind of result.

A series of important results on extended exponential families obtained by Bardorff-Nielsen
(1978), Brown (1986) and Csiszár and Matúš (2001, 2003, 2005) are adapted to the conditional
distribution of the cell counts under Poisson, product-multinomial and conditional Poisson sampling
schemes. In particular, it is shown that these conditional distributions are of exponential types and,
therefore, they admit and extended representation. The appropriate mean value parametrization
for this extended family is through the point of the toric variety generated by the design matrix.
The topological properties of this variety are then used to prove information-theoretic properties
of the extended families themselves. From the analytic point of view, we also show that the log-
likelihood function of the cell counts always attains its supremum, under any log-linear model and
any of the sampling schemes considered here. This supremum corresponds to the usual MLE when
the sufficient statistics belong to the relative interior of the marginal cone, while it corresponds to
the MLE for a restricted component of the extended family otherwise. This result, combined with
the continuity of the mean value parametrization for the extended exponential family allows for a
more general definition of the extended MLE than the one proposed by Fienberg et al. (1980) and,
only implicitly, by Lauritzen (1996). The extended MLE is unique and always defined and can be
computed by maximizing the log-likelihood function of the original, non-extended, family of distri-
butions, without requiring any reparametrization of the likelihood. In fact, numerical procedure for
detecting non-existence of the MLE and for computing the extended MLE can be devised, based on
the findings presented in this article. The derivation and properties of these algorithms are beyond
the scope of this work and are given in Rinaldo (2005) and Fienberg and Rinaldo (2006a).

Extended MLE can be used to correct, in a straightforward way, existing hypothesis testing and
model selection procedures to account for the non-estimability of some cell mean vectors due to
sampling zeros. On one hand, we already remarked that the knowledge of the facial set determined
by the observed table may be of advantage in reducing the computational burden of algorithms
for sampling from the fiber. On the other hand, the large-sample χ2 approximation to various
goodness-of-fit statistics is still valid in the extended exponential family framework, provided the
appropriate adjustments for the number of degrees of freedom are made (see Fienberg and Rinaldo,
2006a). It is apparent, however, that a careful interpretation of these tests is in order, because they
allow for the possibility of ”boundary models”, entailing cell mean vectors with zero entries.

7 Appendix A

Proof of Proposition 2.1. By definition, the vector t = An is a minimal sufficient statistic for the
exponential family in (3) if and only if the model (2) holds. Using the identity (t,η) = (n,A>η) =
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(n,µ), where µ = A>η ∈M, this in turn occurs if and only if Equation (5) becomes

pη(x)dνN (x) =
1Q

i x(i)! exp{(x,µ)}∑
x′∈S(N )

1Q
i x′(i)! exp{(x′,µ)}

dνN
dν

(x). (23)

If N = {0}, so that S(N ) = NI , (23) is the joint distribution of |I| independent Poisson random
variables with mean vector expµ. Thus, µ ∈M is indeed the logarithm of the unconditional mean
vector of the table n. To prove ii., note that, since µ ∈M and PM is a symmetric operator,

(n,µ) = (PMn,PMµ) = (PM	Nn,PM	Nµ) + (c,PNµ)

Thus, (23) becomes

pη(x)dνN (x) =
1Q

i x(i)! exp{(PM	Nx,PM	Nµ)}∑
x′∈S(N )

1Q
i x′(i)! exp{(PM	Nx′,PM	Nµ)}

dνN
dν

(x), (24)

proving the statement. �

Proof of Theorem 3.5. The first claim stems from equation (24), from which it follows that, a.e-
νN ,

(PM	Nn,PM	Nµ) = (z,θ), (25)

where θ ∈ Rk. Then, the distribution of z belongs to an exponential family with base measure µN .
Minimality essentially follows from the sampling assumption S, which implies that there are no
affine dependencies among the coordinates of z. Similarly, the parameter vector θ is unconstrained,
hence θ ∈ Rk, so the family is full and regular. The convex support of this family is CN = {z = A∗x :
x ∈ RI

+, (γj ,x) = cj , j = 1, . . . ,m}. Theorem 3.4 shows that the MLE θ̂ exists and is unique if and
only if z ∈ ri(CN ). Next, letting V be the m× |I| matrix with rows the vectors γj/cj , j = 1, . . . ,m ,
z belongs to CN if and only if (

z
1

)
∈ cone

(
A∗

V

)
. (26)

This can be recognized to be a V-polyhedron (Ziegler, 1998) and its dimension k = rank(A∗) is
the dimension of its affine hull, which is the order of the exponential family (Brown, 1986). Next,

consider the polyhedron PA = {t = Ax : x ∈ RI
≥0, (γj ,x) = cj , j = 1, . . . ,m}. Since

(
A∗

V

)
and A

have the same null space and both the polyhedra PA and CN are specified by the same set of linear
forms given by the vectors γj , j = 1, . . . ,m, they have the same dimension and Gale transform.
As a result, they are combinatorially equivalent, hence z ∈ ri(CN ) if and only if t ∈ ri(PA). By
Theorem 3.4, if the MLE θ̂ exists, it is unique. Since the row range of A∗ is M	N and A∗ is of full
rank, the last statement is equivalent to existence and uniqueness of the MLE of PM	Nµ, which is
(A∗)>θ̂. �

Proof of Theorem 3.7. The proof proceeds by reducing to minimal form the corresponding expo-
nential families and then by exploiting the fact that the gradient of the log-partition function at the
MLE equals the observed minimal sufficient statistics.
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Poisson Sampling
Letting A be the full-column rank design matrix whose columns span M, the distribution of the
minimal sufficient statistics belongs to the minimal, full and regular exponential family with density
with respect to the induced measure νNT−1 given by

exp{(z,θ)− (1I ,A>θ)}.

The log-partition function is ψ(θ) = (1I ,A>θ) and the natural parameter space is Rk. The MLE θ̂

exists and is unique if and only if z ∈ ri(cone(A)) and it satisfies ∇ψ(θ̂) = A expA>
bθ = z, which

implies Am̂ = An or, equivalently, PMm̂ = PMn.

Product-multinomial Sampling
Recall that the constraint subspace is spanned by the orthogonal vectors (χ1, . . . ,χr) which are the
indicators of the corresponding to a partition of I in r classes Bj = supp(χj), j = 1, . . . , r. Let A be
a full-column-rank design matrix spanning M	N and let W = [χ1 . . . χr], so that R(W) = N .
Then, since N ( M, for each µ ∈ M, µ = Aθ + Wγ with θ ∈ Rk and γ ∈ Rr. By construction,
any |I|-dimensional vector of the form Wγ has constant values γj along the coordinates i ∈ Bj .
It is possible to show (see, for example, Haberman, 1974, page 11) that the conditional mean m
satisfies

m(i)
Nj

=
expAθ

(expAθ,χj)
for i ∈ Bj , (27)

from which it can be deduced that, for j = 1, . . . , r, Nj = expγj (expAθ,χj). Therefore, only the
vector θ needs to be estimated since γ = γ(θ) can be recovered uniquely from it. Furthermore,
since χj ∈ M, by taking the log of both sides of (27), it follows that log m ∈ M. The exponential
family of distribution for the sufficient statistics z generated by νN and A is minimal, full and
regular and has Rk as its natural parameter space, where k = dim(M	N )). With respect to the
induced measure, the densities take the form

exp

(z,θ)−
r∑

j=1

Nj log
(
(expAθ,χj)

) .

The gradient of the log-partition function is

∇ψ(θ) =
∑r

j=1
Nj

(expAθ ,χj)

∑
i : i∈Bj

a>i expa>i θ

=
∑r

j=1 expγj
∑

i : i∈Bj
a>i expa>i θ

=
∑r

j=1

∑
i : i∈Bj

a>i expa>i θ+w>
i γ

= A> expAθ+Wγ ,

where a>i and w>
i denote the i-th row of the matrices A and W, respectively. As above, if the

MLE (θ̂,γ(θ̂)) exists, it is unique and the moment equation ∇ψ(θ̂) = z holds. This is equivalent to

A> expA
bθ+Wγ(

bθ) = A>m̂ = A>n, which in turn implies PM	N m̂ = PM	Nn. In addition, because
of the way the vector β is constrained, PN m̂ = PNn.
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For the second part of the statement, since N ⊂ M, the equality PMm̂ = PMn is satisfied for
the MLE under both sampling schemes. By the uniqueness, they must exist together and coincide.

�

Proof of Lemma 3.8. Since the columns of (A∗)> span M	N , (A∗)>θ = PM	Nµ, for some (in
fact, many) µ ∈ M. Then, for one η ∈ HνN , µ = A>η. From this, it follows that (A∗)>θ =
PM	NA>η, and, because A∗ is of full row-rank, θ = Hη, where the matrix

H =
(
A∗(A∗)>

)−1 A∗PM	NA>

=
(
A∗(A∗)>

)−1 A∗A>

is independent of η. Equation (9) follows from writing the denominator of (24) as∫
S(N )

exp{(PM	Nx,PM	Nµ)}dνN (x) =
∫
CN

exp{(z,θ)}dµN (z) = exp{ψ(θ)},

where the equality in the middle stems from the definition of µN and Equation (25). �

Proof of Lemma 3.9. Using the settings of Theorem 3.5, let A′ =
(

A∗

V

)
. The matrices A′ and A

have the same row span, so there exists a matrix T such that A = TA′. Let 1r be a r-dimensional

vector of ones, where r is the number of rows of V. For any ξ ∈ CN , let fA(ξ) = T
(

ξ
1r

)
. Then

fA maps linearly CN into CA. To see that fA is an injection, let ξ1 and ξ2 be two distinct points
of CN . Then, there exist x1,x2 ∈ RI

≥0 such that ξ1 = A∗x1 and ξ2 = A∗x2 and Vx1 = Vx2 = 1r.
Suppose that fA(ξ1) = fA(ξ1). Then t1 = t2, where

ti = fA(ξi) = TA′xi = Axi ∈ CA, i = 1, 2.

It follows that x1−x2 belongs to kernel(A) and, therefore, to kernel(A∗), which implies that ξ1 = ξ2,
a contradiction. The final statement can be proved with similar arguments or using Lemma 7.10 in
Ziegler (1998) after noticing that fA is the inverse of an affine projection. �

Proof of Theorem 4.2. This result follows by combining Theorem 9.1 (ii)∗ and Theorem 9.4 of
Bardorff-Nielsen (1978) with the fact that CN is closed.

The alternative proof given here highlights various connections between convex analysis and
exponential families. For a minimal and full family as in (8), it is known that ψ(θ) is a strictly
convex, closed and essentially smooth function. The conjugate function ψ∗(ξ) = {supθ∈Θ(ξ,θ) −
ψ(θ)} is also an essentially smooth and closed convex function (Rockafellar, 1970, Theorem 12.2
and Theorem 26.3). For any convex function f from Rk to R, a vector x∗ ∈ Rk is a subgradient at a
point x ∈ Rk (not necessarily in dom(f)) if

f(y) ≥ f(x) + (x∗,y − x) ∀y ∈ Rk.

The convex set of all subgradients of f at x is called subdifferential and is denoted with ∂f(x) and
the multivalued map ∂f : x → ∂f(x) is the subdifferential of f . For a proper convex function such
as ψ, ∂ψ(x) = ∅ if x 6∈ domψ and ∂ψ(x) 6= ∅ if x ∈ ri(domψ). By Theorem 23.5 in Rockafellar
(1970), since ψ is closed convex function, the following statements are equivalent:
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• ξ ∈ ∂ψ(θ);

• θ ∈ ∂ψ∗(ξ);

• (θ, ξ)− ψ(θ) = supζ∈Θ(ζ, ξ)− ψ(ζ) = ψ∗(ξ).

By Theorem 26.1 in Rockafellar (1970), the subdifferential function ∂ψ is a single-valued mapping
and reduces to the gradient function ∇ψ, for θ ∈ Θ and, furthermore, ∂ψ∗ = (∇ψ)−1. It can
be deduced that the subdifferential function is, in fact, the mean value parametrization function
Λ(θ) = ∂ψ(θ) and that the image of ∂ψ is ri(CN ). The above displays then show that the MLE
exists if and only if ξ ∈ ri(CN ). The pair (ψ∗, ri(CN )) is the Legendre conjugate of (ψ,Θ) and
ri(CN ) ⊂ domψ∗. By Theorem 26.4 in Rockafellar (1970) the associated Legendre transform is
given by

ψ∗(ξ) =
(
(∇ψ)−1(ξ), ξ

)
− ψ

(
(∇ψ)−1(ξ)

)
(28)

for ξ ∈ ri(C) and θ ∈ Θ.
By Corollary 26.4.1 in Rockafellar (1970) ψ∗, restricted to ri(CN ), is the sup-log-likelihood func-

tion and it is strictly convex on every subset of ri(CN ). In addition, owing to the essential smooth-
ness of ψ∗, for any boundary point ξ ∈ bd(C), ψ∗(ξ) = limn ψ

∗(ξn) for any sequence {ξn} ⊂ ri(C) on
a line joining ξ with any point in ri(C). Next, ri(domψ∗) ⊂ ri(CN ) ⊂ domψ∗. Therefore, since both
ri(CN ) and domψ∗ are convex sets, CN = cl(domψ∗). Finally, since ψ∗ is closed, cl(domψ∗) = domψ∗

and so conclude CN = domψ∗. �

Proof of Theorem 4.5.

i. The case in which z ∈ ri(CN ) was already proved and it suffices to show that the MLE exists
and is unique for any z ∈ ri(F ), for any proper face F of CN . This proof is based on the
arguments utilized by Brown (1986, Theorem 6.21).

Let e be the normal vector to the supporting hyperplaneHF defining the face F whose relative
interior contains z, so that, without loss of generality, HF = {x : (x, e) = 0} and for all
x 6∈ F , (x, e) < 0. Consider any point ξ ∈ ri(CN ) and let θ = Λ−1(ξ). Next notice that
(z,θ) − ψ(θ) = − ln

∫
exp(x−z,θ) dµ(x). In addition, since (x − z, e) ≤ 0 for each x ∈ CN , it

follows that
∫

exp(x−z,θ+ρe) dµ(x) <
∫

exp(x−z,θ) dµ(x), for any ρ > 0. Therefore, for ρ ≥ 0,∫
exp(x−z,θ+ρe) dµ(x) =

∫
{x:(x−z,e)<0} exp(x−z,θ+ρe) dµ(x) +

∫
{x:(x−z,e)=0} exp(x−z,θ) dµ(x)

↓
∫
{x:(x−z,e)=0} exp(x−z,θ) dµ(x) =

∫
exp(x−z,θ) dµF (x),

(29)
as ρ→∞, by the monotone convergence theorem and because, by construction,

µF (B) = µ(B ∩HF ) =
∫
x∈B∩{x:(x−z,e)=0}

dµ(x)

for any Borel set B.

Let ξ′ = ΛF (θ), which is a unique point in ri(F ), since θ ∈ Θ = ΘF = Rk. By taking the
negative log of both side in the last display, it follows that

pξ(z) =
exp(θ,z)∫

exp(θ,x) d(x)
<

exp(θ,z)∫
exp(θ,x) dµF

ξ′
(x)

dµF

dµ
(z) = pξ′(z).
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Since, for any ξ′′ ∈ bd(CN ) ∩ F c, pξ′′(z) = 0, this shows that for any ξ ∈ CN ∩ F c, there is

a ξ′ ∈ ri(F ) such that pξ(z) < pξ′(z). Finally, by Theorem 3.4, applied to the family whose

convex support is F , the MLE exists uniquely and coincides with z, so that, for each ξ′ ∈ F
with ξ′ 6= z, pz(z) > pξ′(z). Note that, in order to apply Theorem 3.4, one has to reduce the
exponential family with convex support F to its minimal form; however, it is easy to see that
this can be achieved by embedding F into its support hyperplane.

ii. This follows from Section 6.18-6.23 of Brown (1986) and because the convex support is a
polyhedron, µF > 0 for each face F and the original exponential family if full. For a simpler
proof, let {ξn} ⊂ ri(CN ) be a sequence such that limn ξn = ξ with ξ ∈ ri(F ) for some
proper face F . By Lemma 7.2, there exists a sequence {ηn} with ηn = Λ−1(ξn) such that
limn(x,ηn) = (x,θ), with θ ∈ Λ−1

F (ξ), for every x ∈ F and limn(x,ηi) = −∞ for every
x ∈ F c. Let z be any point in supp(µN ). Then, using the monotone convergence theorem,

limn pξn
(z) = limn

(∫
{x:(x−z,e)<0} exp(x−z,ηn) dµ(x) +

∫
{x:(x−z,e)=0} exp(x−z,ηn) dµ(x)

)
=

∫
{x:(x−z,e)=0} exp(x−z,θ) dµ(x)

=
∫

exp(x−z,θ) dµF (x)
= pξ(z).

iii. For any ξ ∈ CN , let ξ∗(ξ) = supξ′∈CN
pξ′(ξ). Using part i., one sees that ξ∗(ξ) = pξ(ξ). In

particular, for ξ ∈ ri(CN ), pξ(ξ) = exp
(
(ξ,Λ−1(ξ))− ψ(Λ−1(ξ))

)
, by the properties of the

mean parametrization map. It follows that (ri(CN ), ξ∗) is the Legendre conjugate of (Θ, ψ) so
that, for ξ ∈ ri(CN ),

ξ∗(ξ) = sup
θ∈Θ

pθ(ξ) = ψ∗(θ)

(see Rockafellar, 1970, page 256-257). Therefore, ψ∗ = ξ∗, on ri(CN ). It only remains to
show that ψ∗ and ξ∗ agree also on the boundary of CN . Let {ξn} ⊂ ri(CN ) be an arbitrary
sequence such that limn ξn = ξ ∈ bd(CN ). By part ii., for each ε > 0, there exists a number
N1(ε) such that ∀n > N1(ε), |pξn

(ξ) − pξ(ξ)| < ε/2. Next, using part ii. again and because
of the continuity of the inner product, there exists a number N2(ε) such that ∀n > N2(ε),
|pξn

(ξn)− pξn
(ξ)| < ε/2. Let N(ε) = max (N1(ε), N2(ε)). Then, for all n > N(ε), |pξn

(ξn)−
pz(z)| < ε. Hence,

ξ∗(ξ) = lim
n
ξ∗(ξn) = lim

n
ψ∗(ξn) = ψ∗(ξ),

where the last equality follows from the continuity of ψ∗ (see Theorem 4.2).

�

Proof of Lemma 4.6. Since F is a face of CN , there exist some some vector ζF ∈ Rk and scalar cF
defining the hyperplane H = {z ∈ Rk : (z, ζF ) = cF }, such that F = CN ∩H and (ξ, ζF ) < cF for
all ξ ∈ CN ∩ F c. For each ξ ∈ CN consider the polyhedron

Pξ := {x ∈ RI
≥0 : A∗x = ξ, (x,γj) = cj , j = 1, . . . ,m},

where the integer vectors (γ1, . . . ,γm) span N and the rows of the integer matrix A∗ span M	N .
Then, ξ ∈ F if and only if cF = (ξ, ζF ) = (x, ζ>F A∗) = (x,γF ), for all x ∈ Pξ, with γF = ζ>F A∗ ∈
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M	N . Equation (26) shows that CN is the coordinate projection of a polyhedron which is the
Minkowski sum of a polytope and a cone (with one of them being possible empty). Therefore, if F
is a face of CN , then it derives either from a face of the cone or from a face of the polytope. Assume
without loss of generality that F correspond to the face of the cone (the proof for a face arising
form the polytope is similar and requires just minor modifications involving an homogeneization
argument), so that the hyperplane equation is H = {z : (z, ζF ) = 0}. Then, given any ξ ∈ F ,

(x, ζ>F A∗) = 0 for every x ∈ Pξ. (30)

Let F := {i ∈ I : (ζF ,ai) = 0}, where ai denotes the i-th column of A∗. Since, for each i 6∈ F ,
(ζF ,ai) < 0, equation (30) implies that, if ξ ∈ F , then, necessarily, x(i) = 0 for all x ∈ Pξ
and all i 6∈ F . By applying the same arguments as in Theorem 3.5, it can be concluded that the
face F is a polyhedron which corresponds to the convex support for the minimal sufficient statistic
for the conditional Poisson model with subspace constraint NF given by the span of the vectors
γj , j = 1, . . . ,m and the vector γF . In particular, since γF ∈ M 	 N , then N ⊂ NF ⊂ M.
Therefore, each table n arising from such extended sampling schemes must necessarily satisfy
n(i) = 0, for each i 6∈ I. Furthermore, since ξ belongs to the relative interior of only one face F ,
the uniqueness of F follows.

�

Proof of Corollary 4.7. Lemma 4.6 shows that for any x ∈ Pξ, with ξ ∈ ri(F ) for some face of CN
with facial set F , supp(x) ⊆ F . The MLE does not exist if and only if A∗n = z ∈ ri(F ) for some
proper face F of CN , from which the statement follows. �

Proof of Corollary 4.8. We only need to show that πF (N ) = πF (NF ), for all non-trivial facial sets
F of CN . LetF be any such a set. Then, there exists a vector ζF such thatF = {i ∈ I : (ai, ζF ) = 0},
with ai denoting the i-th column of A. Then NF = N + R(γF ), where γF = ζ>F A and R(γF )
denotes the one-dimensional subspace spanned by γF . Since πF (γF )) = πF (R(γF )) = 0, the
claim follows. �

Proof of Theorem 4.9. Consider a point ξ ∈ ri(CN ). Then, the following diagram illustrates bijec-
tions that are all homeomorphisms,

θ ⇐⇒ µ
m m
ξ mξ,

with mξ satisfying Equation (14). Hence {ξ ∈ ri(CN )} is homeomorphic to {mξ, ξ ∈ ri(CN )}. The
same kind of results holds for the relative interior of any proper face F of CN (previous reduction
to a minimal representation). More precisely, for any proper face F of the convex support, there is
a homeomorphism

ξ ⇐⇒ πF (µ),

where ξ ∈ ri(F ), and mξ = τF (expπF (µ)) satisfies Equation (14). Therefore, ri(F ) and {mξ}ξ∈ri(F )

are homeomorphic for every F in the face lattice L(CN ). Next, if limn mξn
= mξ with {ξn} ⊂ CN

and ξ ∈ ri(F ) for some proper face F , it is clear that limn ξn = ξ. The converse is also true by
Lemma 7.1 below. Hence, by the closeness of CN , the result follows.

�

35



Lemma 7.1. Let {ξn} ⊂ CN be such that limn ξn = ξ. Then, limn mξn
= mξ.

Proof. The proof will only be given for the case ξ ∈ ri(F ), for some proper face F , the case
ξ ∈ ri(CN ) being analogous and simpler (in fact supp(mξ) = I). It will be shown that to each
sequence {ξn} ⊂ CN , there corresponds a sequence of real valued vectors {µn} in M such that
limn πF (µn) = µF , with µF = exp{πF (mξ)} and limn πFc(µn) ↓ −∞, element-wise, where Fc =
I \ F . From this it follows that limn mξn

= limn exp{µn} = mξ.

Since ξ ∈ ri(F ), there exists a vector (in fact, many) θ ∈ Rk such that πF ((A∗)>θ) = µF , where
ξ = A∗τF

(
expµF

)
. By Lemma 7.2, it can be assumed that ξn = Λ−1(γn+ρne) where γn → γ, with

(γ,x) = (θ,x) +K a.e.-µF for some constant K, e is a vector normal to the hyperplane containing
F and 0 < ρn →∞. Then, πF ((A∗)>θ) = πF ((A∗)>γ). Next note that µn = (A∗)>(γn + ρne) and
hence µn ∈ M for each n. Because e is normal to F , πF ((A∗)>e) = 0, and therefore πF (µn) =
πF ((A∗)>γn). Moreover, πFc(µn) ↓ −∞ element-wise, because πFc((A∗)>e) < 0, ρn ↑ ∞ and γn

is eventually bounded in each coordinate since it converges to the finite vector γ. By the continuity
of the function πF , it follows that

limn πF (µn) = limn πF ((A∗)>γn)
= πF ((A∗)> limn γn)
= πF ((A∗)>γ)
= πF ((A∗)>θ)
= µF .

�

Lemma 7.2. Let F be a face of the convex support CN and let e be a normal vector to the hyperplane
containing F , so that for any x ⊂ CN , (x, e) ≤ cF with equality if and only if x ∈ F . For any
ξF ∈ ri(F ), let {ξn} ∈ ri(CN ) be a sequence such that limn ξn = ξF . Let ηn = Λ−1(ξn), for each n.
Then, {ηn} can be written as ηn = γn + ρne, with limn γn = γ ∈ Λ−1

F (ξF ) and 0 < ρij →∞.

Proof. Assume, without loss of generality that cF = 0. The hypothesis limn ξn = ξF implies that,
for some θ ∈ Λ−1

F (ξF ),

lim
n

∫
x : (x,e)<0 x exp(x,ηn) dµ(x) +

∫
x : (x,e)=0 x exp(x,ηn) dµ(x)∫

x : (x,e)<0 exp(x,ηn) dµ(x) +
∫
x : (x,e)=0 exp(x,ηn) dµ(x)

=
∫

x exp(x,θ) dµF (x)∫
exp(x,θ) dµF (x)

.

From this identity, it follows that, for each x ∈ supp(µF ), limn(x,ηn) = (x,γ), with (x,γ) = (x,θ)
a.e.-µF . Hence γ ∈ Λ−1

F (ξF ) and, for each x ∈ F c ∩ supp(µ), limn(x,ηn) → −∞. Since CN
is the convex hull of the points in the support of µN , this in turn implies that for each ξ ∈ F ,
limn(ξ,ηn) = (ξ,γ) = (ξ,θ), while for each ξ ∈ F c ∩ CN , limn(ξ,ηn) → −∞. Then, the sequence
{ηn} can be chosen of the form ηn = γn + ρne with limn γn ∈ Λ−1

F (ξF ). �

Proof of Theorem 4.10. For any n such that z = A∗n, pξ(z) = pmξ
(n). Combine this with The-

orem 4.5 and Theorem 4.9 to obtained the desired result. Note that the moment equations are
satisfied because

z = ∇ψF (θz) = AFm̂,

with m̂ being the MLE of the conditional mean, where the first equality stems from Theorem 3.4 and
the second from the fact that the first moment can be obtained by differentiating the log-partition
function. �
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Proof of Theorem 4.12. A proof can be given based on general results in Csiszár and Matúš (2003,
2005). We give here instead a direct proof. For any ξ ∈ CN , let Pmξ

be the distribution correspond-

ing to the density pmξ
from (12) parametrized by mξ. Because VA,≥0 is a closed set in RI , it is

sufficient to prove the following claim. Let tv→ and rI→ denote convergence in total variation and
rI-convergence, respectively.

For any sequence {mξn
} ⊂ VA,≥0 such that mξn

→ mξ, Pmξn

rI→ Pmξ
and Pmξn

tv→ Pmξ
.

We first show rI-convergence. Consider any mξ and let A∗mξ = ξ ∈ ri(F ) for some proper face F
of CN , so that supp(mξ) = F . Although Pmξ

it is defined over RI , Pmξ

(
πFc(RI) = 0

)
= 1. Let

{mξn
} be any sequence such that mξn

→ mξ and ξn ∈ ri(CN ) for all i. This implies that, for all i,

supp
(
mξn

)
= I and, furthermore, Pmξ

<< Pmξn

. Thus, D
(

Pmξ
||Pmξn

)
is finite and, using the

function τF defined in (13), equal to∫
RI

ln
exp{(x, τF (µ))− ψF (θ)}

exp{(x,µn)− ψ(θn)}
dPmξ

(x), (31)

where θ ∈ Λ−1
F (ξ), θn = Λ−1(ξn), µn = lnmξn

and µ = lnπF (mξ). Equation (31) in turn is equal
to ∫

RI
(τF (πF (x)), τF (µ− πF (µn))) dPmξ

(x) + ψ(θn)− ψF (θ).

By the same arguments used in the proof of Theorem 4.5, ψ(θn) → ψF (θ) and by Lemma 7.1
πF (µn) → µ. Hence (x, τF (µ − πF (µn))) → 0 a.e.-Pmξ

. Thus by the dominated convergence

theorem, the integral vanishes, showing that Pmξn

rI→ Pmξ
.

Convergence in total variation follows from Scheffe’s Theorem, after noting that νN is a finite
measure. Alternatively, by Pinsker’s inequality (Cover and Thomas, 1991, Lemma 12.6.1)

1
2 ln 2

(||P−Q||1)2 ≤ D(P||Q),

where || · ||1 denotes the L1 norm, it can be seen that rI-convergence implies convergence in total
variation. Since we just established rI-convergence, we have that Pmξn

tv→ Pmξ
.

�

Proof Lemma 5.1. The identity in i) follows by taking z = expη, so that x ∈ im(φA) if and only
if log(x) = A>η ∈ M. For the statement in ii), note that, pη satisfies (2) if and only if log pη =
A>η + kη1I for some normalizing constant kη depending on φ(η). If the row span of A contains
the vector 1I then it is immediate to see that log pη ∈M so cη is 1. If this is not the case, the result
still holds with cη = exp−kη . �

Proof of Lemma 5.6. For the design matrix A, a set F ⊆ I is facial if and only if there exists
a face F in the cone generated by the columns of A whose relative interior is spanned by conic
combinations of the columns of A with positive coefficients along the coordinates in F and zero
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coefficients along all the others. This occurs if and only if for each u ∈ kernel(A), either both
supp(u+) and supp(u−) are subsets of F of neither of them is. Next since LA spans the subspace
kernel(A), it is sufficient to consider only vectors u ∈ LA. Since each m ∈ VA,≥0 satisfies the
polynomial equations (18) defining the toric ideal IA, then, for each u ∈ LA, either both supp(u+)
and supp(u−) are subsets of supp(m) of neither of them is (in which case the equality 0=0 trivially
holds). Hence, facial sets and the support sets of point in VA,≥0 are determined by the same
conditions. See also Lemma 4 in Geiger et al. (2006). �

Proof of Theorem 5.8. The second statements is proved in Lemma 7.3, so only the first claim
needs to be proved. By Lemma 7.3, CA and VA,≥0 are in one-to-one correspondence, while Theorem

4.9 shows that CA and
{
mξ

}
ξ∈CA

are homeomorphic. Therefore, it remains to show that, for each

ξ ∈ CA, the corresponding point m in VA,≥0 is in fact mξ. If ξ ∈ ri(CA), then, the corresponding
point m ∈ VA,≥0 satisfies supp(m) = I and Am = ξ. Then, Equation (18) further implies that
log m ∈ M, so that m = mξ. Next assume that ξ ∈ ri(F ), for some proper face of CA with
facial set F . Then, by Lemma 7.3 again, the corresponding point m on the toric variety satisfies
supp(m) = F and the moment equations Am = ξ. In addition, m is the only such point verifying
(w,µF ) = 0 for each w ∈ kernel(AF ), with µF = lnπF (m). Hence µF ∈ πF (M). Then m satisfies
the conditions (14), hence conclude that m = τF (expµF ) = mξ, with τF defined in (13). �

Lemma 7.3. For each ξ ∈ CA, {m} = Pξ ∩ VA,≥0. In fact, CA and VA,≥0 are homeomorphic.

Proof. This result is derived as a direct consequence of the properties of the moment map (see, for
example, Fulton, 1978).

The proof for the general case is given below. A different proof for the situation in which the
row span of A contains the vector 1I is given first. It identifies the MLE as the unique estimate of
the natural parameter that maximizes the entropy of all distributions for which the expected value
of the sufficient statistics match the observed values.

Consider the map f : VA,≥0 → CA given by f(m) = Am. It will be shown that this defines,
in fact, a bijection, between VA,≥0 and CA. Let ξ ∈ ri(F ) for some face (possibly improper) F of
CA and let H : RI

≥0 → R be Shannon’s entropy function H(x) = −
∑

i x(i) lnx(i) using natural
logarithm, which is continuous anywhere on its domain (at the boundary the values of H are well
defined and can be obtained using continuity and the fact that x lnx → 0 for x ↓ 0). The function
H is strictly concave since, for any x ∈ RI , the hessian matrix at x, − 1

x(i1)

. . .
− 1

x(ir)


is negative definite, where supp(x) = {ij : j = 1, . . . , r}.

First, it will be shown that f is surjective. From this it will follow that each non-negative
vector x in Pξ will be such that x(i) = 0 for all i 6∈ F ; furthermore, because of Lemma 5.6, any
possible point m in VA,≥0 ∩ Pξ satisfies supp(m) = F . The ambient space of the polytope Pξ is

RF and, without loss of generality, assume that H is restricted1 to RF . The restriction of H to
1In fact, for any x ∈ RI

F with x(i) = 0 for all i 6∈ F , H(x) = −
P

i∈F x(i) lnx(i), which is precisely the value of H

restricted to RF
≥0.
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the closed set Pξ (which is also compact in its ambient space) is still strictly concave and hence it
achieves its unique maximum at one point m∗ ∈ Pξ. It is not hard to see that m∗ ∈ ri(Pξ) so that
supp(m∗) = F . Since m∗ is a stationary point of H and it belongs to ri(Pξ), there exists a relatively
open neighborhood Bm∗ of m∗ inside ri(Pξ) such that the directional derivative of H at m∗ is zero
along each direction w satisfying m∗ +αw ∈ Bm∗ , ||w|| = 1, for some sufficiently small positive α.
This implies that, for each w ∈ RI such that πF (w) ∈ kernel(AF ),

0 =
∑
i∈F

(w(i) lnm∗(i) + w(i)) =
∑
i∈F

w(i) lnm∗(i), (32)

where
∑

i∈F w(i) = 0, since 1F belongs to the row span of AF . Equivalently, for each integer value
vector w ∈ kernel(AF ),

(m∗)τF (w)+ = (m∗)τF (w)− ,

where, as usual, 00 = 1. Given the convention that 0a = 0 for every a 6= 0 and the fact that
τF (kernel(AF )) ⊂ kernel(A), the previous equation holds for all integer w ∈ kernel(A). This
implies that equation (18) is satisfied. Hence m∗ ∈ VA,≥0.

In order to show injectivity, suppose that there exist a point m∗∗ ∈ VA,≥0 ∩Pξ distinct from m∗.
Then, supp(m∗∗) = F , hence m∗∗ ∈ ri(Pξ). In fact, arguing by contradiction, if this were not the
case, then necessarily, by Lemma 5.6, supp(m∗∗) would be a facial set corresponding to a face F ′

of F , contradicting the assumption that ξ ∈ ri(F ). Thus, m∗∗ ∈ ri(Pξ) ∩ VA,≥0, hence it satisfies
equation (32) for all w ∈ kernel(A). But this in turn implies that m∗∗ is also a stationary point for
the entropy function H distinct from m∗, contradicting the strict concavity of H. Hence m∗∗ does
not exist.

If the row span of A does not contain the vector 1I , then the proof so far can still be used to
show that there exists a homeomorphism between V≥0,A∩∆I and the polytope convhull(A), where
∆I is the simplex in RI .

For the more general case of a design matrix A not containing in its row span the constant
vectors in RI , the moment map property is proved using the following result, contained in Fulton
(1978).

Proposition 7.4. Let u1, . . . ,un be vector in Rk that span Rk and let C be the cone they span. Then,
the map F : Rk → Rk defined by

F (x) =
n∑

i=1

exp(ui,x) ui (33)

determines a real analytic isomorphism of Rk into the interior of C.

Assume for convenience, and without loss of generality, that A is of full rank and consider the
following function from Rk into RI

>0, obtained as a composition of the (element-wise) exponential
function and the monomial map defined in equation (15): κA(x) = φA (expx) = expA>x. Since the
exponential function maps bijectively Rk into Rk

>0, it is clear that cl (im(κA)) = cl (im(φA)) = VA,≥0,
where the last equality is Theorem 5.5.

By Lemma 5.6, for each m ∈ VA,≥0, there exists a (possibly improper) face F of CA such that
supp(m) = F . Therefore, for all such points, m = τF (im(φAF )) = τF (im(κAF )), with AF being the
sub-matrix of A consisting of the columns in F . Let A∗

F denote the full rank matrix with the same
row span as AF and let kF = rank(AF ). Then, the function F in equation (33) can be expressed as
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F (x) = A∗
Fm(x), where, for all x ∈ RkF , m(x) = exp(A∗F )>x ∈ im(κAF ). By Proposition 7.4, there

is a one-to-one correspondence between RkF and ri(CA∗F ) and hence between RkF and ri(CAF ).
Since, by Lemma 7.5, RkF is also in one-to-one correspondence with all the points m ∈ VA,≥0 such
that supp(m) = F via the map x → τF (κAF (x)), the result follows.

As a final remark, since f is a continuous function, the moment map f defines a homeomor-
phism between CA and VA,≥0. �

Lemma 7.5. Let A be a full-row rank k × n matrix with integer entries. Then, the monomial map
(15) is a homeomorphism between Rk

>0 and im(φA).

Proof. The result follows immediately from the fact that A is of full row rank and the mapping
t ∈ Rk

>0 → exp{A> log t} = (ta1 , . . . , tan) is in fact a homeomorphism, being the composition of
bijective continuous functions with continuous inverses. �

8 Appendix B

Connections with some results in Haberman (1974).

• Equivalence of Theorem 2.5 of Haberman (1974) and Theorem 3.5
Let A∗ be a design matrix whose row span is M	N and let z = A∗n. By Theorem 3.5, the
MLE does not exist when z belongs to a face of the marginal cone generated by the columns
of A∗. This occurs if and only if there exists a ζF such that (ζF , z) ≥ (ζF , z

′) for all z′ = A∗x,
x ∈ S(N ), if and only if (ζF ,A∗n) ≥ (ζF ,A∗x) for all x ∈ S(N ), if and only if (µ,n− x) ≥ 0
for all x ∈ S(N ), where µ = (A∗)>ζF ∈M	N .

• Equivalence of Theorem 2.3 of Haberman (1974) and Corollary 4.7
Let A be a design matrix whose rows span the log-linear subspace M. The MLE does not
exist if and only if An = t ∈ ri(F ) for some face F of the marginal cone, if and only if
{i ∈ I : n(i) > 0} ⊆ F , where F is the facial set associated with F , if and only if there exists
a vector ζF such that µ = ζ>F A ∈M satisfies µF > 0, µFc = 0 and (n,µ) = 0.
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