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Abstract

We develop computational strategies for extended maximum likelihood estimation, as de-
fined in Rinaldo (2006), for general classes of log-linear models of widespred use, under Pois-
son and product-multinomial sampling schemes. We derive numerically efficient procedures for
generating and manipulating design matrices and we propose various algorithms for computing
the extended maximum likelihood estimates of the expectations of the cell counts. These algo-
rithms allow to identify the set of estimable cell means for any given observable table and can
be used for modifying traditional goodness-of-fit tests to accommodate for a nonexistent MLE.
We describe and take advantage of the connections between extended maximum likelihood
estimation in hierarchical log-linear models and graphical models.
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1 Introduction

Log-linear models are a powerful statistical tool for the analysis of categorical data and their use
has increased greatly over the past two decades with the compilation and distribution of large,
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and very often sparse, data bases, in the social and medical sciences as well as in machine learning
applications. The growing interest in analyzing massive, sparse databases has dramatically exposed
a critical and, until very recently, unresolved issue with log-linear modeling: the possibility that
the presence of sampling zeros compromises the feasibility and correctness of statistical inference.
Sampling zeros, i.e. cells containing zero counts, arise as a consequence of the random nature of the
sampling mechanism itself and occur frequently, but not exclusively, in tables with a relatively large
number of cells compared to the sample size. Sampling zeros may be thought of as missing bits of
information. When they occur in specific patterns inside the table, the maximum of the likelihood
function occurs at the boundary of the parameter space where some subset of the expected values
are also zero. In such cases, we say that the Maximum Likelihood Estimate (MLE) of the cell mean
vector does not exist.

The MLE of the expected value of the vector of observed counts plays a fundamental role for
assessment of fit, model selection and interpretation. The existence of the MLE is essential for
the usual derivation of large sample χ2 approximations to numerous measures of goodness of
fit (Bishop et al., 1975; Cressie and Read, 1988; Agresti, 2002) which are used in testing and
model selection. If the distribution of the goodness-of-fit statistic is instead derived from the “exact
distribution,” i.e., the conditional distribution given the sufficient statistics, namely the margins, it
is still necessary in most cases to have an MLE or some similar type of estimator in order to quantify
the discrepancy of the the observed data from the fitted values. In addition, the existence of the MLE
is essential to the derivation of the limiting distribution in the double-asymptotic approximations
for the likelihood ratio and Pearson’s χ2 statistics for tables in which both the sample size and
the number of cells are allowed to grow unbounded (Cressie and Read, 1988). If the MLE is
not defined, the inferential procedures mentioned above may not be applicable or, at a minimum,
require adjusting the degrees of freedom.

The problem of nonexistence of the MLE has long been known to be related to the presence
of zero cell counts in the observed table (see, in particular, Haberman, 1974; Bishop et al., 1975).
Even if a zero entry in the margins is a sufficient condition for the nonexistence of the MLE, little
has been known about other “pathological” cases of tables with positive margins but where the
MLE still does not exist. The most famous, and until recently, the only published example of this
kind is the 23 table and the model of no-second-order interaction described by Haberman (1974)
(see Example 6.1 below). Although Haberman (1974) gave necessary and sufficient conditions for
the existence of the MLE, his characterization is nonconstructive in the sense that it does not di-
rectly lead to implementable numerical procedures and also fails to suggest alternative methods of
inference for the case of an undefined MLE. Despite these deficiencies, Haberman‘s results have not
been improved or extended in the published statistical literature. Furthermore, to our knowledge,
no numerical procedure specifically designed to check for existence of the MLE has been developed
yet. As a result, the possibility of the nonexistence of the MLE, even though well known, is rarely
a concern for practitioners and is largely ignored, so that results and decisions stemming from
the statistical analysis of tables containing zero counts are based on a possibly incorrect, faulty
methodology. See the examples in Fienberg and Rinaldo (2006) and Example 6.5 below. Identify-
ing the cases in which the MLE is not defined has immediate practical implications and is crucial for
modifying traditional procedures of model selection based on both asymptotic and exact approxi-
mations of test statistics and, more generally, for developing new inferential methodologies to deal
with sparse tables.

Recent advances in the field of algebraic statistics (Pistone et al., 2000; Diaconis and Sturm-
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fels, 1998; Pachter and Sturmfels, 2005) have provided novel and broader mathematical tools for
the analysis of categorical data. Their application has led to a series of theoretical results provid-
ing a complete, constructive characterization of the conditions for the existence of the MLE and
proposing modifications to existing methods of inference for tables that do not have an MLE. These
findings are contained in Eriksson et al. (2006), Rinaldo (2005) and Rinaldo (2006) and include
(1) combinatorial and geometric characterization of the all possible patterns of sampling zeros
leading to non-existence of the MLE; (2) design of a LP-based polynomial time algorithm for de-
tecting non-existence; (3) theoretical derivation of the extended MLE and of its properties. Arising
as a natural extension of the MLE, the extended MLE exhibits, in fact, all the defining features of
the MLE and allows to identify “boundary” log-linear models for modelling sparse data that are
informative only for some parameters of interest but not for all.

This document describes efficient and scalable computational strategies for extended maximum
likelihood estimation, as described in Rinaldo (2006). The material presented here is taken, for
the most part, from (Rinaldo, 2005, Chapter 6). We would like to acknowledge Stephen Fienberg,
Mike Meyer and Pete Stewart for many of the results presented in Section 3.2 and 3.4 and for some
of the pseudo codes of Section 7, which were derived from their unpublished work referenced as
Fienberg et al. (1980).

This document is organized as follows. In Section 2 we give a technical background on maxi-
mum likelihood estimation for log-linear models for the Poisson and product-multinomial sampling
schemes. Relevant results about existence of the MLE available in the statistical literature are re-
viewed and discussed. In particular, we summarize the most recent findings linking maximum
likelihood estimation in log-linear models to extended exponential families and to polyhedral and
algebraic geometry, contained in Rinaldo (2006). In Section 3 we offer a combinatorial, linear al-
gebra and group-theoretical representation of the class of log-linear subspaces we are concerned in
this work as a direct sum of orthogonal subspaces. We devise various ways of generating and ma-
nipulating the corresponding design matrices, which are computationally efficient and particularly
suited for large problems. In Section 4, we derive a variety of numerical procedures for computing
the extended MLE. Part of the section is devoted to the identification of those cells whose mean val-
ues cannot be determined by maximizing the likelihood because of insufficient information in the
data. We also describe optimization procedure for the log-likelihood functions that are computa-
tionally efficient and take advantage of the algorithms from Section 3. We explore the connections
between extended MLE and graphical models in Section 5. In particular, we will relate analytical
factorization properties of the cell mean vectors with the combinatorial and graph-theoretical no-
tions of reducibility and decomposability and we show how to take advantage of these features for
the purpose of computing the extended MLE. In Section 6 we show by means of examples how to
use the extended MLE for modifying, in a straightforward way, traditional χ2 tests for goodness of
fit and model selection. The pseudo codes for the algorithms we propose are in Section 7.

1.1 Notation

We introduce here the general, non-tabular notation for contingency tables and related quantities
of interest that will be used throughout the document.

Consider K categorical random variables X1, . . . , XK , each taking values on a finite set of
labels, Ik = {1, . . . , Ik}, with Ik ∈ N+, k = 1, . . . ,K. Their cross-classification generates a set
of label combinations, each called a cell, which is represented by the product set I =

⊗K
k=1 Ik.

Every cell is uniquely identified by a K-dimensional multi-index (i1, . . . , iK) = i ∈ I, whose k-th
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coordinate indicates the value taken on by the k-th variable. To simplify the notation, the set of cells
I will be represented as a lexicographically ordered linear list. This ordering is obtained through
the bijection from I into

{
1, 2, . . . ,

∏K
k=1 Ik

}
given by

< i >=< i1, . . . , iK >→ iK +
K−1∑
k=1

 K∏
j=k+1

Ij

 , (1)

so that each K-tuple i will be unambiguously identified with its image i =< i > under the map (1).
See Table 6 and Table 7 for the pseudo-codes implementing (1) and its inverse.

Example 1.1. Consider the 3-way table with levels Ij = {1, 2, 3}, 1 ≤ j ≤ 3. The table may be
represented in tabular form as

111 121 131 211 221 231 311 321 331
112 122 132 212 222 232 312 322 332
113 123 133 213 223 233 313 323 333

and the corresponding numbering of the cells, according to Equation (1), is

1 4 7 2 5 8 3 6 9
10 13 16 11 14 17 12 15 18
19 22 25 20 23 26 21 24 27

. �

Any set operation involving i will be expressed using the corresponding index i; for example,
for S ⊆ I, i ∈ S will be written i ∈ S. Adopting this convention, I can be more conveniently
thought of as the coordinate vector of RI , the vector space of real-valued functions defined on
I. Then, the value of any x ∈ RI corresponding to the cell combination i ∈ I will be indicated
as x(i) or xi, where i =< i > is defined in (1). The standard inner product on RI is denoted
by (x,y) =

∑
i∈I xiyi, with x,y ∈ RI . If s ⊂ {1, . . . ,K}, then the coordinate projection of i

onto Is =
⊗

k∈s Ik is the ordered list is = {ik : k ∈ s}, and will be written, using (1) again, as
is =< is >. The s-margin of x ∈ RI is the real-valued function on Is with coordinate vector
{is : i ∈ I} =< Is > obtained as

x(is) =
∑

j∈I : js=is

x(j),

and x(is) will be called the is-slice of x. Similarly, for S ⊂ I, the restriction of x on S will be
indicated with xS . The support of a vector x ∈ RI is defined to be the set {i ∈ I : xi 6= 0}
and is denoted supp(x). The set of vectors in RI with non-negative coordinates will be denoted
by RI≥0. Matrices with coordinates indexed by subsets of I can be represented using the same
convention and ordering. The column range of a matrix A will be denoted by R(A) and the
orthogonal complement of a vector subspace M of RI will be written as M⊥. Functions and
relations on vectors will be taken component-wise, unless otherwise specified. For example, for
x ∈ RI , expx = {expxi : i ∈ I} and x ≥ 0 means xi ≥ 0 for all i. The cardinality of a set B will be
denoted by |B|.
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2 Contingency Tables and Maximum Likelihood Estimation

Log-linear model analysis is concerned with the representation and study the joint distribution of
the K variables (X1, . . . , XK). Data consists of a sequence of N independent realization, simulta-
neous realizations of the K factors and take the form of an unordered random sequence of labels
(L1, . . . , LN ), with Lj ∈ I for each j = 1, . . . , N , where N itself can be random. A contingency ta-
ble n is a sufficient statistic for the parameters of the underlying joint distribution of (X1, . . . , XK)
in the form of cell counts.

Definition 2.1. A contingency table is a random function n ∈ RI given by n(i) = #{j : Lj = i}.

The log-linear modeling approach hinges upon the representation of the cell mean vector m =
E[n], which is assumed to be strictly positive, by means of a linear subspace M of RI containing
µ = log m, to the extent that log-linear models themselves can in fact be defined by such subspaces.
Namely, by fixing M, it follows that the logarithms of the cell mean vectors must satisfy specific
linear constraints, which completely characterize the underlying joint probability distribution. The
defining subspace M will be called log-linear subspace.

The distribution of the cell counts is determined not only by the log-linear subspace, but also
by the type of sampling scheme utilized in the collection of the data. A sampling scheme is a set
of constraints on the observable cell counts induced by the sampling procedure. In this work, we
will consider only sampling schemes defined by systems of linear forms. Formally, let N ⊂M be a
linear subspace. The sampling restrictions dictated by N are of the form (γj ,n) = cj , j = 1, . . . ,m,
where (c1, . . . , cm) are known constants and (γ1, . . . ,γm) are vectors spanning N .

In particular, we will be focusing on the Poisson and product-multinomial sampling schemes,
which are of widespread use. We remark that the log-linear framework allows for more general lin-
ear sampling designs, known as conditional Poisson schemes. Because a closed form expression for
the probability mass function of these models is typically not available and inference is oftentimes
infeasible, we chose not to treat them here. We refer to Haberman (1974) and Rinaldo (2006) for
background and results on these general models. We also point out that our results can be applied
in a straightforward way to the mixed Poisson-multinomial models described by Lang (2004).

2.1 Sampling Schemes and Log-likelihood functions

2.1.1 Poisson Sampling Scheme

Under the Poisson sampling scheme, N is the trivial subspace {0} and the sampling is uncon-
strained. Note that the number of data points N must then be random. As a result, the components
of n are independent Poisson random variables with E[ni] = mi, for i ∈ I. The log-likelihood
function `P , as a function of µ ∈M, is

`P(µ) = (n,µ)−
∑
i∈I

expµi −
∑
i∈I

log ni!. (2)
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2.1.2 Product Multinomial Sampling Scheme

Under the product-multinomial sampling scheme, the observed vector of counts consists of one or
more independent multinomial random vectors. Let

I =
r⊎

j=1

Bj

be a partition of the set I into r classes, where ] denotes disjoint union. For each partitioning set
Bj let χj ∈ RI be its indicator function, which is given by

χj(i) =
{

1 if i ∈ Bj

0 otherwise,
(3)

and define N to be the r-dimensional subspace spanned by the orthogonal vectors (χ1, . . . ,χr).
The product-multinomial sampling constraints require that (n,χj) = (m,χj) = Nj for fixed pos-
itive integers Nj so that the joint distribution of the cell counts is the product of r independent
multinomial distributions with sizes Nj , each supported on the set Bj .

Typically, the spanning vectors ofN are defined in a more intuitive way using indicator functions
of slices of RI . Specifically, let b ⊂ {1, . . . ,K} and Ib =

⊗
k∈b Ik and, for each j ∈ Ib, define

Bj = {i ∈ I : ib = j}. By construction I =
⊎

j∈Ib
Bj and N is the r-dimensional subspace spanned

by the orthogonal vectors {χj}j∈Ib
, where χj are defined as in (3) and r = |Ib|. For some authors,

e.g. Lauritzen (1996), this is in fact taken to be the definition of the product-multinomial scheme.
The log-likelihood function at a point µ ∈M is (see Haberman, 1974, Equation 1.51)

`L(µ) =
r∑

j=1

∑
i∈Bj

ni log
mi

(m,χj)
+ log Nj !−

∑
i∈Bj

ni!

 , (4)

where the cell mean vector is m = expµ. For the trivial partition with only one class, there is only
one constraint, namely (1I ,n) = N , and the distribution of the cell counts is multinomial with size
N . Because of the sampling constraints, the log-likelihood (4) is well defined only on the subset
M̃ of M given by

M̃ = {µ ∈M : (χj , expµ) = Nj , j = 1, . . . , r}. (5)

Note that M̃ is neither a vector space nor a convex set. A more convenient parametrization
for `L leading to a more manageable parameter space can be obtained as follows. Let M	N =
M∩N⊥.

Lemma 2.2. The following injective function on M	N

`L(β) = (n,β)−
r∑

j=1

Nj log(expβ,χj)−
∑
i∈I

ni!, ∀β ∈M	N . (6)

parametrizes the log-likelihood function for the product-multinomial model.

This re-parametrization is essentially equivalent to reduction to minimal form of the underlying
exponential family of distributions for the cell counts via sufficiency (Theorem 3.5 in Rinaldo,
2006) and offers considerable computational advantages, which will be exploited in Section 4.
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Proof. We first show that there is a one-to-one correspondence between M	N and M̃. It is clear
that to any point µ̃ there corresponds a unique point β̃ = ΠM	N µ̃ ∈ M−N and a unique point
ν̃ = ΠN µ̃ ∈ N such that µ̃ = β̃ + ν̃. To show the converse, let β ∈ M	N . Next, notice that if
ν ∈ N , then ν =

∑r
j=1 cjχj for some constants c1, . . . , cr and, because supp(χj) ∩ supp(χk) = ∅,

for j 6= k, it must be that ν(i) = cj , for all i ∈ Bj . Then,

expcj (expβ,χj) = expcj
∑
i∈Bj

expβi = (expβ+ν ,χj). (7)

For each j, let ĉj = log

(
Nj

(expβ ,χj)

)
(notice that these coefficients depend on β only) and let

νβ =
∑r

j=1 ĉjχj ∈ N . Then, equation (7) implies that β + νβ ∈ M̃. Therefore, for each µ̃ ∈ M̃,
µ̃ = β + νβ, where νβ is obtained by equating (7) to Nj . Hence,

(µ̃,n) = (n,β)−
k∑

j=1

Nj log(expβ,χj) +
r∑

j=1

Nj log Nj .

Using (4), direct calculation shows that

`L(µ̃) = (n, µ̃)−
r∑

j=1

Nj log Nj −
∑
i∈I

ni! = `L(β),

and the proof is complete. �

2.2 Existence of the MLE.

Consider, for convenience, the parametrization of the log-likelihood functions `P and `L in terms
of points of M and M̃, respectively. The MLE of µ = log m is the set

{µ∗ ∈M : `P(µ∗) = sup
µ∈M

`P(µ)}

for the Poisson likelihood and the set

{µ∗ ∈ M̃ : `M(µ∗) = sup
µ̃∈ fM `M(µ̃)}

for the product-multinomial likelihood. The MLE is said to be nonexistent if the supremum is not
attained at any point in the appropriate log-linear sub-space, i.e. if the above set is empty. With a
slight abuse of language, since, in the present problem, the MLE is shown to be always a single point
rather than a set, we will always speak of the MLE as a vector rather than a set. Note that, under
both sampling schemes, when the MLE of µ exists, the MLE of m is a strictly positive vector. As
noted in Haberman (1974), both the log-likelihood functions `P and `M are concave and bounded
from above, so that the nonexistence of the MLE is caused by the behavior of the likelihoods at the
boundary of the parameter space. In fact, the main result described later is that nonexistence of
the MLE can be characterized by sequences of points in the domain of the log-likelihood function
that realize the supremum in the limit but, at the same time, have norms exploding to infinity.
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The directions of recession along any of such sequences will correspond to non-estimable natural
parameters and non-estimable cell mean counts. As a result, when the MLE of m does not exist,
the optimization of the log-likelihoods will lead to an estimated cell mean vector with some zero
coordinates. The possibility of identifying the coordinates that correspond to the non-estimable
parameters given the data, along with their statistical interpretation, is one the contributions in
this work.

2.2.1 Literature Review

We give here a brief history of the main contributions to the theory of maximum likelihood estima-
tion in log-linear models. For a more detailed account see Fienberg and Rinaldo (2006).

Birch (1963) conducted the first rigorous study of the conditions for existence of the maximum
likelihood estimate of the cell mean vector in log-linear models. The author considered hierarchical
log-linear models and showed that, under the assumption n > 0, the maximum likelihood estimate
of m exists uniquely and satisfies PMn = PMm, where PM is the projection matrix onto the log-
linear subspace M (although the author did not formalize his result in this fashion). In addition,
Birch (1963) showed that, if PNn = PNm, the MLE is the same for both Poisson and multinomial
sampling schemes. Birch (1963)’s findings were greatly generalized by Haberman (1974), whose
results have represented the most thorough and advanced treatment on this subject for many years
and are reproduced for completeness below, without proof.

Haberman (1974), Theorem 2.1.
Under Poisson scheme, if a maximum likelihood estimate µ̂ exists, then it is unique and satisfies

PMn = PMm̂, (8)

where m̂ = exp µ̂. Conversely, if for some µ̂ ∈ M and m̂ = exp µ̂ Equation (8) is satisfied, then m̂
is the maximum likelihood estimate of m.

Haberman (1974), Theorem 2.2.
Under Poisson scheme, the maximum likelihood estimate of m exists if and only if there exists a
δ ∈M⊥ such that n + δ > 0.

Haberman (1974), Theorem 2.3.
Under Poisson scheme, the maximum likelihood estimate of m exists if and only if there does not
exist any µ ∈M such that µ  0 and (n,µ) = 0.

Haberman (1974), Theorem 2.4.
Provided, N ⊂ M, the maximum likelihood estimate of m under Poisson sampling scheme exists
if and only if it exists under product-multinomial sampling scheme. If they exist, they coincide.

Theorem 2.2 in Haberman (1974) formalizes the intuition that the MLE is defined whenever it
is possible to “eliminate” the zero cells in the table by adding and subtracting appropriate quantities
to the observed table n. These results not only explain why the MLE is non-existent if one of the
margins is null but also allowed Haberman to give an example of a table for which the MLE is not
defined and the margins are positive, describe in Example 6.1, a case termed “pathological”. De-
spite the concerned raised by some authors (see Bishop et al., 1975) about the potential deleterious
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effect of pathological configurations of zeros in large and sparse tables, Example 6.1 has been, up
until very recently, the only published example of a contingency table with such feature. This was
largely due to the fact that, though very intuitive, Haberman’s characterization is non-constructive
and ultimately impractical, in the sense that it does not lead to efficient algorithms for checking the
existence of the MLE.

Finally, Haberman (1974, Appendix B) noted by means of examples that, when the MLE is not
defined, the maximization of the log-likelihood function produce a sequence of points converging
to a unique maximizer m̂e, some of whose coordinates, typically a subset of the zero cells, are 0.
Such estimate was then heuristically called extended MLE.

In an unpublished manuscript, Fienberg et al. (1980) offered a different derivation of Haberman
(1974)’s results for the Poisson and product-multinomial sampling schemes and provided a formal
definition of the extended MLE. The main goal in their work was the development of efficient algo-
rithms for identifying cases of nonexistent MLE and computing the extended MLE. Their approach
can be described as follows. For a given observed table n, let I+ := supp(n) and I0 := I\supp(n)
be the set of cells with positive and zero counts, respectively. Define the critical set C to be be the
subset of I0 with maximal cardinality such that there exists a µ ∈ M with µC < 0 but µCc = 0,
where Cc = I0\C. Vectors satisfying these conditions are called critical vectors. Next, let M denote
the sequential closure in RI of the set {expµ : µ ∈M}.

Theorem 2.3 (Fienberg et al. (1980)). The maximum likelihood estimate m̂ of m exists if and only
if C = ∅. If C 6= ∅, then the unique extended maximum likelihood estimate m̂e, identical for both the
Poisson and product-multinomial sampling scheme, exists and satisfies these two defining conditions:

1. m̂e
C = 0,

2. m̂e is the only vector in M such that PMn = PMm̂e.

Note that the condition for the existence of the MLE is a restatement of Haberman’s Theorem
2.2. In fact, if C 6= ∅, then there exists µ ∈ M such that (n,µ) = 0, µ � 0. On the other hand, if
there exists a µ ∈ M such that (n,µ) = 0, µ � 0, then C ⊇ {i ∈ I : µi < 0} 6= ∅. The novelty in
the contribution of Fienberg et al. (1980) lies in the characterization of the critical set and in the
consequent formal definition of the extended MLE as the unique maximizer of the log-likelihood
function. Furthermore, and quite importantly, the extended MLE is shown to be always defined, no
matter how sparse a table is, and to possess properties mirroring the ones of the “ordinary” MLE.

Gloneck et al. (1988) proved, by means of counter-examples, that positivity of the margins is a
necessary and sufficient conditions for existence of the MLE if and only if the model is decompos-
able.

Lauritzen (1996) used a slightly different approach to maximum likelihood estimation in hier-
archical log-linear models. In fact, rather than the log-linear subspace M, its sequential closure M
is taken to be the appropriate parameter space and hence the domain of the Poisson and product-
multinomial log-likelihood functions (2) and (4). Because of this enlarged parameter space, Lau-
ritzen (1996) referred to log-linear models as extended log-linear models. In Theorem 4.8 and
Theorem 4.11 the author summarized this characterization of the MLE, which is, as far as existence
and uniqueness are concerned, virtually identical to the one for extended MLE offered by Fienberg
et al. (1980). However, Lauritzen (1996)’s results remain overall non-constructive and of limited
practical use. Furthermore the author does not make an explicit distinction between MLE and ex-
tended MLE is made, and does not offer any interpretation of the MLE obtained in an extended
sense.
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2.2.2 Recent Results

In this section we summarize the latest results on maximum likelihood estimation for log-linear
models. Both the methodology and the results were largely inspired by recent advances in the field
of algebraic statistics (Pistone et al., 2000; Diaconis and Sturmfels, 1998; Pachter and Sturmfels,
2005), which have indicated a more general approach to the study of log-linear models that takes
advantage of the tolls and formalism of algebraic and polyhedral geometry.

Eriksson et al. (2006) used Theorem 2.1 in Haberman (1974) to provide geometric conditions
for the existence of the MLE in Poisson and product-multinomial schemes for hierarchical log-linear
models. Their characterization is relatively simple, as it relies on basic results form polyhedral ge-
ometry, but, at the same time, proved itself quite powerful and suited for numerical implementa-
tion. In order to describe their results, basic notions from polyhedral geometry will be introduced
here, which will be used throughout the paper. See, in particular, Ziegler (1998). For a given
log-linear subspace M, let A be the corresponding d× |I| design matrix whose row span is M. We
don’t require A to be of full rank, i.e. d may be bigger than rank(A), and we will always assume
that the entries of A are integral, a hypothesis that is hardly restrictive and naturally satisfied by the
log-linear subspaces we study in Section 3. Consider the polyhedral cone generated by the columns
of the matrix A,

CA = {ξ : ξ = Ax,x ∈ RI≥0},

which is called the marginal cone. Eriksson et al. (2006) showed that, provided that N ⊂ M, the
MLE of the cell mean vector under both Poisson and product-multinomial schemes exists if and
only if An ∈ ri(CA). The d-dimensional integer vector t = An is minimal sufficient statistic for
the vector of parameters µ, so the condition for the existence of the MLE reduces to the study of
the geometric properties of the sufficient statistics. This result was further generalized by Rinaldo
(2006) who studied maximum likelihood estimation for log-linear models using the theory of ex-
ponential families, polyhedral and algebraic geometry. The remainder of the section summarizes
these findings.

A face of CA is a set F = {ξ ∈ CA : (ξ, ζF ) = 0}, for some ζF ∈ Rd such that (ξ, ζF ) ≤ 0
for all ξ ∈ CA. Note that the polyhedral cone CA has a finite number of faces and that CA is a
face of itself, termed improper. To every face F of CA there corresponds a subset F of I such that
(ai, ζF ) = 0, for all i ∈ F and (ai, ζF ) < 0 for all i ∈ Fc = I \F . In words, the set F consists of the
cell indexes of the columns of A whose conic hull is precisely F . Conversely, if there exists a vector
ζ that defines a set F ⊂ I with the above properties, then ζ determines the supporting hyperplane
HF = {x ∈ Rd : (ζ,x) = 0} for F , i.e. F = CA ∩HF . The set F is called the facial set of F (Geiger
et al., 2006). For any ξ ∈ CA there exists only one (possibly improper) face F containing ξ in its
relative interior, i.e. such that t is a linear combination with positive coefficients of the columns of
A with indexes in F . This implies that, for any ξ ∈ CA, there is one facial set F such that ξ = Ax,
for some x ∈ RI≥0 with supp(x) = F . The facial sets provide a combinatorial representation of
the face lattice of CA and play a fundamental role in identifying the set of cells for which an MLE
of the expected count is not defined. In particular, for a given table n, we will be concerned with
determining the (random) facial set corresponding to the sufficient statistics t = An (see Section
4.1).

The next result is a generalization of Theorem Fienberg et al. (1980) showing that critical sets
are in fact facial sets. The proof is a simplified version of arguments described in detail in Rinaldo
(2006).
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Theorem 2.4. Assume N ⊂M and let F be the facial set associated to t. The MLE m̂ of the cell mean
vector exists, is unique and identical under Poisson and product-multinomial if and only if F = I.
If F ( I, there exists one point m̂e in M such that m̂e = limn exp{µn}, where {µ}n ⊂ M is a
sequence for which limn `P(µn) = supµ∈M `P(µ) and limn `L(µn) = supµ̃∈ fM `L(µ̃). Furthermore,
supp(m̂e) = F and PMn = PMm̂e.

Proof. We show that, under both Poisson and product multinomial scheme, the MLE exists unique
and is identical in both cases if and only if t = An is a point in the relative interior of CA. If
t belongs to the relative interior of a face F , then both the log-likelihoods realize their suprema
along sequences of points µn ⊂M for which the limit expµn = m̂ is unique, satisfies the moment
equations PMn = PMn̂ and supp(m̂) = F .

First, we consider the problem of maximizing the log-likelihood `P(µ) = (n, µ) −
∑

i∈I expµi

under Poisson sampling scheme. Suppose t = An lies inside the relative interior of a proper face F
of CA. Then, there exists a zF ∈ kernel(A) such that the vector xF = n + zF satisfies t = AxF and
supp(n + zF ) gives the corresponding facial set F . Then, `P(µ) = (xF , µ)−

∑
i∈I expµi , since, for

µ ∈M, (zF , µ) = 0.
Let πF : RI → RF and πFc : RI → RFc

be the coordinate projection maps from I into F
and Fc, respectively. Define `F and `Fc to be the restriction of `P on πF (M) and πFc(M), re-
spectively. Explicitly, `F (µ) = (xF , πF (µ)) −

∑
i∈F expµi = (xF , µ) −

∑
i∈F expµi and `Fc(µ) =

−
∑

i∈Fc expµi . Therefore, `P(µ) = `F (µ) + `Fc(µ). The function `F is continuous and strictly
concave on πF (M) and is bounded from above, since limµ : ||πF (µ)||→∞ `F (µ) = −∞. Therefore,
`F achieves its supremum at a point in πF (M) with finite coordinates. The function `Fc is negative
and strictly decreasing in each coordinate of its argument and supµ∈M `Fc(µ) = 0. Conclude that
supµ∈M `P(µ) = supµ∈M `F (µ).

Pick any sequence {γn}n ⊂ M for which limn `F (γn) = supµ∈M `F (µ) (note that necessarily
πF (γ) = limn πF (γn) belongs to πF (M) and has finite norm.) Next, choose a sequence {νn}n ⊂M
such that limn

γn(i)
νn(i) = 0 for all i 6∈ F and limn νn(i) = −∞ for all i ∈ F and νn(i) = 0 for all n and

i 6∈ F . Since F is a facial set, sequences with these properties exist. Then,

lim
n

`Fc(νn + γn) = lim
n

`Fc(νn) = 0 = sup
µ∈M

`Fc(µ).

Consider now the new sequence {µn}n ⊂M, where µn = γn + νn. Then

limn `P(µn) = limn (`F (γn + νn) + `Fc(γn + νn))
= limn `F (γn) + limn `Fc(νn)
= supµ∈M `F (µ) + supµ∈M `Fc(µ)
= supµ∈M `F (µ)
= supµ∈M `P(µ)

Let m̂ = limn expµn . Then m̂ is a non-negative vector with support F such that πF (m̂) =
exp{πF (γ)}. Furthermore, since `F admits a unique maximizer, the optimum m̂ must be unique.

Next, since γ = limn γn maximizes `F , the first order conditions on the differential of `F (see
Haberman, 1974, Chapter 2) gives

(πF (λ), exp{πF (γ)}) = (πF (λ), πF (xF )) = (λ,n) ,
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for all λ ∈ M, where the last equality stems from the fact that πFc(xF ) = 0. But this, in turn,
implies that (

λ, expµ∗
)

= (λ,n)

for all λ ∈M, where µ∗ = limn µn, and hence

PMm̂ = PMn. (9)

If instead the log-likelihood function `L under product-multinomial sampling is to be maxi-
mized, it is necessary to consider only the points µ̃ inside M̃ as in Equation (5). Fortunately, this
restriction is inconsequential. In fact, first note that, by (9) and because N ⊂ M, the limit µ∗

satisfies the constraints {(χj , expµ) = Nj , j = 1, . . . , r}. Next, since `L and `P differ by a constant
on M̃ and M̃ ⊂M, we have that

`L(µ∗) = sup
µ̃∈ fM `L(µ̃).

Conclude that the log-likelihood functions under both the Poisson and product multinomial model
have the same maximizer m̂.

Finally, notice that if t ∈ ri(CA), so that F = I, the arguments simplify. Explicitly, there exists a
point µ∗ ∈ M̃ ⊂M such that

supµ∈M `P(µ) = `P(µ∗)
supµ̃∈ fM `L(µ̃) = `L(µ∗) .

�

The previous theorem shows that, for any observed table n, one maximizer m̂e of the log-
likelihood functions can always be found and it exhibits the same features as the “ordinary” MLE.

Definition 2.5. The vector m̂e from Theorem 2.4 is the extended MLE of m.

In fact, m̂e is the MLE of the cell mean vector for a “boundary” log-linear model in the closure
parameter space, under mean-value parametrization. More generally, extended MLEs arise as regu-
lar MLEs for an the extended exponential family of distributions supported on the facial sets of CA

and that the MLE is just a special case of extended MLE induced by observed sufficient statistics in
the interior of the marginal cone rather than on its boundary. The additional distributions making
up for the extended exponential family have cell mean vectors supported on the facial sets and are
derived by closing appropriately the parameter space, as described below.

The results stated in Theorem 2.4 are derived using only analytic arguments focusing on the
maximization of the log-likelihood function. Rinaldo (2006) gives a different derivation, based
on further geometric properties of log-linear models. This approach, which relies on notion from
algebraic geometry (see, e.g., Cox et al., 1996), is particularly convenient because it provides an
explicit representation for the closure of the parameter space under mean-value parametrization.
Specifically, consider the set

VA,≥0 =
{
x ∈ RI≥0 : xz+

= xz− ,∀z ∈ kernel(A) ∩ ZI
}

consisting of the real-valued non-negative solutions of a system of polynomial equations specified
by the lattice points in the orthogonal complement of M. The set VA,≥0 is called a toric variety
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(Sturmfels, 1996; Diaconis and Sturmfels, 1998) and defines a closed, smooth hyper-surface of
point in the non-negative orthant of RI . The most notable example of toric varieties arising from
hierarchical log-linear models is the surface of independence for a 2 × 2 and the model of inde-
pendence (Fienberg and Gilbert, 1970). The set VA,≥0 offers a more advantageous description of
the parameter space under mean value parametrization than the natural parametrization or the
u-term representation, which parametrize only log-linear models for which the cell mean vector
has strictly positive coordinates. In contrasts, points in VA,≥0 with some zero coordinates corre-
spond to boundary log-linear models, i.e. statistical models described by probability distributions
expressible in exponential form whose cell mean vectors belong to the boundary of M . To complete
the geometric characterization of log-linear models and extended maximum likelihood estimation,
we introduce another geometric object that plays a fundamental role in the geometry of log-linear
model, namely the polytope

Pt =
{
x ∈ RI≥0 : t = Ax

}
,

consisting of the set of all possible cell mean values whose margin match the observed sufficient
statistics t. The set of lattice points inside Pt, called the fiber at t, corresponds to the support of the
conditional distribution of the the tables given the value t for the sufficient statistics, often known
as the ”exact distribution”.

Since both the MLE and extended MLE satisfy the moment equations, m̂e is a point of Pt (in fact,
it is a point in the relative interior of Pt). The marginal cone CA, the variety VA,≥0 and the polytope
Pt are the three main geometric object that fully describe the geometry of log-linear models and
their closure. Their relationships are summarized in the following theorem. See Rinaldo (2006)
and Geiger et al. (2006) for the proofs of these statements.

Theorem 2.6.

i. M = VA,≥0;

ii. VA,≥0 and CA are homeomorphic and, for any m ∈ VA,≥0, supp(m) is a facial set of CA ;

iii. for any t = An, {m̂e} = VA,≥0 ∩ Pt and m̂e ∈ ri(Pt).

The first results says that the toric variety consists exactly of the set of all cell mean vectors
for the log-linear model specified by the row range of A and its point-wise limit closure (i.e. the
“boundary” models). The second results says that there exists a one-to-one correspondence be-
tween the expected values of the sufficient statistics and the cell mean vectors. This implies that,
for any observable value of the margins t = An, there exists one and only one point m̂ in VA,≥0

such that An = Am̂. This point is the MLE if t is in the interior of CA, in which case supp(m̂) = I
or the extended MLE if t is on the boundary of the marginal cone, in which case supp(m̂) = F ,
with F being the facial set determined by t. The conditions on the support of the points in VA,≥0

implies that the additional distributions parametrized, in a mean value sense, by the boundary of
VA,≥0 (and hence of CA) are supported on facial sets of the marginal cone. The last statement
is a geometrical representation of the result that the (extended) MLE is the only point in M that
satisfies the moment equations.

Overall, the results described in this section allow to identify boundary log-linear models in
many fashions: analytically by maximizing the log-likelihood function, geometrically by describing
points on the boundary of both VA,≥0 and CA and combinatorially through the facial sets of the
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marginal cone. Not only do they provide useful theoretical characterizations of extended expo-
nential families and extended MLE but also they give a full description of all possible patterns of
sampling zeros leading to a nonexistent MLE and the proposal of alternative inferential procedure
to deal with tables with a nonexistent MLE (see Section 6).

In fact, the condition that the MLE exists if and only if t ∈ relint(CA) can be translated into
the equivalent statement that the MLE does not exists if and only if supp(n) ⊆ F for some facial
set F of CA. In other words, the “forbidden” configurations of sampling zeros causing the MLE to
be undefined are precisely the complements of the facial set. We call these configurations of zero
counts likelihood zeros. Examples of likelihood zeros for different log-linear models are given in
Rinaldo (2006) and Eriksson et al. (2006). The number of likelihood zero configurations is directly
related to the combinatorial complexity of the marginal cone which, for most log-linear models,
appears to grow super-exponentially with the number of variable K and the number of categories
Ik, k = 1, . . . ,K, (see the computational study in Eriksson et al., 2006). In Section 4 we will
address this problem and derive efficient methods for computing the likelihood zeros, the extended
MLE and the dimension of the statistical model identified by it.

3 Log-Linear Models Subspaces

Although log-linear models are defined by generic linear manifolds of RI , in practice it is customary
to consider only certain, rather constrained, classes of linear subspaces. These subspaces, which
are also characteristic of ANOVA models and experimental design, present considerable advantages
in terms of interpretability and ease of computation. In this section we describe various, equivalent
characterizations of the factor-interaction subspaces and the subspaces of interactions described in
Darroch and Speed (1983) using combinatorics, linear algebra and group theory. We will also
present algorithms for optimal sparse representations of the relevant design matrices that will
prove useful in the next section for efficient computation of the extended MLE and of the number
of estimable parameters.

Let K = {1, 2, . . . ,K} the set of labels of the variables of interest and let 2K be the power set
of K. There is a natural partial order in 2K induced by the operation of taking subset inclusion
which makes 2K into a boolean lattice. A hypergraph H on the finite base set K is a subset of 2K

consisting of a class of subsets of K called hyperedges. An abstract simplicial complex ∆ on K is a
hypergraph on K such that h ⊂ d for some d ∈ ∆ implies h ∈ ∆. An antichain is a subset A of
2K such that, for any ai, aj ∈ A, ai 6⊆ aj . Since K is finite, there is a one-to-one correspondence
between antichains and simplicial complexes of 2K. Namely, for any simplicial complex ∆, the set
of all maximal hyperedges of ∆ forms an antichain. Conversely, given any antichain A, the class of
sets

∆ = {d ⊂ K : d ⊆ a, for some a ∈ A}

forms a simplicial complex. Because of this correspondence, any simplicial complex ∆ will be
identified with the associated antichain of maximal hyperedges, called the facets of ∆, while the
non-maximal hyperedges will be called its faces.

The definition of log-linear models given below is essentially based on the combinatorial struc-
ture of the power set 2K and provides a formal justification of the traditional notation (see, for
example, Bishop et al., 1975, Chapter 3) of identifying log-linear models, and in particular hi-
erarchical log-linear models, with classes of subsets of K, often called generating classes. Such
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characterizations are virtually identical to analysis of variance models, a connection that has been
known for a long time (see for example Haberman, 1974; Bishop et al., 1975), so that the log-
linear subspaces derived here are the same orthogonal decompositions of RI defined by Darroch
and Speed (1983). In fact, the contents of Section 3.1 of the present chapter can be considered as
an alternative derivation of some results of Darroch and Speed (1983).

Definition 3.1. A log-linear model is a hypergraph H on K and a hierarchical log-linear model is a
simplicial complex ∆ on K.

Graphical models form a subclass of hierarchical log-linear models (Whittaker, 1990; Lauritzen,
1996). To each hypergraph H on K, it is always possible to associate its 2-section G(H) (see,
e.g., Berge, 1989), which is a graph with vertex set V = {1, . . . ,K} and edge set consisting of all
unordered pairs (i, j) ⊂ V such that (i, j) ⊆ h for some h ∈ H. In the statistical literature, the
2-section graph is also called interaction graph. A hypergraph H is called graphical if its hyperedges
are the cliques of its 2-section G(H).

Definition 3.2. A hierarchical log-linear model ∆ is graphical if the facets of ∆ form a graphical
hypergraph.

The log-linear subspace M associated to a hierarchical log-linear model ∆ will be indicated
as M∆ and, similarly, MH will denote the log-linear subspace corresponding to a generic log-
linear model specified by the hypergraph H. Unless otherwise specified, we will always assume
that, for a generic log-linear model H,

⋃
h∈H = K, so that all the K factors are always included.

Each hyperedge of H will be given straightforward interpretation, using the language of analysis of
variance. Specifically, the hyperedges h are called |h|-factor interaction term or interaction term of
order |h| − 1. If |h| = 1, then h is a main effect. If |h| = 0, then h is the grand mean.

In this document, for a hierarchical log-linear model ∆ on K factors, the generating classes will
be represented by a list of factors enclosed in squared brackets, i.e. [1] indicates the main effect
for the factor labeled as “1” and [12] the interaction between factor “1” and “2”. This notation is
consistent with the one used in the statistical literature (e.g. Bishop et al., 1975; Fienberg, 1980).

Example 3.3 (Hierarchical log-linear models). ∆ = [1][2][3] is the model of mutual independence
of the three factors and ∆ = [12][23] denotes the model of conditional independence of factor “1”
and “3” given factor “2” (a decomposable model; see Section 5.2). The simplest non-graphical
model is the model of no-3-factor effect ∆ = [12][23][13], which will be used as a test set for
many examples here. In fact, for a K-way table, the largest hierarchical log-linear model is the
model of no-K-factor effect, represented by the simplicial complex on K nodes whose K − 1 facets
form the set of all possible distinct subsets of K with cardinality K − 1. The simplest example
of a graphical non-decomposable (and non-reducible) model is the 4-cycle model on 4 factors,
∆ = [12][23][34][14]. �

For a log-linear model H, we will represent the log-linear subspace MH as the direct sum of
orthogonal subspaces of RI , each determined by a subset of K,

MH =
⊕
h∈H

Mh, (10)

where Mh⊥Mh′ for h, h′ ⊆ K with h 6= h′. For a hierarchical log-linear model ∆, the above
expression specializes to

M∆ =
⊕

{h⊆d : d∈∆}

Mh. (11)
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In the remainder of the section various equivalent constructions of the subspaces involved in
Equations (10) and (11) are provided. These constructions will lead to the same class of subspaces
described in Darroch and Speed (1983).

3.1 Combinatorial Derivation

In this section we derive log-linear model subspaces is obtained by establishing multiple correspon-
dences among the combinatorial structure of the subsets of K, the properties of certain classes of
partitions of I and the decomposition of RI into direct sums of orthogonal linear subspaces. The
techniques and most of the results utilized here are adapted from Bailey (2004).

Let h ⊂ K and define the equivalence relation h∼ on I given by

i
h∼ j ⇐⇒ ih = jh,

for all i, j ∈ I. The equivalence classes of h∼ in turn define a partition p(h) of I into dh =
∏

k∈h Ik

subsets of equal cardinality nh =
∏

k 6∈h Ik = I
dh

. Explicitly, the equivalence classes are the sets
{Hj : j ∈ Ih}, where Hj = {i ∈ I : ih = j} and Ih =

⊗
k∈h Ik, so that I = ]j∈Ih

Hj . It should
be noted that an identical partitioning argument is utilized for computing an orthogonal basis of
the sampling subspace for the product-multinomial sampling scheme in Section 2. In fact, dh is
the number of entries of the h-margins of any function x ∈ RI and nh is the number of cells to be
summed over in order to compute each such entry.

Partitions whose classes have constant size are said to be uniform. All the partitions defined in
the way described above are, by construction, uniform. For any such partition p(h), the relation

matrix Rh ∈ RI×I is the incidence matrix of the equivalence classes of h∼ over I and is defined as

Rh(i, j) =

{
1 if i

h∼ j
0 otherwise.

(12)

The relation matrix Rh has the explicit form, of easy verification,

Rh =
K⊗

k=1

{
Ik if k ∈ h
Jk if k 6∈ h,

where Ik is the Ik-dimensional identity matrix and Jk the Ik-dimensional matrix containing all 1’s.
Associated to each p(h) is the subspace Wh ⊂ RI consisting of all functions on the multi-index

set I that depend on i ∈ I only through ih, i.e.

Wh =
{

f ∈ RI : f(i) = f(j) if i
h∼ j
}

, (13)

whereW∅ = 1 andWK = RI . In Darroch and Speed (1983) such spaces are called factor-interaction
subspaces. Let Ph be the orthogonal projection onto Wh. Then, for any x ∈ RI , y = Phx is a vector
whose ih-margins are constant and equal to the average of the corresponding coordinates of x, i.e.

y(i) =
1
nh

∑
{j∈I : i

h∼j}

x(j).
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As a consequence of the uniformity of the classes of p(h), the projection matrix Ph has a very simple
form, obtained as

Ph =
1
nh

Rh =
K⊗

k=1

{
Ik if k ∈ h
1
Ik

Jk otherwise. (14)

Let PK = {p(h) : h ∈ 2K}, where p(∅) consists of the entire set I, and p(K) has as many classes
as cells. For different partitions p(h) and p(h′), write p(h) 4 p(h′) if every p(h)-class is a subset of
some p(h′)-class. The relation 4 satisfies the properties of reflexivity, antisymmetry and transitivity,
so that PK is a poset with respect to the relation 4. Similarly, let WK = {Wh : h ∈ 2K}, where the
subspaces are defined as in (13). By construction, WK is partially ordered by inclusion, hence it is
a poset with respect to the inclusion operator.

Lemma 3.4. The three posets WK, 2K and PK are isomorphic lattices:

Wh′ ⊆ Wh ⇐⇒ h′ ⊆ h ⇐⇒ p(h′) < p(h) (15)

for all h, h′ ∈ 2K.

Proof. The equivalences follow by construction. Using (15) and the fact that 2K is a lattice or direct
verification, it follows that both PK and WK are lattices. �

As indicated in the equivalence (15), the relation 4 on PK the is the ”opposite” of the inclusion
relation ⊆ on both 2K and WK; in fact, subsets of h and linear subspaces of Wh in WK induce
coarser partitions than p(h). The 0̂ and 1̂ elements of PK are p(∅) and p(K), respectively, while 0̂
and 1̂ elements of WK are 1I and RI , respectively. Furthermore, the relations of the next Corollary
can be verified for the least upper bound and biggest lower bound on PK.

Corollary 3.5. For any h1, h2, h3 ∈ 2K:

Wh3 = Wh1 +Wh2 ⇐⇒ h3 = h1 ∪ h2 ⇐⇒ p(h3) = p(h1) ∧ p(h1)

Wh3 = Wh1 ∩Wh2 ⇐⇒ h3 = h1 ∩ h2 ⇐⇒ p(h3) = p(h1) ∨ p(h1) (16)

Because of the isomorphism of Lemma 3.4, combinatorial properties of PK and 2K translates
into geometric properties of the subspaces in WK. In order to illustrate these properties we will
use the correspondence between orthogonal partitions and geometric orthogonality. Specifically,
two partitions p(h) and p(h′) are said to be orthogonal if PhPh′ = Ph′Ph. Linear subspaces whose
projection matrices commute, like the ones associated with orthogonal partitions, are called geomet-
rically orthogonal. As it turns out, orthogonality of all the partitions making up PK is precisely the
required feature to obtain a combinatorial decomposition of RI into orthogonal subspaces indexed
by elements of 2K, as in Equations (10) and (11).

Lemma 3.6. For any h, h′ ∈ 2K:

1. p(h) and p(h′) are orthogonal, hence Wh and Wh′ are geometrically orthogonal;

2. Wh ∩
(
Wp(h)∨p(h′)

)⊥ is orthogonal to Wh′ .

Proof. Lemma 6.4 and Lemma 9.1 in Bailey (2004). �
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The geometric orthogonality of the vector spaces Wh, h ∈ 2K, allows for a recursive decomposi-
tion of every Wh into orthogonal subspaces computed by intersecting Wh itself with the orthogonal
complement of all the smaller subspaces it contains.

Theorem 3.7. For any h ∈ 2K, define:

Uh = Wh ∩

 ∑
{h′∈2K : p(h′)�p(h)}

Wh′

⊥

. (17)

Then:

1. for any h, h′ ∈ 2K, with h 6= h′ the subspaces Uh and Uh′ are orthogonal to each other;

2. for each h ∈ 2K

Wh =
⊕

{h′∈2K : p(h′)<p(h)}

Uh′ . (18)

Proof. Theorem 6.7 in Bailey (2004). �

In virtue of (15), {h′ ∈ 2K : p(h′) < p(h)} = {h′ ∈ 2K : h′ ⊆ h}, so that equation (18), along
with WK = RI , gives:

Corollary 3.8. For any h ∈ 2K:
Wh =

⊕
h′⊆h

Uh′ . (19)

In particular:
RI =

⊕
h′⊆K

Uh′ . (20)

The orthogonal subspaces Uh decomposing the Wh’s are the subspaces of interactions in Darroch
and Speed (1983) (see also Lauritzen, 1996, Appendix B). Bailey (2004) calls them strata instead.

In the rest of the section, the combinatorial structure of PK will be exploited We will take
advantage of the combinatorial structure of PK to derive formulas for the projection matrices onto
the factor subspaces and, consequently, a fully description of the subspaces of interactions.

For any two partitions p(h) and p(h′) in the lattice PK, define in RPK×PK the zeta function

ζ
(
p(h), p(h′)

)
=
{

1 if p(h) 4 p(h′)
0 otherwise.

Since PK is finite, it is possible to assign an ordering to its elements in such a way that p(h) comes
before p(h′) if p(h) 4 p(h′). The zeta function belongs to the incidence algebra (see, for example,
Stanley, 1997) of PK, which is isomorphic to the algebra of upper triangular matrices. Provided
such an ordering of the elements of PK has been fixed once and for all, the zeta function can
be represented as an upper triangular matrix with diagonal entries all equal to 1. The inverse of
such a matrix is therefore well defined and is isomorphic to another function in the corresponding
incidence algebra, called the Möbius function µ of the poset

(
PK,4

)
. Using the Möbius function it

is possible to obtain a combinatorial representation of both the projector and the dimension of the
subspaces of interactions Uh, h ∈ 2K.
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Theorem 3.9. For h ∈ 2K, the projector Sh onto the subspace Uh defined in (17) is given by

Sh =
∑

h′∈2K

µ
(
p(h), p(h′)

)
Ph′ (21)

and the dimension of Sh is
dim(Uh) =

∑
h′∈2K

µ
(
p(h), p(h′)

)
dh′ .

Proof. This result follows from Theorem 6.9 in Bailey (2004) after noting that each p(h) form an
orthogonal block structure (Bailey, 2004, Chapter 6). �

Using the last theorem it is possible to derive a formula for Sh.

Corollary 3.10.
Sh =

⊗
k∈K

Sh
k (22)

where

Sh
k =

{
Ik − 1

Ij
Jk if k ∈ h

1
Ij Jk otherwise.

Note that the last equation match the formulas for the log-linear models of a 3-way table found
in Knuiman and Speed (1988).

Proof. Because there is an order-reversing correspondence between the lattices
(
2K,⊆

)
and

(
PK,4

)
,

as indicated in (15), µ (p(h), p(h′)) = µ(h′, h), where it is clear that the first Möbius function refers
to PK and the second to 2K. Next, the Möbius function for the lattice 2K is (see Stanley, 1997, page
118)

µ(h′, h) =
{

(−1)|h\h
′| if h′ ⊆ h

0 otherwise.

Hence, equation (21) becomes

Sh =
∑

{h′∈2K : h′⊆h}

(−1)|h\h
′|Ph′ . (23)

It is worth noting that the this is identical to Equation (4.3) in Darroch and Speed (1983) and
Equation (B.15) in Lauritzen (1996).

Next, assume for simplicity and without loss of generality that h = {1, . . . , |h|} (in fact, the
whole construction is invariant under permutations of the K factors). Because of the linearity of
the tensor product an induction argument can be used to show that⊗|h|

k=1 Ik − 1
Ik

Jk =
∑

δ∈{0,1}|h|(−1)
P

k δk
⊗|h|

k=1

(
δkIk + (1− δk) 1

Ik
Jk

)
=

∑
h′⊆h(−1)|h

′|⊗|h|
k=1

(
δkIk + (1− δk) 1

Ik
Jk

)
.
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Then, using the previous equality and the tensor product form of the projection matrices Ph given
in (14), a more explicit representation of (23) can be obtained as

Sh =
∑
{h′⊆h}(−1)|h\h

′|Ph′

=
∑
{h′⊆h}(−1)|h

′|Ph\h′

=
[∑

h′⊆h(−1)|h
′|⊗|h|

k=1

(
δkIk + (1− δk) 1

Ik
Jk

)]⊗
k>|h|

1
Ik

Jk

=
⊗

k∈h

(
Ik − 1

Ik
Jk

)⊗
k>|h|

1
Ik

Jk,

which gives, possibly accounting for permutations of the factors, Equation (22). �

Formulas for the dimension of the subspaces Uh, which again utilizes the Möbius function, will
be derived later in Corollary 3.15. By setting Mh = Uh for each h ⊆ K, the desired representation
of Equations (10) and (11) is obtained.

Definition 3.11. The log-linear subspace associated to a log-linear model H is defined to be

MH =
⊕
h∈H

Uh. (24)

As for hierarchical log-linear models, Equation (19) allows for the following refinement of the
previous definition:

Definition 3.12. The log-linear subspace associated to a hierarchical log-linear model with gener-
ating classes ∆ is

M∆ =
∑
d∈∆

Wd =
⊕

{h⊆d : d∈∆}

Uh. (25)

3.2 Matrix Algebra Derivation

This section provides efficient algorithms for building design matrices for the factor-interaction
subspaces Wh and the subspaces of interactions Uh, h ∈ 2K. The columns of such matrices will
span vector subspaces satisfying the defining Equations (24) and (25) of log-linear and hierarchical
log-linear models, respectively. A significant portion of the material is derived from Fienberg et al.
(1980).

3.2.1 Bases for Uh: Contrast Bases

Given a log-linear model H, bases for the subspaces Uh = Mh, with h ∈ H will be defined and
computed. The term contrast bases is appropriate because they indeed correspond to contrasts in
models of analysis of variance. Using Birch’s notation (see, in particular, Bishop et al., 1975), the
design matrix for Uh will encode to the u-terms corresponding to the |h|-order interactions among
the factors in h.

For each term h ⊆ K and factor k ∈ K, define the matrix

Uh
k =

{
Zk if k ∈ h
1k if k 6∈ h,
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where Zk is a Ik × (Ik − 1) matrix with entries

Zk =



1 0 0 0 . . . 0
−1 1 0 0 . . . 0

0 −1 1 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1
0 0 0 0 . . . −1


, (26)

and 1k is the Ik-dimensional column vector of 1’s. Let

Uh =
K⊗

k=1

Uh
k . (27)

Since the elements of Uh
k are −1,0 and 1, Uh has entries that can only be −1,0 and 1. Additional

properties of the design matrices Uh and hence of the subspaces spanned by their columns are
given in the next Lemma.

Lemma 3.13.

i. For every h, h′ ∈ 2K, with h 6= h′, the columns of Uh are linearly independent and U>h Uh′ = 0;

ii. RI =
⊕

h∈2K R(Uh);

iii. for any h ∈ 2K, R(Uh) = Uh, where Uh is the subspace of interactions for the factors in h.

Proof. Part i.: the first statement follows from the fact that the columns of Zh
k are independent

for each k and h and Uh has dimension
(∏K

k=1 Ik

)
. As for the second statement, without loss of

generality, we can assume that there exists a factor k such that k ∈ h and k 6∈ h′. Then, Zh
k = Ck

and Zh′
k = 1k, so (Zh

k)>Zh′
k = 0, hence the result.

Part ii.: by i., the subspaces R(Uh), are orthogonal (hence the direct sum notation is well defined)
and dimR(Uh) =

∏
j∈h(Ij − 1). Therefore:

dim

⊕
h∈2K

R(Uh)

 =
∑
h∈2K

∏
j∈h

(Ij − 1) =
∏
k∈K

Ik,

where the last equality follows from Lemma 3.18 and the fact that, for h = ∅, dim(Uh) = 1 since
U∅ = 1I .
Part iii.: it suffices to show ShUh = Uh and ShUh′ = 0 for h 6= h′, where Sh is the projection matrix
onto Uh as in Equation (22). This implies R(Uh) ⊆ Uh and the results follow from the fact that the
inclusion cannot be strict because of the orthogonal decompositions of RI as in ii. and Equation
(20). It is easy to see that Sh

kUh
k = Uh

k and, for any h 6= h′ with k′ ∈ h′\h, Sh′
k′U

h
k′ = Sh

k′U
h′
k′ = 0.

Therefore,

ShUh =
K⊗

k=1

Sh
kUh

k = Uh and ShUh′ =
K⊗

k=1

Sh
kUh′

k = 0

for any h 6= h′. �
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Note that part ii. yields a decomposition of RI analogous to Equation (20).
An alternative way of computing the contrast basis, which might be advantageous from the

computational viewpoint, is to replace the matrix Zk in (26) by the equivalent matrix, having the
same dimension,

Ck =



1 1 . . . 1
−1 0 . . . 0

0 −1 . . . 0
...

...
...

...
0 0 . . . 0
0 0 . . . −1


. (28)

It is immediate to see that R(Zk) = R(Ck) and hence part .i and ii. of Lemma 3.13 still hold.

It is possible to generate the contrast bases design matrices in computationally efficient ways,
which is especially useful when dealing with very high-dimensional problems. Section 3.4.2 in the
Appendix gives algorithms for generating the matrices Uh one row at a time and also for storing
them with minimal memory allocation requirements.

3.2.2 Bases for Wh: Marginal Bases

Although bases for hierarchical models can be computed using contrast bases, there is a differ-
ent construction for the hierarchical log-linear subspaces which produces sparse, redundant bases
called marginal bases. The use of marginal bases is very common, mainly because of ease of in-
terpretability: such bases in fact induce minimal sufficient statistics which coincides the marginal
table sums. In addition, as it is shown in Section 5.2, design matrices defined with marginal basis
allow to identify quite straightforwardly some cases in which the MLE is undefined.

For any h ∈ 2K let

Wh
k =

{
IIk

if k ∈ h
1k if k 6∈ h,

and

Wh =
K⊗

k=1

Wh
k , (29)

where IIk
denotes the Ik-dimensional identity matrix.

Let Ih =
∏

k∈h Ik, so that Ih contains the indexes for the columns of Wh, where the usual

lexicographic ordering introduced in Section 1.1 is assumed. The 0-1
(∏K

k=1 Ik

)
×
(∏

k∈h Ik

)
-

dimensional matrix Wh enjoys the following properties, which can be easily verified:

1. it is full-column-rank: rank(Wh) =
(∏

k∈h Ik

)
;

2. for each j ∈ Ih, the column indexed by j have zero entries except in the coordinates i ∈ I
such that ih = j.

3. W>
h Wh = 0;
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4. 1IW>
h = 1hnh, where 1h is the dh-dimensional vector containing only 1’s, with nh and dh

defined at the beginning of Section 3.1.

It is straightforward to see that, by construction, R(Wh) = Wh, with Wh being the factor-
interaction subspace defined as in (13). Notice also, that, for x ∈ RI , the linear transformation
W>

h x returns the h-margins of x. For this reason, the columns of design matrix Wh are said to form
the marginal basis for Wh.

Contrast bases and marginal bases are related to each other in a very simple way (see also
Theorem 3.7).

Lemma 3.14. R(Wh) =
⊕

h′ : h′⊆hR(Uh′)

Proof. The proof is a direct consequence of Equation (19) and part iii. of Lemma 3.13. An alter-
native proof, using directly the properties of the contrasts and marginal design matrices is given
below.

Let Bh =
⊕

h′ : h′ 6⊆h Uh′ . By Lemma 3.13 part ii. and Part 2. of Lemma 3.13, the column
range of Bh spans the null space of

⊕
h′ : h′⊆hR(Uh′). Therefore, the claim is proved if it is showed

that the columns of Bh form a basis for the kernel of W>
h . By construction, for every h′ 6⊆ h,

U>h′Wh = 0, since there exists a k ∈ h′ but k 6∈ h so that 1>k Uh′
k = 0 (see the proof of Lemma 3.13,

Part 2.). Therefore, W>
h Bh = 0. Next, rank(Wh) =

∏
i∈h Ik, which, by Lemma 3.18, is equal to∑

h′⊆h

∏
k∈h′(Ik − 1), the co-dimension of Bh. Hence rank(Bh) = dim

(
kernel(W>

h )
)
. �

Using Lemma 3.14 it is possible to compute the dimension of the subspaces Wh and Vh (see
also Theorem 3.9).

Corollary 3.15. Let H, ∆ be log-linear models and MH,M∆ ⊂ RI be the associated subspaces. Then

dim(MH) =
∑
h∈H

∏
k∈h

(Ik − 1) (30)

and

dim(M∆) =

(
K∏

k=1

Ij

)
−

∑
{h∈2K : h 6⊆d, d∈∆}

∏
k∈h

(Ik − 1) , (31)

with the convention that, for h = ∅,
∏

k∈h(Ik − 1) = 1.

Proof. Equation (30) follows from the orthogonality properties of the design matrices Uh, h ∈
H, indicated in Lemma 3.13. As for equation (31), since M∆ =

⋃
d∈∆R(Wd), where d ranges

among the facets of the simplicial complex ∆, then, by Lemma 3.14, its orthogonal complement is⋃
{h∈2K : h 6∈∆} R(Uh). By orthogonality again, the dimension of this subspace is∑

h∈2K : h 6∈∆

∏
k∈h

(Ik − 1) ,

hence the result. �
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Figure 1: 33 table and the hierarchical model ∆ = [12][13][23]. a): W∆ design matrix (0 entries in
white and +1 entries in black). b): U∆ design matrix (0 entries in gray, −1 entries in back and +1
entries in white). c): B∆ matrix, with columns spanning M⊥

∆ (0 entries in gray, −1 entries in back
and +1 entries in white).
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The proof of the Lemma requires a well-known combinatorial result, given in Section 3.4.3
which uses the Möbius function in exactly the same way as indicated by Theorem 3.9. Equation 31
is given also in Lauritzen (2002), without derivation. A very similar but more involved expression
for B∆ is derived by Hosten and Sullivant (2004) using the notion of adjacent minors.

Although the matrices defining the marginal basis are sparse, it is possible to find an even
sparser representation of Mh for hierarchical models. Specifically, let En by the first n− 1 columns
of the identity matrix In. For any h ∈ H, let

Vh
k =

{
Ek if k ∈ h
1k if k 6∈ h

and

Vh =
K⊗

k=1

Vh
k .

The matrices Vh have the same properties of the matrices Uh listed in Lemma 3.13, even if
R(Vh) differs from R(Uh), for any h ⊂ K with h 6= ∅. However, it is possible to show that⊕

h′ : h′⊆h

R(Vh′) = R(Wh) =
⊕

h′ : h′⊆h

R(Uh′). (32)

Similar to the contrast design matrices Uh, efficient ways of generating Wh and Vh row-wise and of
storing them in a very compact form are devised and described in Section 3.4.2. These algorithms
take advantage of the sparsity of both Wh and Vh as well.

For matrices A1, . . . ,An with the same number of rows r and number of columns c1, . . . , cn,
respectively, we will denote the operation of adjoining them into one matrix of dimension r×

∑
k ck

with
n⊕

k=1

Ak = [A1 . . .An] .

Using this notation, we conclude that
UH =

⊕
h∈H

Uh

is a design matrix for the log-linear model H and both

W∆ =
⊕
d∈∆

Wd and V∆ =
⊕
d∈∆

Vd (33)

are design matrices for the hierarchical log-linear model ∆. In addition, the columns of the matrices

BH =
⊕

{h∈2K : h 6∈H}

Uh

and
B∆ =

⊕
{h∈2K : h 6⊆d, d∈∆}

Uh (34)

form a basis for M⊥
H and M⊥

∆, respectively.
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Figure 2: 35 table and the random hierarchical model ∆ = [145][25][135][345][123]. a): W∆ design
matrix (0 entries in white and +1 entries in black). b): U∆ design matrix (0 entries in gray, −1
entries in back and +1 entries in white).
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Figure 3: 35 table and the hierarchical model ∆ = [2345][1345][1245][1235][1234] (0 entries in white
and +1 entries in black). a): W∆ design matrix. b): U∆ design matrix (0 entries in gray, −1 entries
in back and +1 entries in white).
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Example 3.16 (Design matrices). It is easy to see that, for a log-linear model H, the matrices UH
and CH have ∑

h∈H

K∏
k=1

{
2(Ik − 1) if k ∈ h

Ik if k 6∈ h

non-zero entries. For a hierarchical model ∆ instead, the matrix W∆ has

|∆|
K∏

k=1

Ik

non-zero entries, where |∆| indicates the number of facets of ∆. Figure 1 illustrates some of the
matrices introduced in this section for the 33 table and the model ∆ = [12][23][13]. The 27 × 27
design matrix W∆ is shown in part a) while the full rank 27× 19 matrix U∆ is displayed in part b).
The matrix W∆ contains 729 entries but only 81 of them are nonzero; in comparison, U∆ has 279
nonzero entries out of 513 total entries. Part c) in the Figure shows the full rank 27× 8 matrix B∆,
spanning the orthogonal complement of the associated log-linear subspace.

Figure 2 displays the sparse and non-sparse design matrices W∆ and U∆, respectively, for the
35 table and the log-linear model ∆ = [145][25][135][345][123]. The sparse matrix has dimension
243 × 144 and contains only 1215 nonzero entries, while U∆ has smaller dimension 243 × 87 but
is denser, having in fact 8631 nonzero entries. An analogous comparison of the two types of
design matrices for the largest hierarchical log-linear model that can be fit to a 5-way table, namely
∆ = [2345][1345][1245][1235][1234], is made in Figure 2. The sparse design matrix W∆ depicted
in part a) has dimension 243 × 405 and 1215 nonzero entries, while U∆ has smaller dimension,
243× 211, but has more nonzero entries: 15783. �

3.3 Group Theoretic Derivation

Below we show that the log-linear subspaces presented in this section correspond to the class of
log-linear models generated by invariant parametrizations of the underlying probability distribution
generating the cell counts with respect to permutations of the cell labels. The basic idea is simple
and is based on the observation that the projection matrices of Equation (22) identify irreducible
invariant subspaces of RI . See Serre (1977) for an introduction to group theory and Forster (2003)
and Diaconis (1988) and references there within for further details on statistical applications.

Let Sk be the symmetric groups of permutations on the label set Ik corresponding to the k-
th random variable and consider the permutation sub-group on the multi-index I obtained by
composition using the direct product

SI =
K∏

k=1

Sk.

The group SI consists of all the possible permutations of the label combinations. Letting Pσ denote
the permutation matrix associated with any permutation σ ∈ SI , it will be shown below that the
log-linear models introduced in this section are the linear subspaces V ⊂ RI that are invariant with
respect to the permutations in SI: Pσv ∈ V for all σ ∈ SI and for all v ∈ V.

Proposition 3.17. The irreducible, SI-invariant components of RI are the interaction subspaces Uh,
h ∈ 2K, defined in Equation (17).
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Proof. Each symmetric group Sk, k ∈ K, has RIk as its natural representation space, which in turn
possesses two invariant irreducible subspaces, each with multiplicity 1, that is

RIk = R(1k)⊕R(1k)⊥,

where 1k denotes the Ik-dimensional vector of ones. By Theorem 10 in Serre (1977), RI , as a
tensor product representation space for SI , has 2K irreducible invariant components of multiplicity
1:

RI =
K⊗

k=1

(
R(1k)⊕R(1k)⊥

)
. (35)

Next, for any h ∈ 2K, equation (27) and Lemma 3.13 imply that

R(Uh) =
⊗
k∈h

R(Uh
k) =

⊗
k∈h

{
R(1k) if k ∈ h
R(1k)⊥ if k 6∈ h,

so, that, by pairwise orthogonality of the subspaces {R(Uh), h ∈ 2K } (see Lemma 3.13 again), the
decomposition (35) of RI into irreducible components becomes

RI =
⊕
h⊆K

⊗
k∈h

R(Uh
k) =

⊕
h⊆K

R(Uh),

which coincides with the formula given in part ii. of Lemma 3.13. �

3.4 Appendix

3.4.1 Incorporating Sampling Constraints

In the description so far, it has been assumed lack of sampling constraints (or, equivalently, the
Poisson sampling scheme). When sampling is performed according to a non-trivial constraint sub-
space N ⊂ M, special care is needed for dealing with M 	 N . In these cases, the log-linear
subspaces of this chapter are defined to be the invariant irreducible subspaces of M	 N rather
than M and, consequently, they may not have a simple representation in general. Fortunately, for
product-multinomial sampling with N = R(Ws), where Ws is defined in (29), a representation of
the unrestricted log-linear subspace and the corresponding design matrices are readily available. In
fact, owning essentially to the orthogonality of the direct sum decomposition of RI , for hierarchical
models the relevant log-linear subspace is

M∆ 	N =
⊕

{h : h⊆d∈∆, h 6⊆s}

R(Uh),

while, for general factor-interaction log-linear models, it is given as

MH 	N =
⊕

{h∈H, h 6⊆s}

R(Uh).
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3.4.2 Generation of Uh, Wh and Vh

Generation of Uh

Assume for convenience and without loss of generality that the elements of h are accessed in
increasing order, so that h = {k1, . . . , k|h|}. From the definition of tensor product, it follows that
the elements in the < i1, . . . , iK > row of the matrix Uh are

u<i1,...,iK>,<j1,...,jK> =
K∏

k=1

u
(k)
ikjk

=
∏
k∈h

u
(k)
ikjk

,

where u
(k)
ikjk

denotes the (ik, jk)-th element of the matrix Uh
k and the index jk ∈ {1, . . . , Ik − 1} if

k ∈ h and is equal to 1 otherwise.
Since each row of the matrices Uk

h has at most two non-zero entries, each row of Uh has at
most 2|h| nonzero elements, which in general will be a minority. It is possible to avoid the repeated
computation of zero elements by computing only the nonzero elements and their position in a row
as follows. For any k ∈ h, the (i, j)-the entry in the matrix Uh

k is

u
(k)
ij =


−1 if j = i− 1

1 if j = i
0 otherwise.

Thus, a column index j associated with a nonzero element can assume only the values i, if i < I or
i − 1, if i > 1. This suggests that it is possible to code the candidates for nonzero elements of the
rows of Uh by a bit string of length |h| whose bits b are numbered |h| though 1. The convention for
determining the values of jkb

is

jkb
=
{

ikb
− 1 if bit b is 0

ikb
if bit b is 1,

(36)

for all cases except (b = 0, ikb
= 1) and (b = 1, ikb

= Ikb
). As the binary value of the bit string

ranges from 0 to 2|h| − 1, the indexes determined by it traverse the row of the basis in the usual
lexicographical ordering with the last index varying most rapidly.

For a given bit string, after computing the indexes jkb
, b = 1, . . . , |h|, using (36), the position j of

the corresponding possible nonzero element along the row < i1, . . . , iK > of Uh is < jk1 , . . . , jk|h| >
(see equation (1) and recall that the elements of h are ordered in an increasing fashion). These
ideas are incorporated in the pseudo-code of Table 8.

If instead the matrix Ck from equation (28) is used to generate of Uh, then, for any k ∈ h, the
(i, j)-the entry in the matrix Uh

k is

u
(k)
ij =


1 if i = 1

−1 if i = j + 1
0 otherwise.

Thus, a column index j associated with a nonzero element can take on all the values 1, . . . , Ik − 1
if i = 1 or only the value i − 1, if i > 1. In addition, each row of Uh

k has the same sign, a property
that consequently holds also for the matrix Uh. The pseudo-code for obtaining the nonzero entries
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of a given row of the matrix Uh is given in Table 9.

Generation of Wh

The procedure for generating Wh is very simple since all the entries of any row i of Wh are zeroes
except for the entry < ih > (see Section 1.1 for the notation), which is 1. The algorithm for the
row-wise generation of Wh is describe in Table 10.

Generation of Vh

The row of Vh associated to a cell combination < i1, . . . , iK > is 0 if there is a b ∈ h such that
ikb

= Ikb
. Otherwise, the single one in the row is located at the position

|h|−1∑
b=1

(ikb
− 1)

 |h|∏
j=b+1

(Ikj
− 1)

+ (ik|h| − 1) + 1.

The pseudo-code for the corresponding algorithm is given in Table 11.

3.4.3 A Combinatorial Lemma

Lemma 3.18. Let S = {1, . . . , n} be a finite set and let {d1, . . . , dn} be numbers strictly greater than
1. Then (

n∏
i=1

di

)
− 1 =

∑
h⊆S : h 6=∅

∏
i∈h

(di − 1). (37)

Proof. Define the following mappings Φ,Ψ : 2S → R>0 given by Φ(h) =
∏

i∈h(di − 1) and Ψ(h) =∏
i∈h di, with Φ(∅) = Ψ(∅) = 1. Using induction, the following holds true:

Φ(S) =
n∏

i=1

(di − 1) =
∑
h⊆S

(−1)|S\h|
(∏

i∈h

di

)
=
∑
h⊆S

(−1)|S\h|Ψ(h). (38)

The identity is trivially verified for |S| = 1. Assume it is true for any |S′| = n− 1 and, without loss
of generality, assume S = S′ ∪ {n}, with S′ = {1, . . . , n− 1}. Then:∏n

i=1(di − 1) =
(∏n−1

i=1 (di − 1)
)

(dn − 1)

=
(∑

h′⊆S′(−1)|S
′\h′|(

∏
i∈h′ di)

)
(dn − 1)

=
∑

h′⊆S′(−1)|S
′∪{n}\h′∪{n}|(

∏
i∈h′∪{n} di) +

∑
h′⊆S′(−1)|S

′\h′|+1(
∏

i∈h′ di)
=

∑
h⊆S : n∈h (−1)|S\h|(

∏
i∈h di) +

∑
h⊆S : n6∈h (−1)|S\h|(

∏
i∈h di)

=
∑

h⊆S(−1)|S\h|
(∏

i∈h di

)
,

proving (38). By Möbius inversion formula (see, for example, Lauritzen, 1996) it follows that

Ψ(S) =
∑
h⊆S

Φ(h).

The previous identity, along with Φ(∅) = 1, produces the desired result. �
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4 Computing Extended Maximum Likelihood Estimates

In this section, we derive algorithms for computing extended maximum likelihood estimates. Al-
though the general procedure developed here can be applied to any log-linear subspace, most of the
computational considerations and algorithms outlined in the accompanying pseudo-codes are tar-
geted to the types of log-linear models described in Section 3 and, in particular, to hierarchical mod-
els. As above, we are only going to concern ourselves with the the Poisson and product-multinomial
sampling schemes, although we think that some of the result that follow can be adapted to more
general conditional Poisson schemes. Some of the material presented below is based on results due
to Fienberg et al. (1980).

Using the language and settings of Section 2, consider the problem of computing the MLE of
the cell mean vector for a log-linear model with log-linear subspace M and sampling subspace
N ( M, so that there is a total of k = dim(M 	 N ) parameters to be estimated. We proved
that the MLE is not defined when there is not enough data for estimating completely the cell mean
function m, but only the coordinates of m belonging to the facial set F ⊂ I corresponding to the
observed sufficient statistics. Facial sets depend on the observed data and on the geometric and
combinatorial structure of the polyhedral cone generated by the rows of the design matrix U, where
R(U>) = M	N . For each the facial set F there is an associated k′-dimensional subspace MF of
RF , such that log mF ∈ MF . In fact, only k′ of the k original parameters can be estimated. The
subspace MF is completely determined by the facial set F in the sense that MF is spanned by the
rows of UF , where UF denotes the matrix derived from U by considering only the columns in F .
From the viewpoint of the natural parameter space, nonexistence of the MLE implies that there is
enough data to estimate parameters only along a k′-dimensional flat of Rk. Such a hyperplane is
an affine transform of Rk′ , which can be taken to be the natural parameter space of the restricted,
minimally-represented exponential family of the log-linear model determine by MF . See Rinaldo
(2006) for details. Provided the log-likelihood of the restricted family is parametrized in minimal
form, it will be a strictly concave function on Rk′ , admitting a unique optimum, which corresponds
to the extended MLE. Once the facial set F is available, this amounts to isolating any set of linearly
independent rows of UF and using them to re-parametrize the restricted log-likelihood function.

The computation of the MLE and extended MLE proceeds in two fundamental steps. The inputs
of this procedure are the design matrix U and the log-likelihood function ` : Rk → R, taking as
argument the k-dimensional vector (of natural parameters) θ such that µ = U>θ ∈M.

1. The determination of the facial set (Section 4.1).
Computing the facial set is a task that can be described as in generality:

Given a conic integer combination z of the columns of U, determine the set F of those columns
which belong to the face of the associated polyhedral cone containing z in its relative interior.

For this task, the design matrix does not have to be of full rank and its column range can ei-
ther be M	N or M. From the computation viewpoint, however, design matrices of full-row
rank and integer entries are preferable.

2. The maximization of the possibly restricted log-likelihood function (Section 4.3).
After obtaining the appropriate facial set F , if F ( I a new, reduced design matrix of full row
rank U∗ is computed by selecting any subset of linearly independent rows from UF , as de-
scribed in Section 4.4. The log-likelihood function is re-parametrized by U∗ and consequently

33



is re-defined as a function `∗ : Rk′ → R, where k′ = rank(U∗) < k. The Newton-Raphson
procedure is used to maximize ` or `∗, depending whether the MLE exists or not. Using full-
dimensional design matrices U or U∗, which is de facto equivalent to representing the cor-
responding linear exponential families in minimal form, guarantees that the log-likelihood
functions ` or `∗, respectively, are strictly concave on their entire domain, and hence admits
a unique (and finite, in this case) maximizer.

The outcome of this procedure is the extended MLE of the cell mean vector, whose support
is the relevant facial set F . When the MLE is non-existent, an important by-product of step 2.
above is a basis for the subspace MF , whose dimension is also the dimension of the boundary
log-linear model, or the order of the reduced exponential family corresponding to F (see Rinaldo,
2006). This information is crucial for computing the correct number of degrees of freedom for
the asymptotic χ2 approximation to various measures of goodness of fit and, consequently, for
performing goodness-of-fit testing model selection in a correct fashion, as described in Section 6.

In the reminder of the section we will provides an array of different techniques for identifying
facial sets and for maximizing the log-likelihood functions under Poisson and product-multinomial
sampling schemes. Although the procedures we are about to present are correct in theory, a fur-
ther computational investigation for ascertaining their efficiencies is in order, preferably focusing
primarily on the case of large and sparse datasets. Some of the procedures described below were
implemented in a small MATLAB toolbox. As these routines were written primarily for testing pur-
poses, they are limited to the Poisson scheme only and, in most cases, do not take advantage of the
proposed algorithms for minimizing memory usage and computational complexity. Nevertheless,
they are functional, rather easy to work with and can be used to compute both the MLE and ex-
tended MLE. The toolbox is available on-line at www.stat.cmu.edu/∼arinaldo/ExtMLE/ and was
written using MATLAB version 7.0.4.

4.1 Determination of the Facial Sets

In this section, we present and discuss two methods for determining facial sets, one based on
linear programming and the other on the maximization of a well-behaved non-linear function via
Newton-Raphson procedure. Alternative methodologies, still of theoretical interest but perhaps of
less practical use, are described in Appendix A. The applicability of the procedures developed here
is quite general, as they do not rely on any specific assumption about the sampling scheme utilized
or about the type of log-linear models considered, although they are particularly efficient under
Poisson and product-multinomial schemes and when the design matrices are computed using the
methods described in Section 3. We will describe here two procedure

For convenience we will now work with the transpose of the design matrices we have been
considering so far and, specifically, we let U be the design matrix whose rows are indexed by
elements in the cell set I. Denote with U+ and U0 the sub-matrices obtained from U by considering
the rows in I+ := supp(n) and I0 := supp(n)c, respectively. Recall that each face F of the marginal
cone cone(U>) is uniquely identified by the associated facial set F ⊂ I such that, for some vector
ζF , {

u>i ζF = 0 if i ∈ F
u>i ζF > 0 if i ∈ Fc , (39)

where ui denotes the i-th row of U and the set Fc = I \ F will be called co-facial set.
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Equation (39) implies that the observed sufficient statistics t = U>n belong to the relative
interior of some proper face F of the marginal cone if and only if the associated co-facial set Fc

satisfies the inclusion Fc ⊆ I0. This, in turn, is equivalent to the existence of a vector c∗ satisfying:

1. U+c∗ = 0;

2. U0c∗  0;

3. the non empty set supp(Uc∗) has maximal cardinality among all support vectors of the type
supp(Ux) with Ux  0.

Therefore, any solution of the non-linear optimization problem

max |supp(Ux)|
s.t. U+x = 0

U0x ≥ 0
(40)

will identify the required co-facial set Fc = supp(Ux∗).

The problem (40) can be simplified making use of the following fact.

Lemma 4.1. The MLE exists if rank(U+) = rank(U).

Proof. The stated condition follows immediately from this other restatement of Theorem 2.3 in
Haberman (1974):
The MLE exists if and only if there exists a vector y > 0 such that U>0 y ∈ R(U>+).

This claim follows from an application of Motzkin’s Transposition Theorem (Schrijver, 1998, page
94) to the conditions given in Theorem 2.3 in Haberman (1974). An alternative proof is the
following. By Theorem 2.2 in Haberman (1974), the MLE exists if and only if there exists a δ ∈
kernel(U>) with δI0 > 0. This occurs if and only if U>+nI+ = U>+(nI+ + δI+) + U>0 δI0 , which is
equivalent to U>0 δI0 = U>+(−δI+). The result follows. �

Example 4.2. The condition of Lemma 4.1 is only sufficient. As a counter-example, consider the
3-way table

0 0
0 0

0 0
0 0

0

and the model ∆ = [12][13][23]. It can be verified that the MLE is defined but rank(U+) = 18 and
rank(U) = 19. �

Proposition 4.1 says that it is necessary to look for a facial set only when rank(U) > rank(U+).
Then, if this is in fact the case, consider the matrix A = U0Z, where the columns of Z form a basis
for kernel(U+). Next, observe that (the permutation of the elements of) any vector y ∈ R(U) with
yI0 = 0 can be written as

y = UZx =
(

U+Zx
U0Zx

)
=
(

0
Ax

)
,

for some x ∈ Rq with q = codim(R(U+)). Then, another condition for existence of the MLE follows
readily.
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Corollary 4.3. The MLE exists if and only if the system Ax  0 if infeasible.

Remark.
Using the language of matroids, deciding whether the MLE exists or not is equivalent to the task
of deciding whether the rows of A form a totally cyclic vector configuration (see Ziegler, 1998,
Chapter 6). This idea will be developed later in Section 4.5.3.

In virtue of Corollary cor:altern, the problem (40) can then take on the simpler form

max |supp(Ax)|
s.t. Ax ≥ 0.

(41)

The nonzero rows of A are indexed in a natural way by the corresponding subset of I0, denoted IA.
In the remainder of the section it is assumed, without loss of generality, that A does not have any
zero rows, namely A = AIA

. As above, any optimal solution x∗ of (41) will provide the co-facial
set Fc = supp(Ax∗).

In order to compute the matrix A, a basis for kernel(U+), if different than the trivial subspace
{0}, must be computed. This can be accomplished using one the methods discussed in Section 4.4
through Equation (62). In addition, for those cases based on product-multinomial sampling for
which it is desirable to work with the reduced subspace M 	 N , the procedure is modified as
follows. Arguing as in later Section 4.3.5, let U be partitioned in the form U = (U1,U2), where the
columns of U1 form a basis for the sampling subspace spanned by χ1, . . . ,χr. Set

V = U2 −U1W+,

where W+ = D−1
+ (U(1)

+ )>U(2)
+ , with D+ = (U(1)

+ )>U(1)
+ diagonal and non-singular. It can be seen

that the columns of the matrix (U1,V) span M. Moreover, by construction, the columns of V+

are orthogonal to the columns of U1 (see Equation (59)). It follows from the independence of the
columns of U1 that any basis for the null space of (U1,V)+ must be of the form(

0
Z

)
,

i.e. the entire dependency resides in the columns of V. Then the matrix

A = (U1,V)+

(
0
Z

)
= V+Z

can be used for determining the facial set by solving the problem (41), previous elimination of
possible redundant zero rows.

In the reminder of the section, two methods for finding a solution to problem (41) will be
discussed. The appendix contains other proposed procedures.

4.1.1 Linear Programming

Although the problem (41) is highly non-linear, linear programming (LP) methods can still be used
to compute its solution. The non-linearity is in fact problematic to the extent that it will typically
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require repeated implementations of LP algorithms, whose complexity, however, decreases at each
iteration.

In order to describe the basic idea behind the linear programming approximation, let CU =
cone(U>) be the marginal cone whose dual is

ĈU = {x : y>x ≥ 0,∀y ∈ CU},

so that the face lattice of CU is the opposite of the face lattice of ĈU. Equivalently, the co-facial set
of CU are the facial sets of ĈU, and vice versa.

A linear version of problem (40) is the linear program

max
(
1>0 U0

)
x

s.t. U+x = 0
U0x ≥ 0
U0x ≤ 1,

(42)

where the third constraint is required to bound the value of the objective function. The feasible
set contains kernel(U) and is contained in ĈU. If x ∈ kernel(U), the objective function takes on
its maximum value 0. In fact the MLE exists if and only if the feasible set reduces to kernel(U).
If the MLE does not exist, the vector

(
1>0 U0

)
is normal to the supporting hyperplane (in Rk) of

some face of ĈU dual to some face containing the observed margins. If a positive optimum is found
at some point x∗, then supp(U0x∗) gives a co-face corresponding to a face on which t lies. How-
ever, there is no guarantee that x∗ is such that U0x∗ has maximal support, given the constraints.
Geometrically, this means that the procedure is not guaranteed to produce exactly the face whose
relative interior contains t, as it might very well produce a face whose relative boundary contains
t (see Example 4.4). The only case in which the LP problem (42) provides the appropriate face
with certainty is when t lies on the relative interior of a facet of CU, because the correspondence in
the dual cone is given by an extreme ray. This fact was exploited in the polynomial time algorithm
given in Eriksson et al. (2006).

It is convenient to take advantage of the simplified problem (41) to re-formulate (42) more
compactly and efficiently. The corresponding linear program is

max1>y
s.t. y = Ax

y ≥ 0
y ≤ 1.

(43)

The set DCA := {y ≥ 0 : y = Ax,x ∈ Rk} is a polyhedral cone which is isomorphic (and combina-
torially equivalent) to the polyhedral cone F0 := {x ∈ ĈU : U+x = 0}, which is precisely the face
of ĈU dual to the face containing t in its relative interior.

Letting C0 be the intersection of the unit-hypercube and the non-negative orthant in RIA , the
polytope DC[0,1]

A = DCA ∩ C0 consists of the set of points satisfying the constraints in equation
(43). At the optimum (x∗,y∗), 1′y∗ = 0 if and only if the MLE exist, which happens if and only
if DC[0,1]

A = {0}. When the MLE does not exist, then for each y in DC[0,1]
A , supp(y) ⊆ Fc, with

equality if and only if IA = Fc. Then, the procedure (41) aims at finding a point in DC[0,1]
A with

maximal support (which does not necessarily have to lie in the relative interior of DC[0,1]
A ). As

indicated above and demonstrated in the following example, one round of the program (43) may
not be sufficient to provide the appropriate facial set.
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Example 4.4. For the case of 43 tables and the model of no-3-factor effect ∆ = [12][23][13], consider
the pattern of likelihood zeros

0 0 0 0
0 0

0 0
0 0 0

0 0
0 0

0 0 0 0
0 0

0 0 0
0 0 0 0

0 0 0 0

0 0
0 0

0 0 0
0

,

obtained by taking the union of two among the 113,740 possible patterns of likelihood zeros char-
acterizing the facets of the corresponding marginal cone (see Table 1 in Eriksson et al., 2006). Using
the MATLAB routine linprog1, it was observed that one application of the LP procedure identifies
only a subset of likelihood zeros, namely

0 0

0 0

0
0

0

0
0 0

0

,

and that the complete patterns is correctly determined using a second iteration, after removing the
likelihood zeros found in the first one. �

As the previous example suggests, repeated applications of (43) will eventually produce the
required co-face: replace A with Asupp(Ax∗)c at each step until either the objective function is 0 or
supp(Ax∗)c = ∅. The pseudo-code for the LP procedure is given in Table 1.

1 : F = I
2 : do repeat
2.1 : Compute a solution (y∗,x∗) of (43).
2.2 : if 1>y∗ = 0
2.2.1 : return F
2.3 : else
2.3.1 : F = F \ supp(Ax∗)
2.3.2 : if supp(Ax∗)c = ∅
2.3.2.1 : return F
2.3.3 : else
2.3.3.1 : A = Asupp(Ax∗)c

2.3.4 : end
2.4 : end
3 : end

Table 1: Pseudo-code for the LP procedure to compute the facial set F .

1The default optimization options for linprog were used: options=optimset(’Simplex’,’off’,’LargeScale’,’on’).
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4.1.2 Newton-Raphson Procedure

In this section, we describe a non-linear optimization problem whose solution will also solve 41.
This problem can be attacked using the Newton-Raphson method, is guaranteed to produce the
appropriate facial set and, unlike the LP method presented above, does not need repetitions.

Let the function f : Rk → R be defined as

f(x) = −1> exp(Ax), (44)

with gradient ∇f(x) = −A> expAx and hessian ∇2f(x =)−A> expAx A, which is negative definite
for each x ∈ Rk. The following proposition relates the problem of optimizing f with the existence of
the MLE. In particular, we show that the existence of a facial set is signaled by a diverging behavior
of the Newton sequence {xk} (see Section 4.6). In addition, when the MLE is nonexistent, the
sequence of points {xn} realizing the supremum of f is not only diverging, but it is guaranteed to
eventually identify the appropriate co-face.

Proposition 4.5. Let f be as in (44) and consider the optimization problem

sup
x∈Rk

f(x). (45)

The MLE exists if and only if the unique optimum of the problem (45) is attained for a finite vector
x∗ ∈ Rk. If the MLE does not exist, supp(limn expAx∗n)c = Fc.

Proof. It easy to see that the function f(x) is bounded from above and strictly concave on Rk.
Suppose the unique optimum is attained for some vector x∗ ∈ Rk, so that ∇f(x∗) = 0. Letting
y∗ = expAx∗ > 0, the optimality condition on the gradient implies that A>y∗ = 0. By Stiemke’s
Theorem 4.19, the system Ax  0 has no solutions hence the MLE exists. To show the converse,
suppose the MLE does not exist but the optimum in (45) is attained for a finite vector x∗. Then,
there exists a subset (possibly improper) Fc of the row indices IA and a sequence {w}n such that
a>i wn < 0 for each n and a>i wn ↓ −∞ if i ∈ Fc, while a>i wn = 0 for each n if i 6∈ Fc. It follows that
f(x∗ + wn) is increasing in n and strictly bigger than f(x∗) for all n, which gives a contradiction.
Hence the optimum is achieved in the limit for a sequence of points {x∗n} with ||x∗n|| → ∞ such that
limn f(x∗n) = supx∈Rk f(x). See also Borwein and Lewis (2000, Theorem 2.2.6).

To prove the last statement, let {x∗n} be a sequence such that limn f(x∗n) = supx∈Rk f(x) and
let y∗ = limn expAx∗n . It is clear that supp(y∗)c ⊆ Fc. In fact, for any i ∈ supp(y∗)c, there exists a
subsequence {x∗nk

} such that, eventually, a>i x∗nk
< 0 for all nk big enough. This implies that i ∈ Fc.

To show the opposite inclusion Fc ⊆ supp(y∗)c suppose there exists a i ∈ Fc which does not belong
to supp(y∗)c. Then, letting {w}n be defined as above, a>i wn ↓ −∞ but limn |a>i x∗n| < ∞, so that

lim
n

f(x∗n + wn) > lim
n

f(x∗n) = sup
x∈Rk

f(x),

a contradiction. �

Remark.
If the MLE does not exist and IA = Fc, then supx∈Rk f(x) = 0.

As already mentioned, the function (44) can be optimized using Newton-Raphson method. In
fact, it can be shown that, when the MLE exists, (44) satisfies the assumptions of Section 4.6 over
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any neighborhood of the solution x∗, so that quadratic convergence is achieved. When the MLE
does not exists, the Newton-Raphson procedure can still be applied and, in addition, it will return
the correct facial set by producing a divergent Newton sequence. The result that ensures this
divergence is contained in the following Theorem, which shows that the Newton sequence will in
fact produce a sequence of points with exploding norm, since the Newton step will always increase
in the objective function.

Theorem 4.6. Let f : Rn → R be a strictly concave function of class C3, strongly concave on any
bounded ball and having no maximum on the closure of the open ball B. For any x ∈ B let d be the
Newton direction corresponding to x. Then, there exists a positive constant γ independent of x and a
positive number α ≤ 1 such that:

f(x + αd)− f(x) ≥ γ. (46)

Proof. Let B′ be the smallest ball containing the bounded set:

{x + dx, : x ∈ B,dx = −∇2f(x)∇f(x)}

so that B ⊂ B′. Using strict concavity and uniform concavity on B′ of f , there exist positive
constants K and L > 1 such that

K ≤ −y>∇2f(x)−1y ≤ L (47)

for all x ∈ B and all unit vectors y (i.e. ||y|| := y>y = 1). Since

d = −∇2f(x)−1∇f(x)

it follows that
K||∇f(x)|| ≤ ||d|| ≤ L||∇f(x)||. (48)

Using Taylor’s expansion,

f(x + αd) = f(x) + α∇f(x)>d +
α2

2
d>∇2f(x + cαd)d, (49)

for some 0 < c < 1. Next, it is possible to bound the right hand side of (49), by taking advantage
of (47) and (48). In fact,

α∇f(x)>d = −α ∇f(x)>

‖∇f(x)‖∇
2f(x) ∇f(x)

‖∇f(x)‖‖∇f(x)‖2

≥ αK‖∇f(x)‖2

and
α2

2 d>∇2f(x + cαd)d = −α2

2 − d>

‖d‖∇
2f(x + cαd) d

‖d‖‖d‖
2

≥ −α2

2 L‖d‖2

≥ −α2

2 L2‖∇f(x)‖2.

Therefore,

f(x + αd)− f(x) ≥
(

αK − α2

2
L2

)
‖∇f(x)‖2.

Since sup0≤α≤1

(
αK − α2

2 L2
)

= 1
2

K2

L2 > 0, choose 0 ≤ α′ ≤ 1 so that τ :=
(
α′K − (α′)2

2 L2
)

> 0

and let γ = τ
(
infx∈B̄ ||∇f(x)||2

)
> 0, where the last inequality holds since f has no maximum on

the closure of B. Then, for such a choice of α and γ, f(x + αd)− f(x) ≥ γ, as desired. �

40



4.2 Existence of the MLE and Markov Bases

Existence of the MLE can be established if the knowledge of the Markov basis (see Diaconis and
Sturmfels, 1998) associated to a generic design matrix X is available. The results presented below
are more of theoretical interest, since Markov bases can only be computed for small models and
tend to contains a large number of elements.

Let L = kernel(X>)∩ZI . A geometric object which has relevance in statistics is the fiber, the set
of all contingency tables whose margins match the observed one. Points in the fiber are points in
the support of the conditional distribution of the counts given the sufficient statistics, often known
as the “exact distribution”.

Definition 4.7. Given a point u ∈ NI , the fiber at u, denoted by Z(u), is the congruence class of u
modulo L, i.e.

Z(u) = {v ∈ NI : u− v ∈ L}.

Let B ⊆ L and, for each u ∈ NI , let ZB(u) be the undirected graph whose nodes are the
elements of the fiber Z(u) and in which two nodes v and v′ are connected if and only if either
v − v′ ∈ B or v′ − v ∈ B.

Definition 4.8. A set B ⊂ L is said to be a Markov basis if ZB(u) is connected for each u ∈ NI .

Although Markov bases are by no means unique, for a given design matrix, all Markov bases
which are minimal with respect to inclusion have the same cardinality (see Takemura and Aoki,
2004), so that it is customary to talk about “the” Markov Basis.

If a Markov Basis is available, it is possible to detect whether the observed margins t lie on a
face of the marginal cone and, in this case, even to identify such a face. In fact, Markov bases are
rich enough to fully characterize the combinatorial structure of the marginal cone and hence can
be used to identify facial sets. These facts are proved in the next theorem and in the subsequent
corollary and suggest a simple algorithm for obtaining facial sets sketched in Table 2.

Denoting with M the I ×m matrix whose columns are the elements of the (minimal) Markov
Basis for L, let Mσ = sgn(M), where the sgn function is applied element-wise, and define Mσ

I0
to

be the sub-matrix of Mσ obtained by considering the rows corresponding to the set I.

Theorem 4.9. The MLE does not exist if and only if Mσ
I0

admits a further row sub-matrix Mσ
J whose

nonzero columns each contain elements with opposite signs.

Proof. Suppose the MLE is not defined. This occurs if and only if there exists J ⊆ I0 such that, for
each w ∈ L, w(j) > 0, with j ∈ J , implies w(j′) < 0 for some other j′ ∈ J , j 6= j′. Equivalently, for
each positive integer c, the fiber F(cn) does not contain any element u such that u(j) > 0, for some
j ∈ J . Because of the connectedness property of the Markov bases (see, for example Sturmfels,
1996, Theorem 5.3), this in turn occurs if and only if no nonzero column of Mσ

J contains only
elements having the same signs. �

If the MLE is not defined, then the vector of sufficient statistics corresponding to n lies on a face
of the marginal cone with facial set F . This does not necessarily imply that there exists any integer
point x in the fiber Z(n) such that xF > 0. However, since there are infinitely many rational points
in the convex hull of Z(n) with this property, there exists a big enough positive integer c such that
an integer-valued vector v in Z(cn) with vF > 0 can be isolated. These observation is used in the
proof the following corollary.

41



Corollary 4.10. Let Mσ
J such that |J | is largest. Then, Mσ

J is unique and Fc = J .

Proof. The uniqueness of Mσ
J is clear, for if there were two such sub-matrices, say Mσ

J1
and Mσ

J2

with maximal |J1| = |J2|, then, letting J3 = J1 ∪ J2, Mσ
J3

would be a sub-matrix whose nonzero
columns have each elements of opposite signs and |J3| > |J1|, a contradiction.
Next, by the proof of Theorem 4.9, there is no positive integer c such that Z(cn) contains a vector
v with vJ > 0. This implies that there is no rational vector x ∈ Z(n) such that xJ > 0. Hence for
every point x ∈ convhull(Z(n)), it must be the case that xJ = 0. Thus J c is a facial set and, by
maximality of |J |, it must hold that Fc = J . �

1 : F = I+

2 : do repeat
2.1: Find u∗ ∈ B such that sgn(u∗I0

) > 0 or sgn(u∗I0
) < 0 and supp(u∗I0

) is maximal.
2.2: If no such a vector can be found return F
2.3: F = F ∪ supp(u∗I0

)
2.4: if F = I return F
2.5: I0 = I0 \ supp(u∗I0

)
2.6: B = B \

{
u ∈ B : supp(uI0) ⊆ supp(u∗I0

)
}

3 : end

Table 2: Pseudo-code for determining the facial set F associated to an observed table with zero cell
counts I0 and positive cell counts I+, starting from the Markov basis B.

Combining Theorem 4.9 and Corollary 4.10, an algorithm for the determination of the appropri-
ate facial sets associated to a given observed table can be derived, outlined in Table 2. Furthermore,
it can be shown that Markov bases are the minimal subsets of L for which the algorithm of Table 2
is guaranteed to always provide a correct answer.

We conclude by remarking that both the results above depend on the elements of the Markov
basis only through their signs. This in fact reflects the fact that deciding whether the MLE exists
and computing the appropriate facial set can be presented as a combinatorial tasks. This viewpoint,
which has natural connections with the theory of matroids (see Björner et al., 1999) is stressed in
Section 4.5.3.

4.3 Maximizing the Log-Likelihood Function

Except for the case of decomposable models, for which both a closed form expression for the MLE
and extended MLE and a very simple efficient algorithm for computing both of them are available
(see Section 5.2 and Section 5.2.1), optimization of the log-likelihood function will be performed
using the Newton-Raphson algorithm.

It is well known (see, for example, Agresti, 2002) that the Newton-Raphson method is ex-
tremely fast and efficient except when MLE fails to exist, a situation in which the procedure be-
comes unstable. The reason of such undesirable behavior is that, when the MLE is not defined,
the ”non-estimable” components of the parameter space correspond to the directions of recession
of the log-likelihood function which, in turn, are identified by the vectors defining the facial set F
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associated with the observed sufficient statistics. As a result, by computing the Newton steps along
the steepest directions of increase, the supremum of the log-likelihood is realized in the limit by
a sequence of points with norms exploding to infinity. Therefore, as the algorithm progresses, the
hessian for the log-likelihood function along the mentioned sequence becomes closer and closer
to being singular, making the procedure numerically unstable (see Fienberg and Rinaldo, 2006;
Rinaldo, 2006). This problem can be fixed by removing the directions of recession, namely by
optimizing a reduced form of the log-likelihood function parametrized by the cells in the facial
set F . This is equivalent to identifying the restricted member of the extended exponential family
associated to the facial set. Such a restricted log-likelihood function is strictly concave and admits
a unique, finite maximizer.

The properties of Newton-Raphson method for computing the MLE of log-linear models are
thoroughly described by Haberman (1974, Chapter 3), to which the reader is referred for back-
ground. The goal of this section is two-fold and builds on those results. First, efficient algorithms for
computing the gradient and hessian of the log-likelihood function under both Poisson and product-
multinomial schemes are devised. Secondly, having computed the facial set corresponding to the
observed sufficient statistic with any of the methods developed in the previous section, it will be
shown how to modify the log-likelihood function in a straightforward way in order to obtain the
extended MLE.

4.3.1 Poisson Sampling Scheme

Letting U be the full-column rank design matrix whose column range is the log-linear subspace M,
the MLE of the cell mean vector m, with µ = log m ∈M, is computed by solving the unconstrained
optimization problem

sup
x∈Rk

`P(x), (50)

where `P(x) = n>Ux− 1> expUx and the log-likelihood function `P is defined in Equation (2).
By setting µx = Ux and mx = expµx , it can be seen that

`P(x) = n>µx − 1>mx

∇`P(x) = U>(n−mx)
∇2`P(x) = −U>DmxU,

(51)

where Dmx is a diagonal matrix whose diagonal elements are mx. Since mx > 0 for each x ∈ Rk, it
is easy to see that the hessian is negative definite on all Rk which imply that∇`P is strictly concave,
but not strongly concave, as µ(i) → −∞ for any i ∈ I implies m(i) → 0. It is this ”weaker” degree
of convexity that permits the occurrence of the extended maximum likelihood estimates.

Under the assumption that the MLE is defined, Newton-Raphson method will convergence from
any starting approximation x0 to the unique optimum x∗ for the problem (74). To see this note
that the existence and uniqueness of the extended MLE for the restricted exponential family, along
with the strict concavity of `P , imply that the contour of `P corresponding to the value of `P(x0) is
a simple closed curve bounding a compact set B. Since the step size algorithm increases the value
of `P with each iteration, the sequence of iterations {xj}j≥0 all lie inside B. By strong convexity
on B, the iterates must converge to a maximum.
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At the k-th step of the algorithm, the current approximation xk, along with Equation (51), is
used to compute the Newton direction dk by solving the system

∇2`P(xk)dk = ∇`P(xk).

The Cholesky factorization, for example, can be employed to perform such a task.
After the direction has been computed, the stepsize αk must be determined by either of the

line-searching methods described in Section 4.6. To this extent, the function

φk(α) = f(xk + αdk)

and possibly its derivatives will have to be repeatedly evaluated. Define ck = Udk, so that

φk(α) = n>µk + αn>ck − 1> (mk · expαck) ,

where µk = Uxk, mk = expµk and the dot product operator between two vectors x and y is
defined as z = (x · y), with zi = xiyi. The first and second derivative of φk are easily computed as

φ′k(α) = d>k (x− (mk · expαck)) and φ′′k(α) = −
∑

i

(
d

(k)
i

)2
m

(k)
i expαd

(k)
i .

After αk has been evaluated, set xk+1 = xk + αkdk, so that µk+1 = µk + αkck ∈M, since ck ∈M.
As a starting point x0 one can take, for example, x0 =

(
U>U

)−1 U>µ̃, with µ̃ = log (max(n, 1)).

When the MLE does not exist and the extended MLE corresponding to a facial set F is to
be computed, the reduced log-likelihood function is obtained by replacing (50) with the smaller-
dimensional optimization problem

sup
w∈Rk′

`∗P(w), (52)

where `∗P(w) = n>U∗w−1> expU∗w and U∗ is a |F|× k′ full-column rank design matrix consisting
of any set of linearly independent columns from UF . To compute U∗ from UF any of the techniques
described in Section 4.4 of the appendix can be used. Note that k′ is both the dimension of the
natural parameter space for the reduced linear exponential family associated with the log-linear
subspace R(U∗) and the dimension of the face of the marginal cone containing the observed suffi-
cient statistics in its relative interior. Once the optimum w∗ for (52) is found, the extended MLE is
the vector m̂e ≥ 0 in RI with coordinates

m̂e(i) =
{

expw∗(i) if i ∈ F
0 otherwise.

4.3.2 Product-Multinomial Sampling Scheme

When dealing with the product-multinomial sampling scheme, two strategies are available. First,
one can take advantage of of the equivalence of the MLE and extended MLE between Poisson
and product-multinomial and, provided the sampling subspace N is contained in the log-linear
subspace M, proceed as if Poisson sampling were in fact used. The second possibility is to perform
the optimization by parametrizing the log-likelihood function using an appropriate design matrix
for M 	 N . This second approach is more elaborated because the gradient and hessian of the
re-parametrized log-likelihood are harder to obtain, both theoretically and computationally. There
are two cases in which the more complicated procedure might be desirable:
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• when dim(N ) is very big and a considerable reduction in the dimensionality can be achieved,
more than offsetting the computational ease of the Poisson case, despite the increase in com-
plexity needed to obtain the Newton steps;

• when N 6⊂ M, in which case the equivalence of the MLE and extended MLE does not hold.

Recall that, according to Lemma 2.2, it is possible to parametrize the log-likelihood in terms of
vectors β ∈M	N , as indicated in Equation (6), reported below for convenience,

`L(β) = (n,β)−
r∑

j=1

Nj log(expβ,χj)−
∑
i∈I

ni!.

The gradient and hessian are derived as follows. Let b = expβ and, for j = 1, . . . , r, bj =
{bi : i ∈ χj} and Nj = χ>j n. Then,

∇`L(β) = n−


(

N1

χ>
1 b

)
b1

...(
Nr

χ>
r b

)
br

 (53)

and
∇2`L(β) = −diag (H1, . . . ,Hr) , (54)

where, for j = 1, . . . , r,

Hj =
Nj

χ>j b

[
Dbj

−

(
1

χ>j b

)
bjb>j

]
. (55)

The matrix Hj is positive semidefinite with a single null vector 1. It follows that∇2`L(β) is negative
semidefinite with a null space spanned by χ1, . . . ,χr, which is just N . Therefore, conclude that
∇2`L(β) is negative definite on M	N , for all β ∈M	N .

For each β ∈ M	N , the proof of Lemma 2.2 shows that there exists a corresponding γ ∈ N
such that the vector c = expγ satisfies

1. c(i) = cj := Nj

χ>
j b

, i ∈ χj , j = 1, . . . , r;

2. b(i)c(i) = m(i), i ∈ I, , with m being the mean cell vector.

By multiplying and dividing each element of the second vector on the right hand side of (53), it
follows that

∇`L(β) = n−


1
c1

(
N1

χ>
1 b

)
c1b1

...
1
cr

(
Nr

χ>
r b

)
crbr

 = n−m.

Using a similar trick, equation (55) can be written as

Hj = 1
cj

Nj

χ>
j b

cjDbj
− Nj

χ>
j b

1
cj

1
cj(χ>

j b)
cjbjb>j cj

= Dmj − 1
Nj

mjm>
j ,
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where mj = {mi : i ∈ χj}. Using the last display, the expression in (55) becomes

∇2`L(β) = −Dm −
∑r

j=1
1

Nj
mjm>

j

= Dm (I− Pm
N ) ,

(56)

where Pm
N is the (oblique) orthogonal projection matrix onto N relative to the inner product [·, ·]

on RI defined by [x,y] = x>Dmy. Notice that equation (56) matches Haberman (1974, equation
2.28). For a characterization of maximum likelihood estimation in terms of oblique projections on
M	N , see Haberman (1977). Furthermore, ∇2`L is negative definite on Rk−r but not strongly
concave on it. As in the Poisson case, this feature allows for the possibility of a non-existent MLE.

In the case of multinomial sampling scheme with (χ1, . . . ,χr) being the r orthogonal 0-1 vectors
spanning the sampling subspace N (see Section 2.1.2), it is shown later in Section 4.3.5 that the
subspace M	N can be generated from a basis U of M as the column span of the matrix

V = U2 −U1W,

for a given partition U = [U1 U2] with

U1 = [χ1 χ2 . . . χr]

and W =
(
U>1 U1

)−1 U>1 U2. The log-likelihood can be parametrized as

`L(x) = n>Vx−
r∑

j=1

Nj log χ>j expVx, (57)

with x ∈ Rk−r, so that the MLE is obtained by solving the unconstrained optimization problem

sup
x∈Rk−r

`L(x).

The considerations of the previous section apply directly to this problem as well, with the principal
algorithmic difference being the computation of the function `L and its gradient and hessian, for
which formula (76) can be used. Explicitly, for any x ∈ Rk−r, let βx = Vx ∈ M 	 N and, for
j = 1, . . . , r, let bj

x = {bx(i) : i ∈ χj} and Nj = χ>j n. Then, using (53) and (76) the gradient is

∇`L(x) = V>n−V>


(

N1

χ>
1 bx

)
b1

x

...(
Nr

χ>
r bx

)
br

x

 ,

while, using (76), (54) and (55), the hessian can be expressed as

∇2`L(x) = −
r∑

j=1

V>
j Hj

xVj , (58)

where Vj denotes the rows of V indexed by supp(χj) and

Hj =
Nj

χ>j bx

[
D

bj
x
−

(
1

χ>j bx

)
bj

x(bj
x)>
]

.
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When the MLE does not exist and the extended MLE for a given facial set F is sought, the pro-
cedure is identical to the Poisson case. Specifically, re-define the restricted log-likelihood function
(57) with domain Rk′ , k′ < k − r, as

`∗L(w) = n>V∗w −
r∑

j=1

Nj log χ>j expV∗w,

where V∗ is the full-column-rank |F| × k′ dimensional matrix consisting of any set of linearly
independent columns of VF , isolated using any of the procedures described in Section 4.4. As with
the Poisson case, k′ is the dimension of both the natural parameter space of the restricted linear
exponential family associated to the extended MLE and the dimension of the face of the cone(V>)
identified by the facial set F . Next, solve the smaller-dimensional optimization problem

sup
w∈Rk′

`∗L(w),

which is guaranteed to have one finite maximizer w∗. The extended MLE is the vector m̂e ≥ 0 in
RI with coordinates

m̂e(i) =
{

expw∗(i) if i ∈ F
0 otherwise.

4.3.3 Efficient Algorithms to Compute `L, ∇`L and ∇2`L

In order to compute `L, only the term χ>j expβx can be efficiently generated. To this extent, let κx

be the r-dimensional vector whose j-th coordinate is κx(j) = χ>j expβx . Next, note that for a fixed
i ∈ I, at most one of i-th component of the χj ’s is nonzero. Consequently, while cycling though the
components of βx, each contributes to exactly one κx(j). The pseudo-code for the corresponding
algorithm is given in Table 14. The same technique can be used to compute ∇`L; since V can be
generated row-wise, the only difficulty to address is the generation of the components (53), which
is shown in the pseudo-code of Table 15.

The computation of ∇2`L is a bit more elaborate. Re-write equation (58) in the form

∇2`L(x) = −
r∑

j=1

Nj

χ>j bx
V>

j D
bj
x
Vj +

r∑
j=1

Nj

(χ>j bx)2
wjw>

j ,

where wj = V>
j bj

x. The previous display is, in fact, easier to evaluate than formula (58). To
efficiently compute ∇2`L(x), the following strategy is proposed: the indices i from the label set I
are generated from the set supp(χ1), then the set supp(χ2), and so on. Following this ordering,
wj is computed and then wjw>

j accumulated before evaluating wj+1. This implies that wj+1

can overwrite wj , reducing the required storage to a minimum. The details of this algorithm are
presented in Table 16

4.3.4 Manipulation and Computations on Design Matrices

Let U be a n × p design matrix, not necessarily of full rank, for the log-linear models described in
Section 3.2 such that R(U) = M. Using any of the methods described in Section 3.2 and Tables
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8, 9, 10, 11, assume that a procedure Get Row is available that takes as input an index i, which
uniquely identifies a cell, and outputs the number of nonzero entries nz, the vector coordinates
coord and vector of values v for the corresponding row i of the matrix U, i.e. u>i .

For any p-dimensional vector x, letting Dx be the p × p diagonal matrix whose (i, i)-th entry is
xi, the following operations can be performed efficiently:

• Ux (see Table 19).

• U>y =
∑

i yi ui (see Table 18).

• U>DxU =
∑

i xi uiu>i (see Table 17).

The three algorithms above, along with a linear equation solver to be described next, allow
to perform a significant amount of computation without retaining U in storage. For example, to
compute the oblique projection of a vector y, which is performed repeatedly in the course of the
Newton iteration for the computation of the MLE,

U
(
U>DxU

)−1
U>y,

it is possible to proceed as follows:

1. compute B = U>DxU,

2. compute w = U>y,

3. solve the system Bz = w,

4. compute x = Uz.

Although the above algorithms have been designed to use repeated calls to Get Row, this is by
no means necessary, since it might be possible to store the nonzero elements of U in the format
produced by Get Row. For example, when the marginal basis from equation (29) is used, each row
of U has precisely f nonzero entries, where f is the number of facets of the simplicial complex
encoding the corresponding hierarchical model. Since all the nonzero entries are known to be one,
only their column indices coord must be stored. Thus, each row of U can be represented in f + 1
locations, one for nz and the remaining for coord, so that U can be represented with a smaller
n× (f + 1) matrix.

4.3.5 A Basis for M	N for the Product-Multinomial Case

Consider the product-multinomial sampling scheme case and suppose the r orthogonal vectors
(χ1, . . . ,χr) span the sampling subspace N . Let U1 be the |I| × r matrix whose i-column is χi,
so that D = U>1 U1 is a r-dimensional non-singular diagonal matrix. Let U = [U1|U2] be such that
R(U) = M. Then

Lemma 4.11. The columns of the matrix V = U2 −U1D−1U>1 U2 span M	N .
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Proof. Orthogonality of R(V) and R(U1) follows from

U>1 V = U>1 U2 −U>1 U1D−1U>1 U2

= U>1 U2 −DD−1U>1 U2

= 0.
(59)

It only remains to show that [U1|V] span M. Let µ = U1b1 + U2b2 be any vector in M. Then,

µ = U1b1 + (V + U1D−1U>1 U2)b2

= U1(b1 + D−1U>1 U2b2) + Vb2,

so that µ is a linear combination of the columns of U1 and V. �

For hierarchical models and product-multinomial sampling scheme with N ⊂ M, assume that
the design matrix U is such that the first r columns are precisely the vectors (χ1, . . . ,χr). Let also
B = D−1U>1 U2. Then, the i-th row of V is

v>i = (u(2)
i )> − (u(1)

i )>B,

where (u(j)
i )> is the i-th row of Uj , j = 1, 2. Each row of U1 contains only one nonzero element,

which is 1, therefore, for each i

v>i = (u(2)
i )> − b>l ,

where b>l is the l-th row of B and l is the position of the nonzero element in (u(1)
i )>. Since,

by construction, the first r columns of U are precisely U1, then, for any i = (i1, . . . , iK) ∈ I, the
corresponding index l is just the first coordinate of the vector coord produced by calling the routine
Get Row with input argument (i1, . . . , iK). The resulting algorithm is presented in Table 20.

In general, since V is much less sparse than U, the manipulations discussed in the previous
section cannot be performed as efficiently. In fact, optimizing over M	N rather than the whole
M will be convenient provided that dim(M	N ) is much smaller than dim(M).

4.4 Detecting Rank Degeneracy

The present section provides various methods for isolating a set of independent columns from a
matrix A. See Stewart (1998) for detailed descriptions and properties of algorithms used below.

4.4.1 Cholesky Decomposition with Pivoting.

For a given squared, positive definite p-dimensional matrix A, the Cholesky decomposition is an
upper triangular matrix R with positive diagonal elements, called the Cholesky factor, such that A
can be uniquely decomposed like

A = R>R.

The computation of R is simple, numerically stable and can be performed quite efficiently. It
encompasses a sequence of p operations such that at the k-th step of the algorithm, the k×p matrix
Rk is obtained, satisfying

A− R>k Rk =
(

0 0
0 Ak

)
, (60)
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where Ak is positive definite of order p−k and Rk =
(

Rk−1

r>k

)
, so that R = Rp. The first (k−1) co-

ordinates of the vector rk are 0, the k-th coordinate is equal to rk =
√

a
(k−1)
1,1 and the last (p−k−1)

coordinates are
a
(k−1)
1,j

rk
, j = k + 1, . . . , p.

A simple modification of the algorithm described above allows to consider matrices that are
only positive semidefinite. In fact, it is not necessary to accept diagonal elements as pivots (i.e.
as determining the diagonal elements of R). Specifically, suppose that, at the k-th stage of the
reduction algorithm represented by equation (60), the pivoting for the next stage is obtained using
another diagonal entry of Ak, say a

(k)
l,l , l 6= 1, instead of a

(k)
1,1. Let J′k+1,l be a permutation matrix

obtained by exchanging the first and l-th rows of the identity matrix of order p− k so that

J′k+1,lAkJ′k+1,l

is a symmetric matrix with a
(k)
l,l in its leading position and set

Jk =
(

Ik 0
0 J′k+1,l

)
.

Then, from (60),

JkAJk − JkR>k RkJk =
(

0 0
0 J′k+1,l Ak J′k+1,l

)
. (61)

The matrix RkJk differs from Rk only in having its (k + 1)-th and (k + l)-th columns interchanged.
Consequently, (61) represent the k-th step of the Cholesky decomposition of JkAJk in which a

(k)
1,1 has

been replaced by a
(k)
l,l . If interchanges of leading terms are made at each step, with the exception

of the last one, the Cholesky factorization will produce an upper triangular matrix R such that

Jp−1Jp−2 . . . J1 A J1 . . . Jp−2Jp−1 = R>R.

That is, R is the Cholesky factor of the matrix A with its rows and columns symmetrically permuted
according to J = Jp−1Jp−2 . . . J1.

If A is positive semidefinite and the algorithm is carried to its k-th stage, it can be shown that
Ak is also positive semidefinite. Unless Ak is zero, it will have a positive diagonal element, which
may be exchanged into the pivot so that the (k + 1) step can be initiated. Among the possible
pivoting strategies, one that is particularly suited to problems of rank detection is taking as pivot
element the largest diagonal element of Ak, for every stage k of the reduction. This will result into
a matrix R such that

r2
k,k =

j∑
i=k

r2
i,j j = k, . . . , p,

so that the diagonal elements of R satisfy r1,1 ≥ r2,2 ≥ . . . ≥ rp,p. Moreover, if rk+1,k+1 = 0 for
some k, then the Cholesky factor of A will be of the form

R =
(

R11 R12

0 0

)
,

where R11 has order k = rank(A).
To isolate a set of independent columns form a matrix U the following result can be used.
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Proposition 4.12. Let J be a permutation matrix such that UJ = (U1,U2) with U1 of order k. If

(U1,U2)>(U1,U2) =
(

A1 A2

0 0

)>( A1 A2

0 0

)
,

where A1 is non-singular of order k, then:

i. The columns of U1 are linearly independent;

ii. U2 = U1A−1
1 A2;

iii. the columns of the matrix (
−A−1

1 A2

Ip−k

)
(62)

form a basis for the null space of UJ.

Proof. Since U>1 U1 = A1 is non-singular and positive definite, U1 has independent columns, prov-
ing i.. To establish ii., note that

rank(U1,U2) = rank
(

A1 A2

0 0

)
= k,

so U2 can be obtained as a linear combination of columns of U1, say

U2 = U1X. (63)

Then, after pre-multiplying both sides by U>1 , it follows that

X = (U>1 U1)−1U>1 U2 = A−1
1 A2.

To show iii., observed that the matrix (62) has p− k independent columns and, by i., it satisfies

(U1,U2)
(
−A−1

1 A2

I

)
= −U1A−1

1 A2 + U2

= −U1

(
U>1 U

)−1 U>1 U2 + U2

= −U2 + U2

= 0,

where the second to the last inequality is justified by (63). Since the null space of (U1,U2) has
dimension p− k, the columns of (62) form a basis for it. �

4.4.2 Gaussian Elimination, Gauss-Jordan Elimination with Full Pivoting and Reduced Row Ech-
elon Form

Proposition 4.12 suggests different ways of dealing with detecting rank degeneracy other than
Cholesky decomposition with pivoting. A matrix that as undergone Gaussian elimination is said to
be in row echelon form. Specifically, a matrix A is in echelon form if:

1. The leading entry in any nonzero row is 1;
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2. the leading entry of each nonzero row after the first occurs to the right of the leading entry
of the previous row;

3. all zero rows are at the bottom of the matrix.

A matrix A that as undergone Gauss-Jordan elimination is said to be in reduced row echelon form.
Besides the conditions 1. - 3. above, it satisfies a further requirement:

4. Any column containing a leading term has only one nonzero entry.

Both the procedures require, in order to achieve numerical stability, the permutations of the rows,
called partial pivoting.

If the transformed matrix A is not full column rank, it is convenient to consider full-pivoting,
which entails finding also permutations matrices J1, . . . , Jr, 1 ≤ r < k such that, letting J =

∏r
i=1 Ji,

AJ =
(

R B
0 0

)
, (64)

where R is upper triangular if A is in row echelon form or is the identity matrix is A is in reduced
row echelon form.

Therefore, if the matrix U is not of full-column rank and the echelon form of U>U satisfies
equation (64), then U satisfies the condition of Proposition 4.12. In particular, if reduced echelon

form is performed, then a basis for the null space of UJ is given by
(
−B

I

)
.

The arguments just made can, in principle, be applied directly to the matrix U rather than U>U.
In fact, it is easy to see that, if equation (64) holds, with A being the Row Echelon or Reduced Row
Echelon of U, then the permuted indices of the columns of R give a subset of the columns of U that
are linearly independent. This strategy, however, might not be convenient if the number of rows of
U is very big.

4.4.3 LU Factorization

The LU-factorization of a m× n matrix A, with m ≥ n, is the representation

LU = PA,

where L is a lower triangular (lower trapezoidal if m > n) matrix with unit diagonal elements and
dimension m×n, U is a n×n upper triangular matrix and P a m×m permutation matrix satisfying
P =

∏1
j=n−1 Pi, with Pj being the permutation matrix that swap the j-th row with the pivot row

during the j-the iteration of the the outer loop of the algorithm (Crout’s algorithm).

Lemma 4.13. Let U be a m × n matrix, wherem > n. The first k < m columns of U are linearly
independent if and only if U admits the following LU factorization, for some permutation matrix P:

PU =
(

A 0
B C

)(
D E
0 0

)
where A and D are lower and upper k × k full-rank matrices, respectively.
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Proof. To prove sufficiency, note that, by hypothesis

PU =
(

AD AE
BD BE

)
,

so that the first k columns of PU are linearly independent. This clearly is still true for any row
permutation and, hence, it is also true for the permutation matrix P−1.

If D and hence A have dimensions different than k, then rank(U) = rank(PU) 6= k, from which
necessity follows. �

Lemma 4.13 can be used as follows. Let (i1, . . . , ik) ⊆ {1, . . . , n} denote the nonzero diagonal
entries of D. Then the columns of U labeled by (i1, . . . , ik) are linearly independent and the rank
of U is k. Similar arguments can be applied to the matrix U>U, but in this case it is preferable to
use the Cholesky decomposition since it is known to be faster and numerically very stable.

4.5 Appendix A: Alternative Methods for Determining Facial Sets

This appendix describes various methods for identifying the facial sets that are alternative to the
LP and non-linear optimization procedures we described above.

4.5.1 Maximum Entropy Approach

Identification of the appropriate facial set can be carried out by replacing the linear objective func-
tion of the optimization problem (43), with Shannon’s entropy function. The new problem is

max−
∑

i yi log yi

s.t. y = Ax
y ≥ 0

1>y = 1.

(65)

The strictly concavity of the entropy function and the fact that limx↓0 x log x = 0 guarantee that, for
the unique maximizer y∗ of 65, supp(y∗) is maximal with respect to inclusion. In fact, letting ∆0

denote the simplex in RIA , the entropy function is maximized over the convex polytope DC1
A :=

DCA ∩ ∆0. Such intersection is trivial when the MLE exists and is the point 0. In this case, the
problem is infeasible. Otherwise, due to the strict concavity of the entropy function, the optimum
is achieved inside ri

(
DC1

A

)
, which corresponds to the maximal co-face. Note that DC1

A is typically
not of full dimension (unless IA = Fc), in which case the maximizer belongs to a relatively open
neighborhood inside DC1

A.
With a>i denoting the i-th row of A, the problem (65) can be rewritten in a more compact form

by making the constraint y = Ax implicit. Then

max H(x)
s.t. Ax ≥ 0

1>Ax = 1,

where, for Ax > 0, H(x) = −
∑

i a
>
i x log(a>i x), with gradient

∇H(x) = −A> (1 + log(Ax))
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and hessian
∇2H(x) = −A>diag (Ax)−1 A = −

∑
i

1
a>i x

aia>i .

4.5.2 Maximum Entropy and Newton-Raphson

By taking the log of the negative of the function f of Equation (44), the optimization problem (45)
can be represented as an unconstrained geometric program

min log
(∑

i expa>i x
)

,

which is equivalent to a linearly constrained one,

min log (
∑

i exp(yi))
s.t. Ax = y,

(66)

with feasible set given by the kernel of the matrix [I −A].
If x∗ is the maximizer of the original problem (45), then this is also the minimizer for the geo-

metric program (66), where the infimum can possibly be −∞ (which of course only happens when
supx∈Rk f(x) = 0).

The conjugate of the log-sum-exp function appearing in (66) is the negative entropy function
restricted to the simplex, given by{ ∑

i νi log νi ν ≥ 0 1>ν = 1
∞ otherwise,

so the dual of the reformulated problem (66) is

max −
∑

i νi log νi

s.t. 1>ν = 1
A>ν = 0
ν ≥ 0.

(67)

Proposition 4.14. If the MLE exists, the problem (67) admits a unique strictly positive solution ν∗. If
the MLE does not exist:

a) if the zeros IA = Fc, then (67) is infeasible;

b) otherwise, the problem (67) is feasible and admits a unique solution ν∗ such that the co-face is
given by the coordinates not in supp(ν∗).

Proof. Note that, by the properties of the entropy function, any solution ν∗ to the above problem
has maximal support among all the non-negative vectors satisfying the equality constraint. Next, by
strict concavity of the entropy function, if the problem is feasible, then it admits a unique solution.
If the MLE exists, the maximum is attained at a strictly positive point ν∗ > 0 by Theorem Stiemke’s
4.19.

Suppose instead that the MLE does not exist. If the system Ax > 0 admits a solution, then,
by Gordan’s Theorem 4.18, there is only one vector ν∗ satisfying the matrix equality constraint:

54



ν∗ = 0. Therefore, in this case the problem is infeasible. This proves a). Otherwise, the solution
is given by a vector ν∗  0. In this case, the coordinates in supp(ν∗)c give the appropriate co-face.
In fact, 0 = (ν∗)>A = (ν∗)>U0X implies that every d ∈ kernel(U+) will be orthogonal to a strictly
positive convex combination of the rows of U0 corresponding to the coordinates in supp(ν∗). Since
the MLE does not exist, there exists a vector d∗ ∈ kernel(U+) such that d>∗ ui = 0 for all i ∈ F and
d>∗ ui > 0 for all i ∈ Fc, that is, d∗ is orthogonal to all strictly positive combinations of rows of U
indexed by F . By maximality of supp(ν∗), these rows are the ones in U+ and the ones in supp(ν∗).
Hence the result in b). �

4.5.3 Facial Sets and Gale Transform

The same computational methods devised in the previous section for identifying facial sets can be
also applied in a different framework, which is essentially based on the idea of the Gale transform,
defined below. The duality of this approach will become apparent in the description that follows.

Let B be a matrix whose columns form a basis for kernel(U>) and B0 be the sub-matrix obtained
from B by considering the rows in I0. The matrix B is easy to compute, either by transforming A
in normal form, or, for the log-linear models described in Section 3, by using Corollary 3.15. It is
possible to describe conditions for the existence of the MLE using B rather than U, taking advantage
of the notion of the Gale transform. Assume without loss of generality that 1 ∈ range(U) and let
u>i denote the i-th row of the design matrix U and, likewise, b>i be the i-th row of the matrix B.

Definition 4.15. The vectors {bi}i∈I form a Gale transform of the column vector configuration
{ui}i∈I .

Gale transforms (or Gale diagrams) are used to convert combinatorial statements into geometric
ones, and vice versa. See Ziegler (1998) and Grünbaum (2003).

Lemma 4.16. The MLE does not exist if and only if there exists a vector y  0 such that B>0 y = 0.
Furthermore, for any such a vector y∗ with maximal support, supp(y∗) = Fc.

Proof. The MLE does not exist if and only if the sufficient statistic t belong to a face of the marginal
cone generated by U> whose facial set F satisfies Fc ⊆ I0. By Grünbaum (2003, Result 1 on page
88) the set Fc is co-facial if and only if 0 ∈ ri

(
convhull(B>Fc)

)
which occurs if and only if there

exists a y > 0 such that B>Fcy = 0. Since Fc ⊆ I0, the first statement follows. As for the second
statement, Fc must correspond to such a vector y with maximal support, by the properties of the
points in the relative interior of convhull(B>Fc). �

Remark.
In the language of matroids, deciding whether the MLE exists or not is equivalent to the task of
deciding whether B>0 is an acyclic vector configuration (see Ziegler, 1998, Chapter 6). See the
Remark following Corollary 4.3.

Using Gordan’s Theorem 4.18 in conjunction with Lemma 4.16, it can be seen that the existence
of the MLE is equivalent to the existence of a strictly positive solution of the linear system of
inequalities

B0x  0,

which, in fact, is precisely a restatement of Theorem 2.1 in Haberman (1974).
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Therefore, arguing as in Section 4.1 (see, in particular, the optimization problem (40)) the
appropriate facial set can be identified by solving the non-linear optimization problem

max |supp(B0x)|
s.t. B0x ≥ 0.

(68)

If x∗ is any optimal solution of this problem, then F = supp(B0x∗). Note the fact that the facial
set is given by the points in the support of the optimal solution, unlike the similar problem (41)
involving the matrix A.

The geometric representation of problem (68) is analogous to the problem formulated in Equa-
tion (41). Consider the polyhedral cone DCB = {y ≥ 0 : y = B0x,x ∈ R|I|−k}. The set DCB has a
dual interpretation with respect to the DCA defined in Section 4.1.1. In fact, the MLE exists if and
only if DCB contains only strictly positive points. When the MLE does not exist, the face lattice of
DCB is the opposite of the face lattice of DCA.

The methods described in the previous sections can, in fact, all be applied to problem (68). The
only fundamental difference lies in the interpretations of the optimal solutions, which are given
below. The proofs are similar to the cases treated above and are thus omitted.

• Linear Programming

max1>y
s.t. y = B0x

y ≥ 0
y ≤ 1

(69)

This is a possibly iterative procedure which is essentially identical to the one used in Sec-
tion 4.1.1. Replace B0 with Bsupp(B0x∗)c at each step until either the objective function is 0 or
supp(B0x∗)c = ∅. The former case implies nonexistence of the MLE with Fc coinciding the
row index set of the current B0, the latter implies existence of the MLE.

• Maximum Entropy Approach

max−
∑

i yi log yi

s.t. y = B0x
y ≥ 0

1′y = 1

(70)

Nonexistence of the MLE will either produce infeasibility (this occurs if IB0 = Fc) or an
optimal solution x∗ such that Fc = supp(B0x∗)c ( IB0 .

• Newton-Raphson Procedure

sup
x

f(x) := −1> exp(B0x)

If the MLE does not exist, then for any sequence {x∗n} such that lim f(x∗n) = supx f(x),
let y∗ = limn expB0x∗n . Then, Fc = supp(y∗). When the MLE exists the supremum of the
objective function is 0.
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• Maximum Entropy and Newton-Raphson

max −
∑

i νi log νi

s.t. 1>ν = 1
B>0 ν = 0
ν ≥ 0

(71)

This is directly related to the Gale transform characterization of a facial set. If the MLE exists,
the problem is infeasible. When the MLE does not exist, Fc = supp(ν∗).

4.5.4 Matroids and Graver Basis

This section elaborates on the remarks following Corollary 4.3 and Lemma 4.16 and is also directly
related to Section 4.2. Conditions for the existence of the MLE and the determination of the facial
sets associated to facets of the marginal cone can, in fact, be derived using the language of realiz-
able oriented matroids. Given the reduced practical utility of the methods presented below and the
well established nature of the results utilized, exposition will be kept to a minimum. For a complete
account see Björner et al. (1999) and Ziegler (1998, Chapter 6).

Let A be a design matrix whose rows span the log-linear subspace and identify it with a collec-
tion of I column vectors. Let XA be the set of minimal (with respect to inclusion) sign vectors of all
linear dependencies of A, that is the set of sign vectors of elements of kernel(A) of minimal support.
Then (I,XA) defines an oriented matroid of a vector configurations I in terms of its signed circuits
XA. The faces of the corresponding polytope PA obtained as the convex hull of the columns of A
are defined in terms of these circuits. In fact, a set F defines a face of PA if and only if, for every
signed circuit X, X+ ⊂ F implies X− ⊂ F . This fact is directly related to Theorem 2.6, part ii., (see
also Björner et al., 1999, page 379). Conversely, the signed co-circuit of the matroid (I,XA) form
the set of all minimal (with respect to inclusion) sign vectors of value vectors of the matrix A. The
combinatorial structure of the polytope PA can be described in terms of co-circuits as well, since
the support of positive co-circuits identifies its co-facets. Circuits and co-circuits are related to each
other through the Gale transform of PA, introduced in Section 4.5.3.

Following Sturmfels (1996), the circuits XA of the toric ideal IA are the irreducible binomi-
als having minimal supports. This definition is equivalent to defining a circuit in kernel(A) as a
non-zero vector whose coordinates are relatively prime and its support is minimal with respect to
inclusion (Sturmfels, 1996, page 33). Sturmfels (1996, Proposition 4.11) shows that XA ⊆ GrA,
where GrA denotes the set of all primitive binomials of IA, called a Graver basis.

By combining these notions, it is possible to obtain the co-facets of PA by computing the signed
circuits of the Gale transform of A using the Graver basis of B>.

1. Compute the Graver basis of B>: GrB.

2. Extract the circuits of GrB: XB

3. Extract the non-negative circuits from XB: X+
B

4. Compute the sign vectors sgn(X+
B ).

5. The set sgn(X+
B ) gives the co-facets of PA.
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The same steps can be repeated for each facet of PA.

Remark.
The above characterization, although appealing, has small practical implications, given the current
status of available symbolic algebraic algorithms. In fact, the determination Graver bases is a
computationally expensive task and Graver bases form even bigger sets than Markov bases, which
have shown to become quickly unmanageable as the dimension of the tables increases and, in fact,
be arbitrarily complicated (De Loera and Onn, 2006). The methods devised here seem to be, along
with the one provided in Section 4.2, more computationally expensive than getting the facet-vertex
incidence vectors by using standard polyhedral geometric algorithms, implemented for example in
the software polymake (Gawrilow, 2000).

Example 4.17. Consider the hierarchical model ∆ = [12][13][23], whose marginal cone has 207
different facets (see Eriksson et al., 2006). The Graver basis of the Gale transform for the corre-
sponding design matrix has 19,197 elements, of which 18,549 are circuits, among which 207 have
non-negative entries. The support of those 207 vectors are indeed the facial sets describing the
facets of the marginal cone. The computations were performed using polymake (Gawrilow, 2000)
and 4ti2 (Hemmecke and Hemmecke, 2003). �

4.6 Appendix B: The Newton-Raphson Method

This section provides a short, specialized description of the Newton-Raphson method which is tai-
lored to the type of applications considered here. Extensive and rigorous treatments of the subject
can be found in most books on non-linear optimization. See, for example, Boyd and Vandenberghe
(2004).

Let f : Rk → R be a real valued function with gradient ∇f and hessian ∇2f . The following
assumptions will be made:

1. f is strongly concave on any bounded convex subset of Rk;

2. ∇2f is negative definite on all Rk;

3. ∇2f is Lipschitz on Rk.

It can be shown that for the type of applications considered here, all the assumptions hold true.
Newton-Raphson method (or rather the dumped Newton-Raphson method) is a steepest ascent

method for finding the maximum of f . It is started with an initial point x0 ∈ Rk and generates a
sequence {xk}k≥0 of approximations to the maximum x∗ as follows. Given xk, let

dk = −∇2f(xk)−1∇f(xk)

be the Newton direction and, for some suitably chosen scalar αk > 0, set

xk+1 = xk + αkdk.

Provided xk 6= x∗, the value of the objective function f increases at each iteration, since, letting
∆k = xk+1 − xk and using the fact that ∇2f is negative definite,

∇f(xk)>∆k = αk∇f(xk)>dk = −αk∇f(xk)>∇2f(xk)∇f(xk) > 0.
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By strict concavity, it follows that f(xk) < f(xk+1).
Furthermore, if f is strongly concave, there is a maximum x∗ and the sequence αk can be

chosen so that limk xk = x∗. Either one of the following algorithms can be used for determining
the sequence {αk}.

1. Exact Line Search. At stage k, choose αk to maximize the function

φk(α) = f(xk + αdk).

Under the assumption of strong concavity, φk will have a unique maximum which can be
found by the one dimensional version of Newton-Raphson method with α as the variable.

2. Backtracking Line Search. Choose constants σ > 0 and µ < 1 and, at stage k, let i ≥ 0 be the
smallest integer for which

f(xk + σidk)− f(xk) ≥ µσi∇f(xk)>dk (72)

and set αk = σi. Condition (72) can always be satisfied, since µ < 1 and, for small α

f(xk + αdk)− f(xk) ∼= α∇f(xk)>dk.

If either one of the above step-size schemes is used, the Newton-Raphson procedure will con-
verge to x∗ for any starting point x0. Furthermore, for any starting point x0, there exists a constant
K such that, for all k > K αk = 1. This marks the transition from the so-called dumped Newton
phase to the quadratically convergent Newton phase. In fact, for all k > K, the iteration occurs at a
quadratic rate: there exist a constant M1 such that

‖xk+1 − x∗‖ ≤ M1‖xk − x∗‖2.

Under the hypotheses that f is strongly convex and ∇2f is Lipschitz, the quadratic nature of con-
vergence assumes the form (see Boyd and Vandenberghe, 2004)

|f(xk)− f(x∗)| ≤ M2

(
1
2

)2k−K

,

for some constant M2. Furthermore, the last inequality can be used to compute a bound on the
number of iterations in both the dumped and quadratic phase of the Newton-Raphson method.

In the applications considered here, a solution for the constrained optimization problem

max g(µ)
s.t. µ ∈M (73)

is sought, where M is a linear subspace of dimension k in RI . If the columns of U form a basis for
M, then, letting

f(x) = g(Ux), (74)

the constrained problem (73) becomes the lower-dimensional unconstrained problem

sup
x∈Rk

f(x). (75)
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The gradient and hessian of f are easily evaluated from those of g. In fact, for each x ∈ Rk, letting
µx = Ux,

∇f(x) = U>∇g(µx) and ∇2f(x) = U>∇2g(µx)U. (76)

Consequently, it is possible to solve (73) by applying the Newton-Raphson method to the simpler
problem (75).

4.7 Appendix C: Theorems of Alternatives

The following two theorems of alternatives, whose resemblance with Corollary 4.3 is apparent,
were used repeatedly in this section. The proofs of both theorems can be found in Schrijver (1998).

Theorem 4.18 (Gordan’s Theorem of Alternatives). Given a matrix A, the following are alterna-
tives:

1. Ax > 0 has a solution x.

2. A>y = 0, y  0, has a solution y.

Theorem 4.19 (Stiemke’s Theorem of Alternatives). Given a matrix A, the following are alterna-
tives:

1. Ax  0 has a solution x.

2. A>y = 0, y > 0, has a solution y.

5 Graph Theory and Extended Maximum Likelihood Estimation

In section 3 we showed how log-linear models, and in particular hierarchical log-linear models,
can be defined and described in a combinatorial fashion. Here we further explore the connec-
tion between hierarchical log-linear models, graph theory and maximum likelihood estimates and
show how graph-theoretical arguments allow in some cases for considerable simplifications, both
computational and theoretical. The reader is referred to Lauritzen (1996) for background material.

5.1 Reducible Models

Following Lauritzen (1996), for any hypergraph H, its reduction, denoted red(H) is the antichain
consisting of the set of maximal hyperedges of H: red(H) = {h ∈ H : h 6⊆ h′, for any h′ ∈ H}. The
join (∨) and meet (∧) of two hypergraphs H1 and H2 are defined respectively as

H1 ∨H2 = red(H1 ∪H) and H1 ∧H2 = red ({h1 ∩ h2, h1 ∈ H1 and h2 ∈ H2}) .

The join is said to be direct if H1 ∨H2 = {h}, with h =
(⋃

h1∈H1
h1

)⋂ (⋃
h2∈H2

h2

)
. Next, consider

the partial orderv on the set of hypergraphs on K implied by the inclusion order of the hyperedges.
Specifically, given two hyper-graphsH andA, A v H when, for every a ∈ A, a ⊆ h for some h ∈ H.

Consider the abstract simplicial complex ∆ with base set K = {1, . . . ,K} from Section 3 and
recall the convention of identifying ∆ with its chain of maximal hyper-edges or facets.
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Definition 5.1. An abstract simplicial complex ∆ is reducible when there exist two abstract simpli-
cial complexes ∆1 and ∆2 and a face of s of ∆ such that

1. ∆1,∆2 v ∆;

2. ∆1 ∨∆2 = ∆;

3. s =
⋃

d∈∆1
∩
⋃

d∈∆2
.

Then, ∆ is said to admit a decomposition (∆1, s, ∆2) with separator s.

Alternatively, ∆ admits a decomposition into the hypergraphs ∆1 and ∆2 with separator s if
∆ = ∆1 ∨∆2 and ∆1 ∧∆2 = s, where d1 ∩ d2 ⊆ s for all d1 ∈ ∆1, d2 ∈ ∆2 and d∗1 ∩ d∗2 = s for some
d∗1 ∈ ∆1, d∗2 ∈ ∆2 (see Lauritzen, 2002).

The process can be carried out recursively on each of the two sub-complexes ∆1 and ∆2 and, at
termination, will produce a decomposition of ∆ into sub-complexes and separators, which, without
loss of generality, can be ordered in a natural way and labeled as ∆1, . . . ,∆p and s2, . . . , sp, respec-
tively (notice that, by construction, the number of separators, counting possible multiplicities, is
one less than the number of separating sub-complexes).

Figure 4: Example of a reducible graph, from Tarjan (1985, Figure 3).
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Example 5.2 (Reducible models). The model ∆ = [145][12][23][34] is graphical, non-decomposable
and reducible, with separating sub-complexes ∆1 = [145] and ∆1 = [12][23][34][14]. The model
∆ = [124][23][13] is non-graphical (hence non-decomposable) and reducible, with separating sub-
complexes ∆1 = [124] and ∆1 = [12][23][13]. Figure 4 shows a reducible graphical model on 11
vertices corresponding to the hierarchical model model

∆ = [23][24][49][39][19 10 11][48][8 11][78][7 10][67][56][5 10].

with separators {4, 9}, {7, 10} and {9, 10, 11} (see Tarjan, 1985). �

The reducibility properties of abstract simplexes representing hierarchical log-linear models
translate into important factorization properties for the cell mean vector function and the extended
MLE, which we describe below. For a hierarchical log-linear model ∆, we denote with m∆(i) =
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m(i) the i-th component of the corresponding cell mean vector. Accordingly, if A v ∆ is an
abstract simplicial complex for which A =

⋃
a∈A is allowed to be a strict subset of K, we denote

with mA(iA) the iA-th component of cell mean vector corresponding to the log-linear model A,
where iA ∈

⊗
k∈A Ik. By Lemma 5.6 in Haberman (1974), for any i ∈ I, the relation between m(i)

and mA(iA) is given by the identity

m(i) =
mA(iA)∏

k 6∈A Ik
.

The notation is consistent with the case A = {a}, with a ⊂ K, for which Equation (8), implies
that m̂a(ia) = n(ia) where m̂a is the MLE for the hierarchical model with a ⊂ K as the unique
generating class. Note that, if s = ∅, this notation gives ms(is) =

∑
i m(i). The main result of this

section is the following theorem which gives explicit factorization formula for the cell mean vector
of a reducible model in terms of the cell mean vectors for the decomposing sub-models.

Theorem 5.3. Let ∆ be reducible with decomposing sub-complexes ∆1, . . . ,∆p having underlying base
sets Dj =

⋃
d∈∆j

d, j = 1, . . . , p and separators s2, . . . , sp. Then, the toric variety ∆ consists of the
point-wise limit closure of points m that factorize as

m(i) =

∏p
j=1 m∆j (iDj )∏p
j=2 msj (isj )

i ∈ I, (77)

where the convention 0
0 = 0 is used for the above ratios.

Proof. For a strictly positive cell mean vector m∆, Equation (77) follows by applying recursively
(Haberman, 1974, Lemma 5.8) and noting that the decomposing sub-complexes ∆1 and ∆2 of a
reducible complex ∆ can always be chosen to be disjoint, so that ∆ is the direct join of ∆1 and ∆2.

It remains to be shown that any vector in the point-wise limit closure also satisfy (77). Let
L(∆j) denote the face lattice (i.e. the set of all facial sets) of the marginal cone for the sub-model
∆j , j = 1, . . . , p, and L(∆) the face lattice for ∆. Since, for any decomposing sub-model ∆j ,
j = 1, . . . , p, it is possible that Dj is strictly smaller than K, let IDj =

⊗
k∈Dj

Ik and define the map

τj : 2IDj → 2I given by
τj(D) =

{
i ∈ I : iDj ∈ D

}
,

where D ⊆ IDj , so that τj(D) = I if Dj = K. Equation (77) says that if F ∈ L(∆), then there exist
sets Fj ⊆ IDj , such that Fj ∈ L(∆j) and

F =
p⋂

j=1

τj(Fj). (78)

By Theorem thm:toricsummary, part ii., all the points in the toric variety associated with the hi-
erarchical model ∆ are in one-to-one correspondence with the points in the marginal cone of ∆.
Furthermore, the supports of the points of the variety coincide with the facial sets of the marginal
cone, hence satisfying Equation (78). Since any point m on boundary of the associated variety is
the point-wise limit of positive mean vectors factorizing as (77) and, at the same time, its support
satisfies Equation (78), it must then be the case that supp(m) =

⋂p
j=1 τj

(
supp(m∆j )

)
. �
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An immediate consequence of Theorem 5.3 is that, in order to the extended MLE m̂, it is
sufficient to compute the extended MLE of the log-linear models implied by the decomposing sub-
complexes and then “glue” them together according to the factorization formula

m̂(i) =

∏p
j=1 m̂∆j (iDj )∏p

j=2 n(isj )
i ∈ I, (79)

Notice that n(isj ) = 0 for some separator sj implies that there exists a set Dj ⊃ sj such that
n(iDj ) = 0, so that the numerator of (79) is 0 as well and, because of our convention, the resulting
value of m̂(i) is also null. Although not strong enough to guarantee a closed form representation
of the extended MLE, the factorization property (79) have significant practical implications. In
fact, it allows for the possibility of breaking down the task of computing the extended MLE for ∆
into simpler and computationally less demanding distinct tasks of computing the extended MLE for
simpler sub-models.

Remarks.

1. Equation (77) also appears in Dobra and Fienberg (2000) for the subclass of graphical re-
ducible models.

2. When the MLE exists, Equation (79) follows by recursive application of Haberman (1974,
Lemma 5.9) or Lauritzen (1996, Proposition 4.14).

3. The previous result shows that the combinatorial structure of the marginal cone for a re-
ducible hierarchical log-linear model is simultaneously determined by the simpler combina-
torial structures of the log-linear sub-models. In particular, the points of the toric variety
associated to a reducible ∆ are obtained by “gluing” (Fulton, 1978; Oda, 1988) together the
points in the varieties associated to the sub-models ∆j , j = 1, . . . , p.

4. The proof of Theorem 5.3 highlights the fact that the face lattice of the marginal cone can be
broken down into less complex face lattices corresponding to simpler marginal cones, one for
each sub-model; then, the facial sets associated to the original model can be recovered from
the conjunction of the facial sets of these smaller pieces. In virtue of the homeomorphism
between the toric variety and the marginal cone (Theorem 2.6, part ii.) the multiplicative
factorization formula (77), satisfied by all point in the hyper-surface defined by the toric
variety, has an equivalent polyhedral representation. This correspondence is the linear map
given by the Minkowski addition of the marginal cones determined by the decomposing sub-
complexes, embedded into the ambient space of the marginal cone for ∆. See Lemma 8 in
Eriksson et al. (2006) for details.

Example 5.4. Bishop et al. (1975, Section 3.7.3: Fitting by Stages) observed that if there are
independent variables, i.e. variables appearing alone in only one generating class, the cell mean
vector factorizes in such a way that the maximum likelihood computations can be performed in a
stepwise fashion. One of the examples they produced is the model ∆ = [123][234][134][5], whose
corresponding MLE is

m̂ijklm = m̂ijkl+
n++++m

N
, (80)

where N = n+++++ and the authors’ notation for summing over factors is used. For this model,
the MLE can be computed in two stages. First, the data are collapsed summing over the variable
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labeled as “5” and then a model is fitted to the condensed table. The resulting fitted values are
then adjusted proportionally by the margins of the variable left out in the first stage. This (non-
graphical) model is in fact reducible with the empty set as the separator for the two decomposing
sub-complexes ∆1 = [123][234][134] and ∆2 = [5]. The MLE formula (80) found by the authors is
precisely Equation (79). �

5.1.1 Decomposing Simplicial Complexes

In order to utilize Theorem 5.3 in practice, algorithms to test the reducibility of ∆ and to perform
its decomposition are needed. The degree of efficiency of available procedures depend on ∆ being
graphical or not. Recall from Section 3 that, for a hierarchical log-linear model ∆, G(∆) denotes
the corresponding interaction graph and ∆ is graphical if the cliques of G(∆) are the facets of ∆.

If ∆ is graphical, there exist algorithms capable of providing optimal decompositions of the
underlying interaction graph, as described in Tarjan (1985) and Leimer (1993). See Dobra and
Fienberg (2000) for a review of these methods and for applications to Fréchet bounds. The proce-
dure described in Dobra and Fienberg (2000, pages 11888–11889) will produce a perfect sequence
of subsets of the K factors. These subsets will, in turn, each determine subgraphs of G(∆) which
are the interaction graphs of the (necessarily graphical) sub-model ∆j ’s forming the partitioning
set of ∆. The optimality of these algorithms guarantees that the decomposition is both unique and
as thorough as possible, or, in the language of graph theory, that, for each 1 ≤ j ≤ p, G(∆j) is a
maximal prime subgraph of G(∆) (see Leimer, 1993).

When ∆ is not graphical, designing a reduction procedure is more problematic and, to our
knowledge, none of the available procedures known to the writer have been demonstrated to
produce a solution that is unique or even optimal. Geng (1989) proposed a simple decomposi-
tion algorithm for hypergraphs which extends Graham’s procedure for decomposable hypergraphs.
Geng’s algorithm visits each facet of ∆ and tests whether it contains a face that is a separator for a
decomposition of ∆. As soon as one is found, ∆ is decomposed accordingly and the procedure is
repeated recursively on the two sub-complexes. Badsberg (1995) instead elaborated on the results
of Tarjan (1985) and Leimer (1993) for optimally decomposing the interaction graph G(∆). The
extension is based on the observation that if ∆ is decomposable with respect to one of its faces
s, then s must be a separator of G(∆) as well (the opposite is not true, as separators of G(∆) can
in fact be bigger than any facet of a non-conformal ∆). Badsberg (1995) showed that, once the
optimal decomposition of the interaction graph G(∆) into prime subgraphs is available, then the
minimal separators of G(∆) resulting from such a decomposition which are also faces of ∆ are
the separators of a maximal decomposition of ∆, where maximality is meant to indicate that the
resulting sub-complexes cannot be decomposed any further.

The program CoCo (Badsberg, 1995) provides a different implementation of the IPF algorithm
and exploits the properties of decomposable and reducible models.

5.2 Decomposable Models

Decomposable log-linear models form a very well-behaved class of graphical models parametrizing
families of distributions which factorize according to independence or conditional independence
statements. See Lauritzen (1996, Chapter 3) for a thorough description of the Markov properties
on decomposable models and Geiger et al. (2006) for their algebraic statistics generalization. For
decomposable models, the cell mean vector can be expressed as a rational function of its margins.
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Remarkably, the both the MLE and the extended MLE retain such a closed form representation. As
a result, the determination of the existence of the MLE and the computation of the extended MLE is
almost immediate. The computational consequences of these results are exploited in Section 5.2.1.

The closed form representation is the analytic representation of a very strong graph-theoretic
property encoded in the facets of ∆, namely decomposability. A hypergraph is decomposable if
it either consists of one hyperedge or can be obtained by direct joins of hypergraphs with fewer
hyperedges. Alternatively, a hypergraph is decomposable if its hyperedges are the cliques of a
decomposable graph.

Definition 5.5. A hierarchical log-linear model ∆ is decomposable if the facets of ∆ form a decom-
posable hypergraph.

Decomposable simplicial complexes are special cases of reducible simplicial complexes in which
all the separating sub-complexes are simplices (i.e. they consist each of one class), which must then
correspond to the facets of ∆. Consequently Theorem 5.3 applies and produces specialized version
of Equations (77) and (79). For completeness, we state it as a separate result.

Corollary 5.6. The toric variety corresponding to a decomposable model ∆ consists of the point-wise
limit closure of points m that factorize as

m(i) =
∏

d∈∆ md(id)∏
s∈S ms(is)ν(s)

(81)

and the extended MLE of m is

m̂(i) =
∏

d∈∆ n(id)∏
s∈S n(is)ν(s)

, (82)

where 0
0 = 0, S is the set of separators and ν(s) is the multiplicity of s ∈ S in any perfect ordering of

the set of cliques ∆.

See Section 5.2.2 for a definition and determination of perfect ordering.
When the MLE exists, Equation (82) is a renown important result, proved using different argu-

ments by Haberman (1974, Theorem 5.1) and Lauritzen (1996, Proposition 4.18), the former only
under the assumption that the MLE exists.

Haberman (1974) called the numbers ν(s), s ∈ S, the adjusted replication numbers. Formulas
(81) and (82) are equivalent to

m =
∏

d∈∆ md(id)∏
f∈F(∆) mf (if )ν(f)

(83)

and

m̂ =
∏

d∈∆ n(id)∏
f∈F(∆) n(if )ν(f)

, (84)

respectively, where F(∆) = {d ∩ d′ : d, d′ ∈ ∆, d 6= d′} is the intersection class associated to the
hyper-graph ∆.

An important consequence of the factorization property of the cell mean vector and its MLE for
a decomposable model is the fact that MLE exists if and only if the table margins are positive. Let

W∆ =
⊕
d∈∆

Wd, (85)
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where the marginal bases matrices Wh, h ∈ 2K, are defined in Section 3.2 and the sets d indicate
the generating classes, i.e. the facets of ∆.

Corollary 5.7. For a decomposable log-linear model ∆, the MLE exists if and only if the margins are
all positive: n(id) > 0, for each d ∈ ∆ and i ∈ I. Equivalently, the MLE exists if and only if W>

∆n > 0.

From the geometrical viewpoint, this is equivalent to a small combinatorial structure of the
marginal cone associated to the design matrix W∆, for any decomposable ∆.

Corollary 5.8. Let W∆ be the design matrix (85) associated to the decomposable log-linear model ∆.
The facial set for the facets of the corresponding marginal cone are the support sets of the columns of
W∆.

Proof. There is more than one way of proving the statement. One strategy is to notice that, by the
definition of facial set given in Section 2.2, the supports of the rows of W>

∆ form facial sets for the
facets of marginal cone. Then, the result will follow once it is shown that those are the only facets.
This can be accomplished with the same arguments used in the proof of Theorem 5.3. Specifically,
by (78) it is sufficient to look at the facial sets for the decomposing sub-complexes. Since each of
these sub-complexes is a facet of ∆, Lemma 8 in Eriksson et al. (2006) implies that we only need
to study the facial sets for the marginal cones generated by the matrices W>

d , for all facets d of ∆.
Since, for each d ∈ ∆, the columns of Wd contain only one non-zero entry, then, using again the
definition of facial sets, we conclude that the facial sets for the facets of cone(W>

d ) are precisely the
columns of Wd. By (78) and (85), the claim follows.

Alternatively, combine Corollary 3.20 of Lauritzen (1996) and Lemma 1 of Geiger et al. (2006)
and note that nice sets for the design matrices W>

∆ obtained as in Equation (85) are the comple-
ments of the supports of all columns of W∆. �

Note that similar conclusions can also be derived from Theorem 7.2 in Haberman (1974), a
more general and rather involved result which applies to incomplete separable tables and decom-
posable log-linear models.

5.2.1 The Iterative Proportional Fitting Algorithm

The iterative proportional fitting (IPF) algorithm (known also as iterative proportional scaling) is a
widespread method for computing the MLE by performing cyclic iterative partial maximization of
the likelihood. It was originally proposed by Deming and Stephan (1940) and further developed
by various authors in the context of maximum likelihood estimation for discrete distributions and
contingency tables. See Bishop et al. (1975) and Lauritzen (1996) for a description of the proce-
dure and its properties. The IPF procedure has also a natural information-theoretic interpretation:
Darroch and Ratcliff (1972) and Csiszár (1975), and more recently, Ruschendorf (1995).

IPF is widely utilized in practice mainly because of two very appealing features:

1. It is very simple to implement and requires minimal memory storage and computational
effort. See, for example, the Fortran version of the IPF algorithm written by Haberman (1972,
1976), which is the implemented in the current R routine loglin.

2. It is guaranteed to eventually reach any arbitrary small neighborhood of the optimum, even
when the MLE is not defined, as proved in (Lauritzen, 1996, Theorem 4.13).
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Let ∆ = {d1, . . . , df} be a hierarchical log-linear model with facets dj ⊂ K, each defining a marginal
configuration. Starting from any positive cell mean vector m(0) such that log m(0) ∈ M∆, the IPF
algorithm produces a sequence of points {m(j)}j≥0 satisfying log m(j) ∈ M∆ for each j ≥ 0 and
limj m(j) = m̂. Each point m(j), with j > 0, is obtained by performing a cycle of f sequential
adjustments of the margins of m(j−1) which are proportional to the observed margins. The pseudo-
code for the IPF algorithm is given in Table 3.

1 : m̂ = 1I
2 : do repeat
2.1 : m0 = m̂
2.2 : for j = 1 to f

2.2.1 : m(j)(i) = m(j−1)(i)
n(idj

)

m(j−1)(idj
)

2.3 : end
2.4 : m̂ = m(f)

2.5 : if distance(W∆m̂−W∆n) < tol then return m̂
3 : end

Table 3: Pseudo-code for the IPF algorithm. It requires the design matrix W∆ given in (85), the
specification of the function distance to measure the discrepancy between the observed and fitted
margins and of the maximum deviation allowed tol. The convention 0

0 = 0 is used.

The main drawback of the IPF is the fact that it usually exhibits a slow rate of convergence (see,
for example Agresti, 2002), typically much slower than procedures based on Newton-Raphson
method. This is observed to be particularly true when the MLE is not defined as illustrated in the
examples of Fienberg and Rinaldo (2006) and (Rinaldo, 2005, Chapter 1), although no precise re-
sults are available. However, there is at least one notable exception for which IPF is to be preferred:
the case of a decomposable log-linear model.

As indicated in the previous section, for decomposable models, the MLE and extended MLE have
closed form and, in particular, can be expressed as a rational function of the margins. These proper-
ties are very important from the practical and computational point of view, since a straightforward
modification of equation (82) or its equivalent version (84) will produce the MLE or extended MLE
in just one cycle of the IPF algorithm. For a subset a ⊂ K of the factors (typically a facet or a
separator of ∆), let

Na =

{
ia ∈

⊗
k∈a

Ik : n(ia) = 0

}
be the set holding the coordinates of null observed a-margins. Then, the extended MLE associated
to an observed table n and a decomposable model ∆ is

m̂(i) =

{
0 if ∃d : id ∈ NdQ

c∈∆ n(ic)Q
s∈S n(is)ν(s) otherwise (86)
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or, equivalently,

m̂(i) =

{
0 if ∃d : id ∈ NdQ

d∈∆ n(id)Q
f∈F(∆) n(if )ν(f) otherwise. (87)

Furthermore, as remarked by Lauritzen (1996, Proposition 4.35), the determination of the
dimension of the log-linear model sub-space M∆ corresponding to a decomposable model can be
expressed in closed form, even for a restricted sub-model associated to an extended MLE:

dim(M∆) =
∑
d∈∆

(∏
k∈d

Ik − |Nd|

)
−
∑
s∈S

ν(s)

(∏
k∈s

Ik − |Ns|

)
.

Although of immediate applicability, Equations (86) and (87) require the knowledge of the sets
of separators or the adjusted replication numbers. Fortunately, this is by no means necessary. In
fact, there always exists an ordering, called perfect, of the facets of any decomposable model ∆ such
that one cycle of the IPF algorithm of Table 3 will return both (86) and (87) in just one iteration,
provided the marginal updates are performed according to such an ordering.

5.2.2 IPF and Perfect Orderings

Given a graphical hyper-graph H on K nodes, a numbering (v1, . . . , vK) of the nodes is a perfect
numbering if the sets C1 = {v1} and, for j = 2, . . . ,K, Cj = cl(vj) ∩ (v1, . . . , vj−1), all induce
complete sub-graphs of the interaction graph of H. The associated sequence (C1, . . . , CK) of sets
is called perfect since all the Cj ’s are complete and their ordering satisfies the running intersection
property: for all 1 < j ≤ K there exists a i < j such that Cj ∩ (C1 ∪ . . . ∪ Cj−1) ⊆ Ci. The sets
Sj = Cj ∩ (C1 ∪ . . . ∪ Cj−1) are called the separators of the sequence.

Even if neither the perfect numbering of the nodes nor the corresponding perfect sequence of
cliques is unique, they are defining features of decomposable graphs and hypergraphs. In fact, it
is well known (see Lauritzen, 1996) that a graph is decomposable if and only if its vertices have a
perfect numbering, if and only if the hypergraphs of its cliques can be numbered to form a perfect
sequence.

The gain in efficiency obtained by combining the IPF algorithm with perfect sequences of mar-
gins was prove by Haberman (1974, Theorem 5.3). That result, along with the consideration about
the extended MLE for decomposable models is summarized in the next theorem.

Theorem 5.9. For a decomposable log-linear model with its cliques ordered according to a perfect
sequence, the IPF algorithm from Table 3, using 1I as a starting value, returns both the MLE and
extended MLE in one cycle of iterations.

5.2.3 Deciding the Decomposability of a Hypergraph

In order to exploit the computational ease that comes with decomposable models it must be verified
first that the simplicial complex ∆ is in fact associated with a graphical model. Then, once it is
established that ∆ is conformal, the next step is to check that it is decomposable.

The first task can be carried out using the following result.

Lemma 5.10. A hypergraph H is not graphical if and only if ∃h ∈ H and k ∈ {1, . . . ,K} such that
{k} ∪ h is complete in G(H).
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Proof. For any graph G, let C(G) be its clique hypergraph, the hypergraph whose hyperedges
are the cliques of G. By definition, H is graphical whenever H = C (G(H)), where G(H) is the
interaction graph of H. By construction, H v C (G(H)) so that the only case in which a hypergraph
H is not graphical is when there exists a subset s ⊂ K which is complete in G(H) and s ) h for
some h ∈ H. �

The pseudo-code for the corresponding algorithm is given in Table 12. There are other alterna-
tives to Lemma 5.10; see, for example, Berge (1989) and Badsberg (1995).

Finally, in order to decide whether a graphical model ∆ is decomposable, a combination of the
Maximum Cardinality Search Algorithm (see, for example, Golumbic, 2004) and Algorithm 4.11
from Cowell et al. (2003), can be used to achieved the following:

1. Verify that ∆ is decomposable by checking whether a perfect numbering exists.

2. For decomposable ∆, produce a perfect sequence of its cliques.

The pseudo-code is given in Table 13. An almost identical algorithm, capable of completing both
tasks as well, is also provided by Blair and Barry (1993, Section 4.2.1).

5.3 Table Collapsing and the Extended MLE

The factorization results of this section, summarized by Theorem 5.3, permits to generalize to the
extended log-linear modeling framework the collapsibility conditions for contingency tables given
by Asmussen and Edwards (1983).

Let ∆ be a hierarchical log-linear model, where ∆, according to the conventions established
here, is identified with the hypergraph of its facets. A hypergraph is called simple if, trivially, it
has one hyperedge. Following Asmussen and Edwards (1983), given a log-linear model ∆ and a
non-empty subset of factors a ∈ 2K, let ∆a = ∆ ∧ {a}, where {a} denotes the simple hypergraph
induced by a and Ia =

⊗
k∈a Ik.

Example 5.11. For ∆ = [12][234][14] and a = {1, 2, 3}, ∆a = [12][23]. Example borrowed from
Asmussen and Edwards (1983, Section 2). �

Definition 5.12. The model ∆ is collapsible into a ∈ 2K if m̂(ia) = m̂a(ia), for all ia ∈ Ia.

In the above definition, the extended MLE is assumed, an improvement over the character-
ization of collapsibility offered by Asmussen and Edwards (1983), in which no attention to the
existence of the MLE2 is paid.

Theorem 5.13. A model ∆ can be collapsed into a ∈ 2K if and only if ∆ is reducible and ∆a is a
decomposing sub-complex of ∆.

Proof (sketched). If the conditions of the theorem are satisfied, it follows from Equation (79)
of Theorem 5.3 that, by summing over the cells in ac, the terms in the numerator associated for
the decomposing sub-complexes different than ∆a cancel out with the margins in the numerator
representing the separators of the decomposition, for each i ∈ I.

2It should be remarked that Asmussen and Edwards (1983)’s proof of the necessity of the conditions of collapsibility
implicitly assumes an extended log-linear modeling framework, for it entails the construction of a model in which some
coefficients in the log-linear expansion are let to be minus infinity.

69



As for necessity, assume that the table is collapsible. Then, each connected component of ∂(ac)
in G(∆) is contained in a generating class d ∈ ∆, which is precisely the condition of Theorem 2.3
of Asmussen and Edwards (1983). To this end, let Ca the matrix representing the linear operator
for summing over the cell in ac = K \ a and let Sa be the analogous matrix for summing over
the marginal configurations in ac. Suppose, arguing by contradiction, that, for some connected
component b of ac, ∂b 6⊆ d for all d ∈ ∆. Then ∂b corresponds to a marginal configuration different
than any of the marginal configurations associated to ∆a. As a result,

SaA∆m̂ = SaA∆n 6= A∆am̂
a,

where the characterization of the extended MLE as the only vector in the toric variety which satisfies
the moment equations is used (see Theorem 2.6). However, by hypothesis, A∆am̂

a = A∆aCam̂.
Hence SaA∆m̂ 6= A∆aCam̂, which is a contradiction since SaA∆ and A∆aCa gives, by assumption
and in virtue of the moment equations, the same marginal sums. The existence of a decomposing
sub-complex ∆a follows then from the decomposition arguments in the first part of Theorem 2.3 of
Asmussen and Edwards (1983). �

Remarks.

1. As an alternative proof of Theorem 5.13, it is possible to show that the conditions of Theo-
rem 5.13 are equivalent to the conditions of Theorem 2.3 of Asmussen and Edwards (1983),
i.e. that each connected component of ∂(ac) in G(∆) is contained in a facet of ∆. This equiv-
alence can be proved using the fact that two subsets a and b of K induce a decomposition of
∆ if and only if a ∩ b ⊆ d for some d ∈ ∆ and a ∩ b separates a \ b and b \ a in G(∆) (see, for
example, Lauritzen, 2002). Furthermore, the induced decomposition has ∆a = ∆ ∧ {a} and
∆b = ∆ ∧ {b} as decomposing sub-complexes.

2. The graphical criteria for collapsibility given by Asmussen and Edwards (1983) are easier to
verify than the ones offered here. Theorem 5.13 unravels the connections between collapsi-
bility and reducibility of a hierarchical log-linear model and shows that they hold unchanged
also for the extended MLE.

Example 5.14 (Collapsible models).

1. Collapsing is not possible in Example 5.11, since ∆a = [12][23] is not a decomposing sub-
complex of ∆ = [12][234][14].

2. Let ∆ = [13][124][235] and a = {4, 5}, as in Example 2 of Asmussen and Edwards (1983).
Then ∆a = [12][13][23]. Decompose ∆ into ∆1 = [235] and ∆2 = [13][124][23]. Next decom-
pose ∆2 into ∆3 = [124] and ∆4 = [12][13][23]. The decomposing sub-complexes are

∆1 = [235], ∆3 = [124] and ∆4 = [12][13][23].

Since ∆4 = ∆a, the model is collapsible into a.

3. Let ∆ = [123][234][1245] and a = {1, 2, 3, 4}, the opening example of Bishop et al. (1975,
Section 3.7.3: Fitting by Stages). Then ∆a = [123][234][124], while ∆ can be decomposed into
∆1 = [1245] and ∆2 = [123][234][124]. Since ∆2 = ∆a, the model is collapsible into a. The
other example from Section 3.7.3 of Bishop et al. (1975) was already shown in Example 5.4
to be reducible with decomposing sub-complexes [123][234][134] and [5], the former being ∆a

for a = {1, 2, 3, 4}, so the model is collapsible into a.
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4. The simplest example of non-collapsibility is the model ∆ = [12][23] with a = {1, 3}, from
which it follows ∆a = [1][3], which is not a decomposing sub-complex of ∆. �

6 Testing for Goodness of Fit

Extended MLEs can be used to perform goodness-of-fit tests and, more importantly, model selection
in a very similar way to the ordinary MLEs. In fact, it is a well known fact that, when the MLE
exists, the asymptotic distribution of any member of the power divergence family of Cressie and
Read (1988), including as special cases Pearson’s χ2 and the likelihood ratio statistics, is χ2 with
a number of degrees equal to the difference between the number of cells |I| and the dimension of
the log-linear subspace M or, equivalently, of the marginal cone. When the MLE is not defined, the
χ2 approximation fails.

Within the extended exponential family framework described in Rinaldo (2006), nonexistence
of the MLE is associated to a reduced exponential family of distribution for the cell counts (the
“boundary” log-linear model) supported on the facial set F corresponding to the face F of marginal
cone whose relative interior contains the observed sufficient statistics. With respect to this reduced
family, the asymptotics for the goodness-of-fit statistics is identical to the case in which the MLE
is defined, except that the likelihood zeros are treated as structural zeros, hence not affecting the
likelihood.

In practice, this entails replacing the MLE with the extended MLE and adjusting the number of
degrees of freedom, which are now to be computed as the difference between for the cardinality
of the facial set |F|, i.e. the number of cell mean values that can be estimated, and the number of
parameters in the restricted model, namely dim (MF ) or, equivalently, dim(F ).

Therefore, when boundary log-linear models are allowed, testing for a specific log-linear model
can be done when the MLE is nonexistent and, provided that a procedure to calculate the appro-
priate facial set and the extended MLE is available, is a relatively straightforward task. Below, we
illustrate by means of examples various practical aspects of goodness-of-fit testing when the MLE
is nonexistent and it is required to adjust the number of degrees of freedom in order to obtain
meaningful tests.

Example 6.1. The following pattern of zeros for the 23 table and the model ∆ = [12][13][23] of
no-second-order interaction, due to Haberman (1974), has been for a long time the only known
instance of non-existent MLE with positive margins:

0
0

.

The two zeros are in fact likelihood zero, exposing one of the 16 facets of the correspond-
ing marginal cone. The dimension of the log-linear subspace for this model, or, equivalently, of
the marginal cone, is 7, leaving 1 degree of freedom when the MLE exists. However, because of
the likelihood zeros, inference can only be made for the 6-dimensional exposed facet. Since the
cardinality of the associated facial set F is also 6, the resulting boundary log-linear model is the
saturated model on F , so the correct number of degrees of freedom is 0, and the χ2asymptotic
approximation for goodness-of-fit statistics cannot be applied.

Example 6.2. The patters of zeros in the 33 table below form a set of likelihood zeros for the model
∆ = [12][13][23] because they expose one of the 207 facets of the corresponding marginal cone:
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0

0 0
0 0
0

0 0
0 .

The dimension of the reduced boundary model, i.e. dim (MF ), is 18, which is also the cardi-
nality of the facial set for this configuration of likelihood zeros. As in the previous example, this
defines the saturated model on F , giving 0 degrees of freedom and making χ2 approximations not
applicable.

Example 6.3. Under the same log-linear model ∆ = [12][23][13], the pattern of likelihood zeros

0
0

0
0

0 0

will imply that the number of degrees of freedom for the χ2 test is 3, because the total number of es-
timable cell mean values is 21 and the number of parameters for the reduced model corresponding
to the facet defined by the zeros is 18. �

Example 6.4. If instead the likelihood zeros correspond to a null margin, like in the table below,
then, by the same token, the adjusted number of degrees of freedom is 6, obtained by subtracting
18, the dimension of the facet, from 24, the cardinality of the facial set.

0
0
0

�

As pointed out by Fienberg and Rinaldo (2006), the R (R Development Core Team, 2005)
routines loglin and glm, as well as virtually any other software for inference and model selection
for log-linear models, do no detect such degeneracy and report the un-adjusted, incorrect numbers
of degrees of freedom for all the examples below. It is important to remark on the combined,
misleading consequences of the incorrect calculation of the degrees of freedom with the habit of
adding small positive quantities to the zero cells. This mi-practice, which is commonly observed
in applications involving sparse tables and implemented in many statistical software, such as SAS,
is thought to facilitate the convergence of the underlying numerical procedure for computing the
MLE. For the tables in Examples 6.1, 6.2 and 6.3, this modification will produce an erroneous
MLE that will be extremely close to the original table and, ultimately, will make any measure of
goodness-of-fit almost zero. Since the un-adjusted number of degrees of freedom for this model,
assuming an existing MLE, is 1 for the table in Example 6.1 and 8 for the ones in Examples 6.2 and
6.3, it is virtually almost certain that the null hypothesis will not be rejected, no matter what the
correct model is.

We conclude this section with a real life example from genetics, borrowed from (Edwards, 2000,
Section 2.2.5). See again Fienberg and Rinaldo (2006) for another real life example involving
clinical trials.

Example 6.5. The dataset reproduced in Table 4 is a sparse 26 contingency table which was ob-
tained from the cross-classification of six dichotomous categorical variables, labeled with the letters
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1 2 E

1 2 1 2 C

1 2 1 2 1 2 1 2 A

1 0 16 0 1 0 4 0 1
1

2 1 0 0 0 1 0 0 0

1 3 2 0 0 1 0 0 01
2

2 7 0 1 0 4 0 0 0

1 0 1 1 4 0 0 0 4
1

2 0 0 0 0 0 0 2 0

1 0 0 1 0 0 0 0 12
2

2 1 0 3 0 0 0 11 0

F D B

Table 4: Cell counts for the chromosome mapping example from (Edwards, 2000, Section 2.2.5).
Data publicly available on the MIM website: http://www.hypergraph.dk/.

A-F, recording the parental alleles corresponding to six loci along a chromosome strand of a barely
powder mildew fungus, for a total of 70 offspring. The data were originally described by Chris-
tiansen and Giese (1991) and further analyzed by Edwards (1992).

Edwards (2000) utilizes this table to illustrate how MIM, the companion software to his book, is
capable of performing automated model selection procedure for graphical models. MIM implements
the Modified Iterative Proportional Scaling (MIPS) algorithm proposed by Frydenberg and Edwards
(1989) for fitting general hierarchical interaction models (see also Lauritzen, 1996, Section 6.4.3).
The MIPS algorithm performs a sequence of cyclic optimizations of the likelihood function along
line sections of the natural parameter space corresponding to the coordinates of the canonical suf-
ficient statistic, as described, for example, by Lauritzen (1996, Section D.1.5). When the sufficient
statistic is a cut (see Bardorff-Nielsen, 1978, page 50), the MIPS takes advantage of the consequent
factorization of the joint density by performing separate maximizations of the distinct, variation
independent, factors of the density. As a result, for decomposable models, MIPS is essentially
identical to the IPF algorithm.

In the example of Table 4, MIM searches for the optimal graphical model using a backward
selection approach, starting from the saturated model and then testing for the removal of each
edge, one at a time. The test statistic is Pearson’s χ2. The sequence of nested decomposable models
selected by MIM is shown in Table 5 along with the degrees of freedom used by MIM, in the second
column. The final model, depicted in Figure 5, is consistent with the expectation, motivated by the
biological theory, of no interference.

Due to the high sparsity level of the table, nonexistence of the MLE affects at all levels of the

73

http://www.hypergraph.dk/


Model reported d.f. correct d.f.

[ABCDEF] 0 0

[ABCEF] [ABCDE] 16 3

[BCEF] [ABCDE] 24 6

[BCEF] [ABCE] [ABCD] 32 12

[BCEF] [ABCE] [ABD] 36 17

[BCEF] [AD] [ABCE] 38 18

[CEF] [AD] [ABCE] 42 22

[CEF] [AD] [BCE] [ABE] 46 27

[CEF] [AD] [ABE] 48 29

[CEF] [AD] [BE] [AB] 50 31

[CF][CE][AD] [BE] [AB] 52 37

Table 5: Hierarchy of nested decomposable models fitted by MIM on the dataset of Table 4, starting
from the saturated model on top down to the selected model, depicted in Figure 5. The marginal
configurations containing zero entries are shaded. The second column shows the incorrect numbers
of degrees of freedom reported by MIM and the third column the adjusted degrees of freedom after
accounting for the non-estimable parameters.

hierarchy of nested decomposable sub-models fitted by MIM. This is particularly easy to spot in
this example because all fitted models are decomposable, the only case in which nonexistence is
completely characterized by null margins (see Section 5.2). The marginal configurations containing
null terms are shaded in color in Table 5. Despite claiming to perform adjustment for sparsity in
the computation of the degrees of freedom, MIM fails to detect all these cases of nonexistence,
as indicated by the fact that all the tested models are reported to have the numbers of degrees
of freedom that would be appropriate should the MLE exist. The correct number of degrees of
freedom, obtained by counting the number of estimable cells minus the number of parameters for
the corresponding restricted models, is reported in the third column. Note that the discrepancies
between the two columns are rather significant.

For this example, the reason why nonexistence goes undetected is essentially due to the de-
composable nature of these models and the fact that the MIPS algorithm behaves exactly like the
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IPF algorithm. As proved in Section 5.2, for decomposable models the MLEs can be factorized into
rational functions of the margins, in such a way that a null margin will imply a vector of fitted
values with zero entries corresponding exactly to that margins. From the algorithmic point of view,
IPF, by design, replicates this property3 and, moreover, converges almost immediately. As a result,
for decomposable models, nonexistence of the MLE will not produce any of the numerical incon-
veniences that can be observed for other types of models, like in the examples of Fienberg and
Rinaldo (2006).

As a final remark, in the original analysis performed by Edwards (2000) the sparsity of the
sample is taken into account by using exact tests based on complete enumerations (Edwards, 2000,
Section 5.4) rather than the χ2 asymptotic approximations to the test statistic. Since degrees
of freedom considerations do not apply to this type of tests and the models considered are all
decomposable (see Section 5.2), the procedure followed by Edwards (2000) is to be considered
essentially correct, as least as far as existence of the MLE is concerned. (Of course, it remains
to be proved whether exact tests for log-linear models are optimal and in which sense but this is
a separate, still unresolved issue.) The sequence of nested decomposable models obtained using
exact test is slightly different than the one displayed in Table 4, but the final model is the same
one. �

Figure 5: Optimal model for the Table 4 determined by MIM using the backward selection procedure.
Graphical output produced by MIM.

3Recall that, for decomposable models, the IPF procedures will compute both the MLE and the extended MLE in
exactly the same way.
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7 Tables of Pseudo-Codes

0 : function MultiIndex to Index( [i1, . . . , iK],[I1, . . . , IK] )
1 : index = 1 + (iK − 1)
2 : for j = 1 to K − 1
2.1 : index = index + ij * (

∏n
l=j+1 Il )

3 : end
4 : return index

Table 6: MultiIndex to Index. Pseudo-code for linearizing cell label combinations in a lexico-
graphic order, according to the function indicated in Equation (1). It requires two inputs, the
multi-index vector i = [i1, . . . , in] and a second vector [I1, . . . , IK], whose elements are ordered
accordingly to i, holding the number of levels for the corresponding categories. The output is an
integer index. See also the inverse function Index to MultiIndex in Table 7.

0 : function Index to MultiIndex( index , [I1, . . . , In] )
1 : for i = 1 to n
1.1 : if i == n
1.1.1 : multi index[i] = index
1.2 : else

1.2.1 : multi index[i] = floor( (index - 1)/(
∏K

j=i+1 Ij) ) + 1

1.2.2 : index = index - (
∏K

j=i+1 Ij) *(multi index[i] - 1)

1.2 : end
2 : end
3 : return multi index

Table 7: Index to MultiIndex. Pseudo-code for the inverse function of the bijection in Equation
(1) (see the pseudo-code for MultiIndex to Index in Table 6). It takes as input an integer index
and an order list of holding the number of levels for the categories [I1, . . . , In]. The output is a
vector multi index such that index = MultiIndex to Index( multi index , [I1, . . . , In] ).
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1 : nz = 0
2 : for binstr = 0 to 2|h| − 1
2.1 : nz = nz + 1
2.2 : coord[nz] = 1
2.3 : v[nz] = 1
2.4 : for b = |h| to 1 by -1
2.4.1 : bv = value of b-th bit of binstr
2.4.2 : if bv = 0
2.4.2.1 : if ikb

= 1
2.4.2.1.1 : v[nz] = 0
2.4.2.1.2 : leave 2.4
2.4.2.2 : end
2.4.2.3 : v[nz] = -v[nz]
2.4.2.4 : coord[nz] = coord[nz] + Īkb

(ikb
− 2)

2.4.3 : else
2.4.3.1 : if ikb

= Ikb

2.4.3.1.1 : v[nz] = 0
2.4.3.1.2 : leave 2.4
2.4.3.2 : end

2.4.3.3 : coord[nz] = coord[nz] +
∏|h|

l>b Ikl
(ikb

− 1)
2.4.4 : end
2.5 : end
2.6 : if v[nz] = 0
2.6.1 : nz = nz -1
2.7 : end
3 : end
4 : return nz, v, coord

Table 8: Pseudo-code of the algorithm to compute the values of nonzero entries of the Uk
h matrix

associated to a cell < i1, . . . , iK >, with the matrix Uh
k defined using Zk as in (26). It returns nz, the

number of nonzero entries in the row and the two vectors coord and v, both of length nz, containing
the coordinates and values of the nonzero elements, respectively. The symbol Īkb

=
∏|h|

l>b Ikl
if

b < Ikb
and Īkb

= 1 if b = Ikb
. The value of bv in line 2.4.1 can be easily obtained by setting bs

= binstr outside the loop starting at 2.4 and then replacing 2.4.1 with the two statements: bv =
mod(bs,2) and bs = floor( bs/2 ). See Section 3.4.2.
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1 : v = 1
2 : for b = |h| to 1 by -1
2.1 : if ikb

= 1
2.1.1 : l[b] = {1,2,...,Ikb

− 1}
2.2 : else
2.2.1 : v = -v
2.2.2 : l[b] = ikb

− 1
2.3 : end
3 : end
4 : nz = 0
5 : L = l[1] x l[2] x ... x l[|h|]
6 : for each multi index in L
6.1 : nz = nz + 1
6.2 : coord[nz] = MultiIndex to Index( multi index , [Ik1,...,Ik|h|] )

7 : end
8 : return nz, v, coord

Table 9: Pseudo-code of the algorithm to compute the values of nonzero entries of the Uk
h matrix

associated to a cell < i1, . . . , iK >, with the matrix Uh
k defined using Ck as in (28). It returns nz,

the number of nonzero entries in the row, their coordinates coord and their unique values v. The
length of the vector is nz. For each b the entry l[b] of the list l is either an ordered list of numbers,
as in line 2.1.1, or a scalar. The function MultiIndextoIndex from Table 6 is used in line 6.2. See
Section 3.4.2.

1 : ih = πh(i1, . . . , iK)
2 : Ih = πh (I1, . . . , IK)
3 : coord = MultiIndex to Index( ih , Ih )
4 : return coord

Table 10: Pseudo-code of the algorithm to compute the nonzero entry coord of the Wh matrix
associated to a cell < i1, . . . , iK > from Section 3.4.2. The coordinate projection function πh :
RI → RIh is defined consistently with the notation of Section 1.1: πh(x) = {xk : k ∈ h} for any
x ∈ RI . The function MultiIndextoIndex from Table 6 is used in line 3.
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1 : coord = 0
2 : for b = 1 to |h|
2.1 : if ikb

= Ikb

2.1.1 : coord = -1
2.1.2 : break 2
2.2 : end
2.3 : coord = coord * (Ikb

− 1) + (ikb
− 1)

3 : end
4 : coord = coord + 1
5 : return coord

Table 11: Pseudo-code of the algorithm to compute the nonzero entry coord of the Vh matrix
associated to a cell < i1, . . . , iK >. See Section 3.4.2.

1 : graphical = yes
2 : G[ 1 . . . , n , 1, . . . , n ] = 0
3 : for i = 1 to p
3.1 : G[ hi , hi ] = 1
4 : end
5 : for i = 1 to p
5.1 : hc

i = {1, . . . ,K}\hi

5.2 : for j = 1 to |hc
i |

5.2.1 : if G[ hi ∪ hc
i (j) , hi ∪ hc

i (j) ] = E|hi|+1

5.2.1.1 : graphical = no
5.2.1.2 : return graphical
5.2.2 : end
5.3 : end
6 : end
7 : return graphical

Table 12: Pseudo-code for checking whether a hypergraph H = {h1, . . . , hp} on n nodes is con-
formal, using Lemma 5.10. The algorithm builds and utilizes the n × n incidence matrix G whose
(i, j)-th entry is 1 if {i, j} ⊆ h for some h ∈ H and 0 otherwise. For a positive integer k, Ek denotes
here the k × k matrix whose entries are all 1’s. The notation hi(j) means the j-th entry of the
hyperedge hi. See Section 5.2.3.
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1 : decomposable = yes
2 : i = l = 1
3 : L = ∅
4 : w[n] = 0, n = 1, . . . ,K
5 : numbering[n] = 0, n = 1, . . . ,K
6 : sequence = ∅
7 : while( L 6= V )
7.1 : U = V \L
7.2 : j = { argmax w[n] : n ∈ U }
7.3 : numbering[j] = i
7.3 : Πi = ne(j) ∩ L
7.4 : if Πi is not complete in G
7.4.1 : decomposable = no
7.4.2 : return decomposable
7.5 : else
7.5.1 : w[n] = w[n] + 1, n ∈ ne(j) ∩ U
7.5.2 : if i >1
7.5.2.1 : if |Πi| < 1 + |Πi−1| or i = K
7.5.2.1.2 : Cl = j ∪Πi

7.5.2.1.2 : l = l + 1
7.5.2.2 : end
7.5.3 : end
7.6 : end
7.7 : L = L ∪ {j}
7.8 : i = i + 1
8 : end
9 : return (C1, . . . , Cp)

Table 13: Pseudo-code for the variation of the Maximum Cardinality Search Algorithm mentioned
in Section 5.2.3. The input is the interaction graph G derived from the graphical hierarchical
log-linear model ∆ with p facets. If ∆ is not decomposable, the routine will return the flag
decomposable = no. Otherwise, it will produce an ordered sequence (C1, . . . , Cp) of cliques of
∆ which form a perfect sequence for the associated interaction graph.
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1 : κx(j) = 0 j = 1, . . . , r
2 : for i = 1 to |I|
2.1 : determine j such that χj(i) = 1
2.2 : κx(j) = κx(j) + βx(i)
3 : end
4 : return κx

Table 14: Pseudo-code for computing κx. See the end of Section 4.3.2.

1 : Grad[i] = 0 i = 1, . . . , |I|
2 : for i = 1 to |I|
2.1 : determine j such that χj(i) = 1

2.2 : Grad[i] = n(i) -
Nj

κx(j)bx(i)

3 : end
4 : return Grad

Table 15: Pseudo-code for computing∇`L. It is assumed that the vector κx has been pre-computed.
See the end of Section 4.3.2.

1 : Hess = 0
2 : for j = 1 to r
2.1 : w = 0
2.2 : loop for i ∈ supp(χj)
2.2.1 : compute v>i (i-th row of V)

2.2.2 : Hess = Hess -
Nj

κx(j) viv>i
2.2.3 : w = w + bx(i) v>i
2.3 : end

2.4 : Hess = Hess +
Nj

κ2
x(j)

ww>

3 : end
4 : return Hess

Table 16: Pseudo-code for computing the hessian ∇2`L(x). It is assumed that the vector κx has
been pre-computed. See the end of Section 4.3.2.
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1 : out[i] = 0, i = 1,...,I
2 : for i = 1 to I
2.1 : [ coord, nz, v ] = Get Row( i )
2.2 : if nz > 0
2.2.1 : for k = 1 to nz
2.2.1.1 : j = coord[k]
2.2.1.2 : out[i] = out[i] + xj * v[k]
2.2.2 : end
2.3 : end
3 : end
4 : return out

Table 17: Pseudo-code for computing Ux. See Section 4.3.4. Note that, using the sparse
basis representation Vh from Section 3.4.2, v[k] = 1, so the statement 2.2.1.2 becomes
out[i] = out[i] + xj .

1 : out[j] = 0, j = 1,...,k
2 : for i = 1 to I
2.1 : [ coord, nz, v ] = Get Row( i )
2.2 : if nz > 0
2.2.1 : for k = 1 to nz
2.2.1.1 : j = coord[k]
2.2.1.2 : out[j] = out[j] + yi * v[k]
2.2.2 : end
2.3 : end
3 : end
4 : return out

Table 18: Pseudo-code for computing U>y. See Section 4.3.4. Note that, using the
sparse basis representation Vh from Section 3.4.2, v[k] = 1, so statement 2.2.1.2 becomes
out[j] = out[j] + yi.
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1 : A = 0
2 : for i = 1 to I
2.1 : [ coord, nz, v ] = Get Row( i )
2.2 : if nz > 0
2.2.1 : for j index = 1 to nz
2.2.1.1 : j = coord[j index]
2.2.1.1.1 : for k index = 1 to j index
2.2.1.1.1.1 : k = coord[k index]
2.2.1.1.1.2 : A[k,j] = A[k,j] + xi * v[j index] * v[k index]
2.2.1.1.2 : end
2.2.1.2 : end
2.2.2 : end
2.3 : end
3 : end

Table 19: Pseudo-code for computing U>DxU. See Section 4.3.4.

1 : [ coord, nz ] = Get Row( [i1, . . . , iK] )
2 : l = coord[1]
3 : vi = −bl

4 : for k = 2 to nz
4.1 : j = coord[k] - r

4.2 : vi(j) = vi(j) + u(2)
i (k)

5 : end
5 : return vi

Table 20: Pseudo-code for generating the row of the matrix V associated to the cell < i1, . . . , iK >
according to the results of Section 4.3.5. It uses the function Get Row (as described in Section 4.3.4)
and the matrix U2.
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Sturmfels, B. (1996). Gröbner Bases and Convex Polytopes. American Mathematical Society.

Takemura, A. and S. Aoki (2004). Some characterizations of minimal markov basis for sampling
from discrete conditional distributions. The Annals of Statistics 56, 1–17.

Tarjan, R. E. (1985). Decomposition by clique separators. Discrete Mathematics 55, 221–232.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley Series in Probability
& Statistics. Wiley.

Ziegler, M. G. (1998). Lectures on Polytopes. New York: Springer-Verlag.

87


	Introduction
	Notation

	Contingency Tables and Maximum Likelihood Estimation
	Sampling Schemes and Log-likelihood functions
	Poisson Sampling Scheme
	Product Multinomial Sampling Scheme

	Existence of the MLE.
	Literature Review
	Recent Results


	Log-Linear Models Subspaces
	Combinatorial Derivation
	Matrix Algebra Derivation
	Bases for Uh: Contrast Bases
	Bases for Wh: Marginal Bases

	Group Theoretic Derivation
	Appendix
	Incorporating Sampling Constraints
	Generation of Uh, Wh and Vh
	A Combinatorial Lemma


	Computing Extended Maximum Likelihood Estimates
	Determination of the Facial Sets
	Linear Programming
	Newton-Raphson Procedure

	Existence of the MLE and Markov Bases
	Maximizing the Log-Likelihood Function
	Poisson Sampling Scheme
	Product-Multinomial Sampling Scheme
	Efficient Algorithms to Compute L, L and 2 L
	Manipulation and Computations on Design Matrices
	A Basis for M N for the Product-Multinomial Case

	Detecting Rank Degeneracy
	Cholesky Decomposition with Pivoting.
	Gaussian Elimination, Gauss-Jordan Elimination with Full Pivoting and Reduced Row Echelon Form
	LU Factorization

	Appendix A: Alternative Methods for Determining Facial Sets
	Maximum Entropy Approach
	Maximum Entropy and Newton-Raphson
	Facial Sets and Gale Transform
	Matroids and Graver Basis

	Appendix B: The Newton-Raphson Method
	Appendix C: Theorems of Alternatives

	Graph Theory and Extended Maximum Likelihood Estimation
	Reducible Models
	Decomposing Simplicial Complexes

	Decomposable Models
	The Iterative Proportional Fitting Algorithm
	IPF and Perfect Orderings
	Deciding the Decomposability of a Hypergraph

	Table Collapsing and the Extended MLE

	Testing for Goodness of Fit
	Tables of Pseudo-Codes

