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Abstract

We present a Monte Carlo method for approximating the minimax expected size (MES) confidence set

for a parameter known to belong to a compact set. Size refers to the measure of the confidence set; the

measure can be indexed by the true parameter value, which allows the confidence procedure to be tailored

for specific scientific goals. As the number of iterations increases, the Monte Carlo estimator converges

to the Γ-minimax procedure, where Γ is a polytope of priors. The algorithm exploits Bayes/minimax

duality by searching for the Γ-least favorable prior. A Fortran-90 implementation of the algorithm for

both serial and parallel computers is available. We apply the method to estimate parameters of the

primordial Universe from observations of the cosmic microwave background radiation.

1 Introduction

The relationship between hypothesis tests and confidence estimators can be exploited to

construct confidence sets with desirable properties. For a fixed confidence level, it is natural

to seek a confidence set that is as small as possible. Evans et al. (2005) (hereafter, EHS) show

that the 1 − α confidence set with smallest maximum expected measure can potentially be

found by inverting a family of level α tests of simple nulls versus a common simple alternative.

This is the minimax expected size (MES) procedure. This paper gives a computationally

efficient algorithm for computing MES and other optimal confidence sets, including the

less conservative minimax regret (MR) procedure, when the parameter is known to lie in a

compact set.

There have been several studies of loss functions for constructing set estimators. Cohen

and Strawderman (1973b) considered loss functions that are linear combinations of size
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of the region and an indicator of whether the region covers the truth. Aitchison (1966),

Aitchison and Dunsmore (1968), and Winkler (1972) consider interval estimation of a real-

valued parameter using a loss function that combines distance from the truth to the lower

endpoint of the interval, distance from the truth to the upper endpoint, and the length of

the interval. Casella and Hwang (1991) and Casella et al. (1994) study confidence sets that

are optimal with respect to such loss functions.

An alternative approach is to restrict attention to confidence sets with 1 − α coverage

probability, and use a loss function that depends only on size. EHS, Hwang and Casella

(1982), and Joshi (1969) show examples of using a measure as loss. Hooper (1982) and

Cohen and Strawderman (1973a) allow the measure to depend on the true value of the

parameter; we take the same approach. Here, “expected size” refers to the expected νθ-

measure of the confidence set. The MES procedure minimizes the maximum of this risk

function.

Exact determination of the MES procedure is not typically feasible. Our approximation

algorithm uses the duality between Bayes and minimax procedures, established for confidence

regions in some generality by EHS. The search for the Γ-minimax procedure becomes a search

for the member of Γ with the largest average risk. This is called the least favorable alternative

(LFA). Finding the LFA over a finite set is conceptually simple, but the risk calculations

can be computationally intensive. Kempthorne (1987) and Nelson (1966) give algorithms to

determine numerically the least favorable prior distribution over compact parameter spaces

for general risk functions, but their algorithms assume the ability to calculate the Bayes risk

for any given prior. In this work, risk is approximated using novel Monte Carlo simulations.

We show that as the size of these Monte Carlo simulations increases, the maximum expected

size of the confidence set converges to that of the unapproximated MES procedure. The

algorithm is implemented as a Fortran-90 subroutine designed to run efficiently on distributed

computers with little interprocessor communication.

The method is well suited for estimating parameters that satisfy a priori bounds, and

when there is a complex model determining the distribution of the observed data as a func-

tion of these parameters. A common goal in the physical sciences is to estimate unknown

physical constants accurately while efficiently utilizing the information provided by previous

experimental and theoretical results. For example, there is a complex physical model for
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the relationship between unknown cosmological parameters (e.g. Hubble’s constant, the age

of the Universe) and the angular distribution of fluctuations in the cosmic microwave back-

ground radiation (CMB). The model places useful restrictions on the class of power spectra.

We seek to incorporate these bounds in the interest of “conserving” the rejection power of

the associated hypothesis tests.

This paper is organized as follows. Section 2 gives notation, assumptions and theory.

Section 3 describes the algorithm. Section 4 describes an implementation of the algorithm,

including how results from the study of convex games are used to find the approximate LFA.

Section 5 discusses selecting the vertices of Γ. Section 6 considers a general class of loss

functions based on the measure of the confidence set, including one choice which leads to the

minimax regret procedure. Section 7 shows results of application of the method to analysis

of CMB data. Finally, Section 8 gives a summary, and Section 9 is supplemental material,

including the technical proofs.

2 Preliminaries

We have a family of probability distributions indexed by θ:

P ≡ {Pθ : θ ∈ Θ}.

The probability distributions are all defined on the same σ-field B on a set X ; all are

dominated by the measure µ. The density of Pθ with respect to µ is fθ. The set Θ is itself

measurable, with σ-field A. Let

V ≡ {νθ : θ ∈ Θ}

be a family of positive measures on Θ, all dominated by the measure ν. The density of

νθ with respect to ν is vθ. The random variable X has distribution Pθ0
for some unknown

θ0 ∈ Θ. We observe data X and U ∼ U [0, 1], a uniform random variable independent of X.

We have at our disposal a set D of decision functions, measurable mappings from Θ × X

into [0, 1]. The decision functions let us use X and U to make random subsets of Θ:

Cd(X, U) ≡ {η ∈ Θ : d(η, X) ≥ U}. (1)

This set is a candidate confidence set for θ0 from the data X and the auxiliary random

variable U . The chance that Cd(X, U) covers the parameter value η ∈ Θ when in fact
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X ∼ Pθ is

γd(θ, η) ≡ Pθ[Cd(X, U) 3 η] = Pθ[d(η, X) ≥ U ] =

∫

X

d(η, x)fθ(x)µ(dx). (2)

The decision rules that correspond to 1 − α confidence sets are

Dα = {d ∈ D : γd(θ, θ) ≥ 1 − α a.e.(ν)}. (3)

We are about to define a risk function on confidence sets. Think of vθ(η) as the cost of

including η in a confidence set for θ0 when in fact θ0 = θ. Pratt (1961) showed the risk of

using the decision rule d to make a confidence set for θ0 is the expected νθ-measure of the

confidence set, which is the expected integrated cost:

R(θ, d) ≡ Eθ[νθ(Cd(X, U))] =

∫

Θ

γd(θ, η)vθ(η)ν(dη). (4)

With vθ(η) = 1, this risk is the expected ν-measure of the confidence set. Allowing the cost

vθ(η) to depend on θ and to vary with η lets us tailor confidence sets to specific scientific

goals. Although generally we might prefer confidence sets that are as small as possible, there

are situations where we might willingly sacrifice size. For example, a confidence procedure

for some real-valued parameter might be more likely than the shortest interval to contain

only positive values when the effect is positive, and more likely than the shortest interval

to contain only negative values when the effect is negative. In this hypothetical, sacrificing

length allows better inferences about the sign of the parameter, a cost we might happily pay.

Such a preference could be incorporated by choosing

vθ(η) =





1, sgn(θ) = sgn(η)

c, sgn(θ) = −sgn(η),
(5)

for some real c > 1. In other problems, we might not care whether η is included in the

confidence set when θ is the true value of θ0, for example, if η and θ differ only with respect

to nuisance parameters; then we might set vθ(η) = 0.

Let RΘ(d) denote the maximum risk of d over all θ ∈ Θ:

RΘ(d) ≡ sup
θ∈Θ

R(θ, d) = sup
π

∫

Θ

R(θ, d)π(dθ) (6)

where the supremum is over all distributions π on Θ. The problem we address is to find a

numerical approximation to the decision rule dR that attains the minimax risk over a smaller
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class of distributions Γ:

RΓ(dR) = inf
d∈Dα

sup
π∈Γ

∫

Θ

R(θ, d)π(dθ). (7)

In typical applications, Γ will be the polytope formed by taking the vertices as p parameter

values θ1, θ2, . . . , θp, spread across Θ to ensure that RΘ(dR) is not too much larger than

inf
d∈Dα

RΘ(d). (8)

Our numerical approximation produces a valid 1− α confidence set—a member of Dα—but

its risk is approximately Γ-minimax, rather than exactly Γ-minimax.

2.1 Bayes-Minimax Duality

For any probability distribution π on Θ, define

rπ(η, x) ≡

∫
Θ

fθ(x)vθ(η)π(dθ)

fη(x)
. (9)

This is a weight function that combines the density of the observations fθ, the density vθ of

the measure on Θ that determines the risk, mixed across values of θ using the prior π.

The Bayes risk of d for prior π is

Rπ(d) ≡

∫

Θ

R(θ, d)π(dθ) =

∫

Θ

∫

X

d(η, x)fη(x)rπ(η, x)µ(dx)ν(dη). (10)

The rule d is in Dα if ∫

X

d(η, x)fη(x)µ(dx) = 1 − α. (11)

The optimal decision rule dπ ∈ Dα for prior π is found by minimizing (10) subject to (11),

which can be done in exactly the same way that the Neyman-Pearson Lemma is proved: for

each η, dπ is 1 where fη(x)rπ(η, x)/fη(x) = rπ(η, x) is below some threshold, 0 where rπ(η, x)

is above the threshold, and constant at the threshold, with the threshold and the constant

chosen to make dπ(η.x) correspond to a level-α test.

Lemma 1.

inf
d∈Dα

Rπ(d) = Rπ(dπ,α), (12)

where

dπ(η, x) =





1, rπ(η, x) < cη,α

bη,α, rπ(η, x) = cη,α

0, rπ(η, x) > cη,α,

(13)
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and the constants 0 ≤ bη,α ≤ 1 and cη,α satisfy
∫

X

dπ(η, x)fη(x)µ(dx) = 1 − α. (14)

If Γ is a collection of distributions on Θ, then π0 ∈ Γ is a Γ-least favorable alternative if

Rπ0
(dπ0

) ≥ Rπ(dπ) for all π ∈ Γ. The decision procedure d0 is Γ-minimax if

sup
π∈Γ

Rπ(d0) = inf
d∈Dα

sup
π∈Γ

Rπ(d) ≡ RΓ(dR). (15)

Theorem 1 establishes the Bayes-minimax duality.

Theorem 1. If Γ is convex and π0 is Γ-least favorable,

inf
d∈Dα

sup
π∈Γ

Rπ(d) = Rπ0
(dπ0

).

Proof. See Section 9.2. This is an extension of Theorem 1 in EHS.

2.2 Underlying Assumptions

Theorem 1 requires Γ to be convex. The following additional assumptions are necessary for

the Monte Carlo algorithm presented in Section 3 to converge to the correct value of the

risk.

1. ν(Θ) < ∞.

2. If Pθ 6= Pθ′, θ, θ′ ∈ Θ, there must be a measurable set A ∈ A for which θ ∈ A, θ′ ∈ AC ,

and 0 < ν(A)/ν(Θ) < 1.

3. The distributions {Pθ : θ ∈ Θ} all have the same support ν-a.e.

4. The penalty function vθ is nonnegative and bounded, i.e. 0 ≤ vθ(η) ≤ M for all θ, η ∈ Θ.

5. The convex collection of priors Γ has a finite number of vertices.

The method is not practical unless:

1. For any fixed point θ in the parameter space Θ, it is computationally tractable to

simulate sampling from Pθ.

2. If πi is a vertex of Γ, calculating rπi
(η, x) for fixed η and x is tractable.
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3 The Monte Carlo Approach

Perhaps remarkably, a single set of simulations can estimate dπ and Rπ(dπ). Let T be an

element of Θ drawn at random according to the distribution ν. Conditional on T = η,

the random variable X has distribution Pη. Recall from Lemma 1 that rπ(η, X) is the test

statistic for a test of the hypothesis θ0 = η. Given data x, the test rejects the hypothesis if

Pη[rπ(η, X) ≥ rπ(η, x)] ≤ α. (16)

For any d ∈ D,

E[rπ(T, X)d(T, X)] = E[E[rπ(T, X)d(T, X)|T ]]

=

∫

Θ

∫

X

rπ(η, x)d(η, x)fη(x)µ(dx)ν(dη)

= Rπ(d).

Hence, for fixed π, Monte Carlo simulation of the distribution of rπ(T, X) can be used to

estimate simultaneously the thresholds for the Bayes decision rule and the Bayes risk of the

Bayes decision. This leads to defining R̂π,m(dπ,m), a function of simulated rπ(T, X) variates,

where m indexes the size of the Monte Carlo simulations; see Equation (21) below. We shall

show that as m increases, R̂π,m(dπ,m) converges almost surely to Rπ(dπ), uniformly in π ∈ Γ.

Fix {nm}
∞
m=1 and {qm}

∞
m=1, two strictly increasing sequences of integers. Let

{Tjm : j = 1, 2, . . . , qm; m = 1, 2, . . .} (17)

be iid (ν) and let

{Xjkm : j = 1, 2, . . . , qm; k = 1, 2, . . . , nm; m = 1, 2, . . .} (18)

have distribution Pη conditional on Tjm = η. All Xjkm are independent, conditional on all

of the Tjm. Define

Kjm ≡


K ×

(
1

nm

p∑

i=1

nm∑

k=1

rπi
(Tjm, Xjkm)

)−1

∧ 1, (19)

with K > pM . (Recall that vθ(η) ≤ M .) Let

R̂m(θ, d) ≡
1

qm

qm∑

j=1

Kjm

[
1

nm

nm∑

k=1

fθ(Xjkm)

fTjm
(Xjkm)

vθ(Tjm) d(Tjm, Xjkm)

]
(20)
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and

R̂π(d) ≡

∫

Θ

R̂m(θ, d)π(dθ) =
1

nmqm

∑

j

∑

k

rπ(Tjm, Xjkm) d(Tjm, Xjkm)Kjm, (21)

continuing the definition of rπ given in Equation (9). Multiplying by Kjm forces R̂π(d) to be

uniformly bounded while maintaining a linear relationship between R̂π(d) and the bracketed

function on the right hand side of Equation (20).

Fix α and define D′
α to be the class of decision procedures that for all j satisfy

1

nm

∑

k

d(Tjm, Xjkm) ≥ 1 − α. (22)

Let dπ,m be the decision procedure that minimizes R̂π(d) among all d ∈ D′
αm

. Recall that dπ

is the decision procedure that minimizes Rπ(d) over all d ∈ Dα.

Theorem 2. As m → ∞,

R̂π(dπ,m)
a.s.
−→ Rπ(dπ) (23)

uniformly in π ∈ Γ.

Proof. See Section 9.2.

Corollary 1. As m → ∞,

sup
π∈Γ

R̂π(dπ,m)
a.s.
−→ RΓ(dR) . (24)

With simulated realizations of the random quantities (17) and (18), a member of Γ that

maximizes R̂π(dπ,m) can be found numerically. Corollary 1 shows that for large enough m

this supremal prior has Bayes risk close to the Bayes risk of the Γ-least favorable prior.

4 Implementation of the Algorithm

At the jth stage, 1 ≤ j ≤ q, draw a parameter value T at random according to ν, indepen-

dently from all previous stages. Let ηj be the observed value of T . Then draw n data i.i.d.

from Pηj
. Let the observed data values be {xjk}

n
k=1. Calculate the constant

K̃j ≡


K ×

(
1

n

p∑

i=1

n∑

k=1

rπi
(ηj, xjk)

)−1

∧ 1. (25)

Find the n by p matrix Aj with elements

Aj ki = rπi
(ηj, xjk)K̃j. (26)
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A test of the hypothesis that θ0 = ηj can be represented by an n-vector dj. The kth

component of dj is the probability of not rejecting the hypothesis θ0 = ηj if the observed

datum is X = xjk. The collection {dj}
q
j=1 comprise an approximate decision rule that can

be used to make an approximate confidence set for θ0.

Every prior π ∈ Γ can be written as a convex combination of the vertices of Γ:

π =

p∑

i=1

wiπi, (27)

for some w = (wi)
p
i=1 with wi ≥ 0 and

∑
i wi = 1. The quantity

R̃π(d) ≡
1

nq

q∑

j=1

dj
T · Aj · w (28)

is an empirical approximation to the risk of the decision function represented by {dj}
q
j=1 for

prior π.

For fixed π ∈ Γ let d̃π be the collection {dj}
q
j=1 that minimizes R̃π(d). Our goal is to

find the (empirically) Γ-least favorable prior, the π ∈ Γ that maximizes R̃π(d̃π). We shall

see that this problem can be couched as a convex game. Theorem 2 shows that solving this

convex game gives an arbitrarily good approximation to the theoretical Γ-minimax problem

as the size of the simulations increases.

4.1 Matrix Games and Minimax Procedures

4.1.1 Solving Matrix Games

A convex game is a triple (A,S1,S2) where A is an a by b matrix, S1 is a convex, compact

subset of R
a and S2 is a convex, compact subset of R

b. Player one chooses a strategy , an

element s1 from S1. Player 2 picks a strategy s2 from S2. Player one pays player two s1
TAs2.

Theorem 3. There exists a pair of strategies (s1∗, s2∗) ∈ S1×S2 such that for any (s1, s2) ∈

S1 × S2,

s1∗
TAs2 ≤ s1∗

TAs2∗ ≤ s1
TAs2∗. (29)

Proof. This is a direct consequence of the classic Von Neumann Minimax Theorem. See, for

example, Theorem 5.2 in Berkovitz (2002).

The pair (s1∗, s2∗) has a special optimality: By picking s1∗, Player one minimizes his

maximum loss. By picking s2∗, Player two maximizes his minimum gain. Solving the game
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is finding this saddle point. The Brown-Robinson fictitious play algorithm ((Robinson, 1951;

Brown, 1951)) is a simple iterative approach to solving the game.

The Brown-Robinson Algorithm:

Fix a tolerance ε > 0 and initial plays for each player: s1,0 ∈ S1, s2,0 ∈ S2. Set i = 1. Then:

1. Player one finds the strategy s1 ∈ S1 that minimizes v1,i ≡ s1
TAs2,i−1.

2. Player two finds the strategy s2 ∈ S2 that maximizes v2,i ≡ s1,i−1
TAs2.

3. If v2,i − v1,i ≤ ε, we are done. Otherwise, go to step four.

4. Set

s1,i ≡ (s1 + (i − 1)s1,i−1) /i (30)

and

s2,i ≡ (s2 + (i − 1)s2,i−1) /i. (31)

5. Increment i and return to step one.

Theorem 4 (Robinson (1951)). For each iteration i in the Brown-Robinson algorithm,

v1i ≤ s1∗
TAs2∗ ≤ v2i (32)

and

lim
i→∞

v2i − v1i = 0. (33)

Theorem 5. If player one uses strategy s1,i, the amount player one pays player two is less

than

s1∗
TAs2∗ + v2,i+1 − v1,i+1 (34)

no matter what strategy player two uses.

Proof. From Theorem 4, s1∗
TAs2∗ − v1,i+1 ≥ 0, so

s1,i
TAs ≤ v2,i+1 ≤ s1∗

TAs2∗ + v2,i+1 − v1,i+1, (35)

where s is any strategy in S2.
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Theorem 5 ensures that when the Brown-Robinson algorithm terminates, player one has

a strategy that limits his maximum loss to at most ε more than the loss at the saddle point.

While the maximum loss is close to optimal, the theorem does not show that the strategy

s1i is close to s1∗ in the norm.

4.1.2 Finding the Approximate LFA by Solving a Matrix Game

We now show that the problem of finding the LFA can be written as a (large) convex game.

Define the nq by p matrix

A ≡
1

nq




A1

A2

· · ·

Aq




. (36)

Define the nq-vector

d ≡




d1

d2

· · ·

dq




. (37)

Equation (21) can be written

R̃π(d) = dTAw. (38)

Player one is the statistician. He chooses the 100(1 − α)% confidence procedure d. Player

two is an intelligent adversary (“Nature”). She chooses w, corresponding to a distribution π

over the possible values of θ0. Player one’s set of possible strategies S1 takes a special form

in this case. All elements of d must be between zero and one. Each of the vectors dj that

comprise d must sum to (1 − α)n. These restrictions on d make S1 is convex. The set S2

consists of all p-vectors w with wi ≥ 0 and
∑

i wi = 1; this is also a convex set.

The statistician and Nature play the convex game (Am,S1,S2). The Brown-Robinson

algorithm is well-suited to this problem, because for any fixed strategy s2,i−1 Nature picks, it

is straightforward to find the strategy in S1 that is best for the statistician. Other algorithms

for solving games (e.g., solving the game by linear programming) might take fewer iterations,

but are difficult to implement when S1 is complex. Recent work by Bryan et al. (2007) shows
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Data Size Precision

Random Likelihood Ratios n × q × p single

Random Parameter Points q × b single

Thresholds q × 2 double

Confidence Region q single

Table 1: The major storage demands of the algorithm. The dimension of the parameter space Θ is b. The

number of randomly chosen parameter points on each processor is q. The number of data generated from

each random parameter is n.

how the sparsity of the payoff matrix in this case can be exploited to find solutions to this

convex game in significantly less time.

4.2 Implementation

The approach parallelizes naturally: different processors can simulate independent samples

of parameter values {ηj} and data {xjk}. Interprocessor communication is required only to

calculate the outer sum in Equation (21), which involves {R̃πi
(dπ)}

p
i=1.

A Fortran-90 implementation of the algorithm with documentation is available at:

http://www.stat.cmu.edu/∼cschafer/LFA Search

The implementation is parallel and uses dynamic memory allocation.

Table 1 shows the largest storage requirements. The algorithm requires fast access to

n × q × p values, the simulated realizations of

{{{rπi
(Tj, Xjk)}

q
j=1}

n
k=1}

p
i=1. (39)

One might instead store the randomly simulated data; but this would be a [n×q×(dimension of X )]

array, and then the quantities {rπi
}p

i=1 would need to be calculated repeatedly. The oper-

ation count of the algorithm is O(q × n2 × p), from calculating R̃π(dπ). This neglects the

number of operations involved in calculating the likelihoods fη(x).

5 Choosing the Vertices of Γ

The choice of Γ (the choice of the vertices {πi}
p
i=1 of Γ) is Bayesian in flavor. In fact, the

idea of Γ-minimax comes from research in robust Bayesian methods; see Vidakovic (2000),
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for example. Chamberlain (2000) gives examples of applications of Γ-minimax estimators in

econometrics. This procedure presents an interesting mixture of Bayesian and frequentist

ideas: The 1 − α coverage probability requirement holds regardless of the true value of

the parameter, but it is optimized to control the Bayes risk for priors that are in Γ. The

user decides how broad a collection of possible truths Γ will cover. With MES, R(θ, dR)

is guaranteed to be less than or equal to RΓ(dR), the Γ-minimax expected size, only if the

distribution Pθ is a member of Γ.

5.1 Nelson’s Approach

One option would be to use the provided minimax algorithm in conjunction with the following

larger iterative algorithm to determine the least favorable alternative, as proposed by Nelson

(1966). In this procedure, the number of vertices in Γ increases over a series of iterations.

Ideally, at each step the new vertices would be in places where the risk was largest when

calculated using the minimax procedure of the previous iteration. When it is no longer

possible to find a candidate vertex that has larger risk than the current Bayes risk, then one

knows that the least favorable alternative has been found. Nelson proved that with exact risk

calculations this procedure converges to the least favorable of all possible priors, and hence

leads to the global minimax decision procedure. The feasibility of the algorithm depends on

being able to find parameter values (vertices) where the risk is maximal.

5.2 Incorporating Known Restrictions on Γ

In some cases it is clear that the LFA must belong to a subclass of priors. If this subclass

is convex, each vertex of Γ should also be a member. Consider the example of estimating

the mean of a normal random variable when that mean is known to lie in [−τ, τ ]. The LFA

is clearly symmetric about zero; note that the class of priors with that property is convex.

Each vertex of Γ should be a prior that puts equal weight at −b and b, where b ≤ τ .
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6 General Loss Functions

The theory developed here applies equally to a loss function of the form νθ(Cd(x, u))− `(θ),

where ` is any uniformly bounded function on Θ. A choice of particular interest is

`r(θ) ≡ inf
d∈Dα

Eθ(Cd(X, U)) .

Finding the d ∈ D which minimizes the maximum expectation of this loss will be the minimax

regret (MR) procedure. The regret (DeGroot, 1988) from using procedure d is the difference

between the expected ν-measure of the confidence set while using d and minimum possible

expected size over all d ∈ Dα. In some inference problems, parameter values θ for which `r(θ)

are relatively large can have a significant effect on the MES procedure: The least favorable

alternative will place a large amount of weight on these θ at the expense of increasing the

expected size under other parameter values.

Consider the following extreme example; more details can be found in Schafer and Stark

(2003) and EHS. Let the random variable X have the normal distribution with mean θ and

variance one; assume it is known that −3 ≤ θ ≤ 3. The minimax expected length 95%

confidence interval is defined by the LFA which places probability one at θ = 0. Thus, the

expected length when θ = 0 is made as small as possible (it equals `r(0)) while ignoring the

expected length of the interval for all other values of θ. The MR procedure provides a less

conservative alternative. See Figure 1. The solid line is `r(θ), the dashed-dotted line is the

expected length using the MES procedure; note that they are equal at θ = 0. The expected

length when using the MR procedure is given by the dashed line. Average length increases

near zero, but significant gains are made away from zero. Finally, the dotted line is the

expected length if one were to utilize the standard interval (X − 1.96, X + 1.96) intersected

with [−3, 3].

Calculating `r(θ) for fixed θ is theoretically simple; it requires another application of the

Neyman-Pearson Lemma. In practice, however, `r(θ) will be a complicated function of θ.

The algorithm described in Section 4 allows one to approximate `r(θ) by using the prior

which places all of the weight on θ. Note that in order for this to work, each vertex πi must

place all of its weight on one point in the parameter space. The provided subroutine can

also find the minimax regret procedure.
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Figure 1: A comparison of 95% confidence intervals for the unknown mean θ when it is assumed that

−3 ≤ θ ≤ 3.

7 Example: Parameter Inference with CMB Data

Right after the Big Bang, the temperature of the Universe was too high for atoms to form:

most matter existed as charged ions. Photons interact with charged particles, so the Universe

was an opaque soup in which matter and photons exchanged energy freely. In about 400,000

years—at the time of last scattering—the Universe had cooled enough that (electrically

neutral) atoms could form. Photons and matter interacted much less: the Universe became

largely transparent. The photons that were freed at the time of last scattering have an

imprint of the structure of the primordial Universe: according to theory, the chance that a

photon liberated then has interacted with matter since is extremely small. (Some theorists

have proposed that the Universe re-ionized at some later time.)

The photons that were freed the time of last scattering have cooled to about 2.7K as a

result of the expansion of the Universe. They are observable as an extremely faint, nearly
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isotropic microwave signal, the cosmic microwave background radiation (CMB).

Our night sky shows heterogeneity at many scales, including stars, galaxies and clusters of

galaxies. That heterogeneity had seeds in the primordial Universe. Those seeds are evident

in fluctuations in the CMB of about 200µK. The observed anisotropy of the CMB can

help to test theories of the origin and evolution of the Universe. For example, cosmological

theories relate CMB anisotropy to physical parameters such as Hubble’s constant (H0), the

density of baryonic matter density relative to the critical density (Ωb), and the optical depth

(τ).

The accuracy, resolution, and quantity of measurements of the CMB have increased enor-

mously over the last 15 years or so. The COBE satellite (Smoot et al., 1990), the first

experiment to detect CMB anisotropy, made about six thousand measurements at seven-

degree angular resolution. More recently, WMAP (Bennett et al., 2003) made about two

million measurements at ten arcminute angular resolution. The theoretical relationship be-

tween cosmological models and CMB observations is complicated. The data are noisy. The

data sets are large. And there are physical constraints that might reduce the uncertainty.

This is a situation where sophisticated statistical analysis might be particularly helpful.

According to many cosmological theories, CMB anisotropy is a realization of an isotropic,

Gaussian process on the sphere. Such a process is fully characterized by its spherical har-

monic power spectrum {C`(θ)}
∞
`=1. Theory connects the power spectrum to a set of cosmo-

logical parameters θ = (H0, Ωb, τ, . . .).

We observe only one realization of the process–our CMB. That limits the accuracy with

which we can estimate C`. If we could measure the CMB perfectly over the entire sky, the

maximum likelihood estimate of C` would be

1

2` + 1

(
∑̀

m=−`

|a`m|
2

)
, (40)

where a`m is the (`, m) coefficient of the empirical spherical harmonic transform of the CMB.

Noise, censoring, foreground contamination, instrumental smoothing, binning, etc., make the

problem harder.

The physical model that links the cosmological parameters θ to the anisotropy spectrum

{C`} constrains the class of possible spectra. The constraints can be exploited to improve

estimates of the spectrum, and of the values of the cosmological parameters. Bayesian
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Symbol Description

Ωb The density of baryonic matter relative to the critical density

Ωm The total density of matter relative to the critical density

ΩΛ The density of dark energy relative to the critical density

H0 The Hubble Constant , the current rate of expansion of the Universe

τ The optical depth

A The amplitude of the primordial density perturbations at frequency 0.05Mpc−1

ns The scalar spectral index for the primordial density perturbations

Table 2: The seven parameters in the ΛCDM model. See text for explanation.

methods are appealing in problems with physical constraints, because the constraints can

be imposed through the prior distribution for the parameters. The WMAP team analyzed

their CMB data using Bayesian methods to incorporate bounds on the parameters (Verde

et al., 2003). Their inferences depend on the prior they used, and their “confidence levels”

need not relate to frequentist coverage probability.

Frequentist methods for dealing with constraints are not widely known. MES is one way

to incorporate physical constraints from a frequentist perspective. MES avoids the possibility

that the estimate is sensitive to the ad hoc choice of a prior to capture the constraints. MES

confidence sets have the right frequentist level and are optimally precise if the physical model

and constraints are correct.

7.1 The ΛCDM Cosmological Model

Following Spergel et al. (2003), we base our analysis on the Power Law, Flat, ΛCDM Model ,

or briefly, the ΛCDM model. In the ΛCDM model, the CMB spectrum {C`} depends on

seven parameters, listed in Table 2. The density of the Universe is denoted by Ω. It has

contributions from matter, Ωm, and from “dark energy,” ΩΛ, which is related to Einstein’s

cosmological constant Λ. The contribution Ωm of matter is the sum of a contribution Ωb

from ordinary baryonic matter, and—in the ΛCDM model—a contribution from cold dark

matter.

The topology of the Universe is determined by Ω. At the critical density, Ω = 1, the

Universe is topologically flat (in four-dimensional space). If Ω > 1, the Universe is closed . It

will eventually contract, ending in a “big crunch.” If Ω < 1, the Universe is open, and will
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continue to expand forever. Observations suggest that the Universe is nearly flat; inflation

explains this as a consequence of very rapid expansion just after the Big Bang (Guth, 1981).

The ΛCDM model assumes that the Universe is exactly flat: Ωm + ΩΛ = 1.

The Hubble Constant H0 measures the rate of the expansion of the Universe; it has units

kms−1Mpc−1. The dimensionless quantity h ≡ H0/(100 km s−1 Mpc−1) appears frequently.

A photon released at the time of last scattering might have interacted with matter since

then. The ΛCDM model represents this possibility using the optical depth parameter τ .

The probability a photon has traveled since the time of last scattering without scattering is

exp(−τ).

The density of the primordial Universe varied spatially; that is why the modern Universe

has structure. Because matter and radiation were tightly coupled until the time of last

scattering, the modern CMB is the evolution of an imprint of the density fluctuations at

that time. In the ΛCDM model, the spatial spectrum of primordial density fluctuations

follows a power law: as a function of spatial frequency k, the spectrum is

A(k) = A

(
k

k0

)ns−1

, (41)

where k0 = 0.05Mpc−1 is a reference scale.

The angular spectrum of the CMB is related to the parameters of the ΛCDM model

through

C`(θ) ∝

∫
g(`, k, θ)2A(k)

dk

k
, (42)

where g, the transfer function relating the two spectra, depends in a complicated way on the

parameters in the model. See page 14 in Verde et al. (2003) for more detail.

7.2 WMAP Analysis

The starting point for our analysis is the estimate of the CMB power spectrum (for 2 ≤

` ≤ 900) provided by the WMAP team (Hinshaw et al., 2003), denoted {Ĉ`}
900
`=2. Although

derived using a computationally-efficient approach, Hinshaw et al. (2003) show that the

estimate is practically indistinguishable from the maximum likelihood estimate, and hence

we will treat it as if it were the MLE. (See Appendix A in Hinshaw et al. (2003).) In another

paper by the WMAP team (Verde et al., 2003), an approximation to the Fisher information

matrix is derived as a function of the true power spectrum.
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Next we apply the variance stabilizing transformation advocated by Bond et al. (2000).

Our data vector x consists of the following transformed estimates of the CMB power spec-

trum:

x`−1 ≡ log
(
Ĉ` + N`/B

2
`

)
, ` = 2, 3, . . . , 900. (43)

Here, N` and B` represent contributions from measurement error and beam smearing, re-

spectively, at wavenumber `, and are taken as known quantities. (“Beam smearing” refers

to the fact that measurements are actually the CMB field convolved with a kernel function.)

Under an idealized model for the CMB, this transformation exactly stabilizes the asymptotic

variance of the MLE.

Thus, in what follows we will appeal to standard asymptotic results for the MLE and

assume that x is the realization of a multivariate Gaussian random vector with mean µ(θ),

where

µ`−1(θ) ≡ log
(
C`(θ) + N`/B

2
`

)
, ` = 2, 3, . . . , 900, (44)

and covariance matrix Σ(θ). Here, θ is the vector of cosmological parameters; because the

variance stabilizing transformation is not exact, it is important to incorporate the dependence

of the covariance matrix on θ.

As mentioned earlier, a strength of MES and MR is they handle restrictions on the

parameter space in an optimal manner. This takes dual meaning in our CMB analysis.

First, and more significantly, we test only power spectra that arise from the ΛCDM model.

Second, we need to restrict the cosmological parameter space to a compact set in order to

use Theorems 3.2 and 3.3. We use a two-stage confidence procedure with overall coverage

probability 1−α. In the first stage, a confidence estimator with coverage probability 1− α1

is employed, with α1 very small, in our case 0.0001. This initial set is the compact parameter

space Θ used in the application of the described MES and MR methods, except with coverage

probability (1−α−α1). (This small adjustment is of no practical significance.) The resulting

confidence region is MES/MR conditional on an event of probability 1 − α1. Since α1 is so

small, this is not viewed as a concern. This is not “data snooping” in the classic sense

because the overall coverage probability remains at 1 − α.

We have a natural test with which to use in the first stage, a simple chi-square test.

Although it is not optimal for the reasons given above, it is simple to implement in this
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situation since under the stated assumptions,

(x − µ(θ0))
T Σ(θ0)

−1 (x − µ(θ0)) (45)

has the chi-square distribution with 899 degrees of freedom. The initial test throws out

parameter combinations for which the chi-square test statistic is too large, i.e. those combi-

nations that differ substantially from the expected spectrum.

7.2.1 Computational Considerations

The described Monte Carlo technique is used to approximate the LFA/LRA. The vertices of

the support of the prior are 300 randomly chosen cosmological parameter combinations that

pass the first-stage chi-square test. Twenty-four thousand such parameter combinations are

used as the randomly selected “nulls.” The distribution under each null is approximated

using 400 randomly simulated data vectors from each null. In the notation of Section 4

p = 300, q = 24000, and n = 400. Simulations results, given in Section 7.3, show that

the Monte Carlo variability is not significant at these levels: the MR estimate is stable.

However, at these dimensions the analysis requires substantial computational resources. In

Section 9.1, included in the supplemental materials, we detail specific steps taken to make

the implementation feasible.

7.3 Results

The primary analysis, constructing the 95% MR confidence region, consisted of testing 24,000

candidate parameter combinations (the “nulls”); 282 (1.1%) of them were accepted. Strictly

speaking, the confidence set is this set of 282 parameter values/spectra, but this is of little

practical use. We pursue a more useful projection, an acceptance rule such that tests are

easy to perform, but faithful to the original results. We take a conservative viewpoint: The

rule should accept any parameter combination which was accepted in the original set, at the

expense of false positives.

The darker portion of Figure 3 shows the 95% confidence band on the power spectrum

formed by taking the outer envelope of all 282 accepted. The rule is thus that a spectrum

needs to pass through the entire band in order to be accepted. The loss of precision is

minimal: Of the 24,000 spectra, 126 are accepted under this rule that were not initially
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accepted. Despite the layers of Monte Carlo simulations, the estimate does appear to be

stable. Figure 2 compares the results of five repetitions of the analysis, each time redoing all

of the simulations, i.e., choosing different support points for the prior, different nulls, and

different simulated data values. The error bars shown give the variability in the upper or

lower endpoint at various values of `; since the spectra are all smooth, the size of the error

bars vary smoothly between those given. Despite this initial evidence of stability, a primary

concern regarding the use of this method is the variability of the estimate.
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Figure 2: A comparison of five repetitions of the MR 95% analysis. The error bars give the range of the

bounds at different `.

Figure 3 also depicts the 68% MR confidence band; this confidence level is a common

choice in the cosmology literature. Figure 4 shows both the 95% and 68% MES regions.

We stress that this estimate relies on the ΛCDM model described in Section 7.1. It is not

valid for testing spectra arising from other models. The full collection of 135,000 spectra,

each corresponding to a known combination of cosmological parameters, and each passing

the first-stage test, are tested against these bands. A parameter vector is accepted if and only
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Figure 3: 95% (dark) and 68% (light) MR confidence bands on the spectrum.
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Figure 4: 95% (dark) and 68% (light) MES confidence bands on the spectrum.
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Parameter MES MR

Ωb (0.032, 0.089) (0.033, 0.083)

Ωm (0.15, 0.83) (0.15, 0.74)

H0 (53, 88) (55, 88)

A (0.66, 0.98) (0.66, 0.98)

ns (0.92, 1.07) (0.93, 1.07)

τ (0.00, 0.27) (0.00, 0.27)

Ωbh
2 (0.020, 0.028) (0.021, 0.027)

Ωmh2 (0.11, 0.24) (0.11, 0.22)

Table 3: Ranges of accepted cosmological parameters, found by testing 135,000 models against the 95% MES

and MR regions.

if its spectrum lies entirely in the band. The acceptance rates were as follows: MR accepted

161 (0.1%) and 2039 (1.5%) for 68% and 95%, respectively, while MES accepted 909 (0.7%)

and 4116 (3.0%). Tables 3 and 4 show the range of parameter values among the accepted

spectra in each of the four cases. For example, there is a spectrum from the group of 135,000

that has Ωb = 0.083 which is accepted under the 95% MR procedure. These one-dimensional

projections of the accepted spectra mask the complex tradeoffs between the parameters. It

is typical to use the quantities Ωmh2 and Ωbh
2, where h ≡ H0/(100 km s−1 Mpc−1); their

ranges are shown in Tables 3 and 4.

For comparison, Table 4 includes the 68% credible intervals given in Spergel et al. (2003)

based on their analysis of the WMAP data. The differences result partly from differences

in the data sets. The WMAP experiment also measured the polarization of CMB photons;

see Kogut et al. (2003) for details. Measurements of polarization are particularly useful in

determining the value of τ since polarization is partly a result of reionization. Spergel et

al. use the joint likelihood of the temperature and the cross-spectrum between temperature

and polarization and they exclude τ < 0.089. In their analysis of the cross-spectrum only,

Kogut et al. (2003) construct a 68% credible interval for τ as (13, 21). It is clear that our

inability to reject small values of τ is related to our acceptance of lower values of H0 since

those two parameters have a strong degeneracy unresolvable by this data. The same can be

said of the higher bounds on Ωb and Ωm. For us to include the temperature/polarization

cross-spectrum would require finding a form of the joint likelihood that allows efficient Monte
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Parameter MES MR Spergel, et al.

Ωb (0.038, 0.080) (0.042, 0.071) (0.041, 0.053)

Ωm (0.20, 0.69) (0.24, 0.57) (0.22, 0.36)

H0 (55, 79) (58, 75) (67, 77)

A (0.68, 0.95) (0.69, 0.94) (0.8, 1.0)

ns (0.94, 1.04) (0.95, 1.04) (0.95, 1.03)

τ (0.00, 0.20) (0.01, 0.18) (0.089, 0.242)

Ωbh
2 (0.021, 0.027) (0.022, 0.026) (0.023, 0.025)

Ωmh2 (0.13, 0.22) (0.13, 0.19) (0.12, 0.16)

Table 4: Ranges of accepted cosmological parameters, found by testing 135,000 models against the 68% MES

and MR regions. Results are compared with the 68% Bayesian credible intervals reported in Spergel et al.

(2003)

Carlo simulations.

The differences observed in Table 4 also result from the different methods. Our one-

dimensional projections are conservative in the sense that there only has to be one accepted

spectrum for which Ωb = 0.053 for the interval to extend out to 0.053. The Bayesian credible

interval would exclude that parameter value if the set of all parameter combinations with

Ωb = 0.053 did not have sufficiently large posterior likelihood. We do not claim that our

stated intervals are exact; they simply represent the range of accepted values from the set

of spectra tested. The discrepancy in the intervals for A is interesting: Spergel et al. (2003)

report that the maximum likelihood estimate for A is 0.78,1 a value near the center of our

range but completely excluded from theirs. This illustrates the pathological behavior possible

when marginalizing the posterior over this parameter space.

8 Conclusion

A main goal of this research is to take a theoretically attractive idea, the construction of

minimax expected size and minimax regret confidence procedures, and bring it to applica-

tions through a computationally feasible approximation procedure. Limiting the expected

size of a confidence region has clear appeal, and we have allowed for broad generality in the

definition of “size.” In particular, the measure can depend on the truth, which is useful in
1Other MLE’s are H0 = 68, τ = 0.10, ns = 0.97, Ωbh

2 = 0.023, and Ωmh2 = 0.13.
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specific situations. The approximation is based on Monte Carlo simulations, but has theo-

retical backing: As the number of simulations increases, the maximum risk of the procedure

converges to the real minimax risk.

The motivating application, the estimation of cosmological parameters from measure-

ments of the cosmic microwave background radiation, is described. It was shown why this

methodology is well-suited to inference in this problem.
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9 Online Supplemental Material

9.1 Computational Details

A library of 135,000 cosmological parameter combinations that passed the chi-square test

was formed using the the software package CAMB (Lewis and Challinor, 2003). Based on

the standard subroutine CMBFAST (Seljak and Zaldarriaga, 1996), CAMB reduces the time

from minutes to seconds (for flat models) with little loss of accuracy. It took between 20

and 30 seconds to find the spectrum for approximately 95% of the parameter combinations

using CAMB. 2 The library was constructed using random walks through the parameter

space. Random steps are taken and accepted only if the first-stage test accepts the new

combination. Step sizes were adjusted to have a high rate of rejection (approximately 50%),

in an attempt to ensure that the entire space is searched. Forty-two independent walks were

constructed and compared, again in hopes of detecting irregular behavior such as missing

portions of the space. Regardless, due to degeneracies in the parameters, it is a challenge to

fully explore the space. Initial simulation results discussed later indicate that the confidence

set is stable even after selecting a new suite of parameter combinations in this manner. This is

not surprising: The integrals that are approximated via the Monte Carlo simulations require

dense sampling of the space of spectra, not the cosmological parameter space. The role of

the measure ν is to direct the sampling so that it is uniform in the parameter space. Steps

taken in the random walks are perturbations in the values of the cosmological parameters.

Out of this group of 135,000 spectra, p = 300 are chosen randomly to be the support for

the prior (labeled {θi}
p
i=1) and q = 24, 000 are chosen to be the “nulls” (labeled {ηi}

q
i=1), i.e.

the spectra that are accepted or rejected in the to form the confidence set. Following the

development in Section 4, for each ηj there is a matrix Aj whose (i, k) entry is the likelihood

ratio
|Σ(θi) |

−1/2 exp
(
−1

2
(xjk − µ(θi))

T Σ(θi)
−1 (xjk − µ(θi))

)

|Σ(ηj) |−1/2 exp
(
−1

2
(xjk − µ(ηj))

T Σ(ηj)
−1 (xjk − µ(ηj))

) , (46)

where {xjk}
n
k=1 are simulated data values distributed as ηj. (Here the penalty function φ is

constant.) Equation (46) can be rewritten as

exp
(
−1

2
(G(ηj)

T zjk + µ(ηj) − µ(θi))
T

D(θi)
T D(θi) (G(ηj)

T zjk + µ(ηj) − µ(θi))
)

|Σ(θi) |1/2|Σ(ηj) |−1/2 exp
(
−1

2
zjk

Tzjk

) (47)

2On a Sun UltraSparc II, 360 MHz, 128 MB of RAM
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where G(θ) is the Cholesky decomposition of Σ(θ), D(θ) is the Cholesky decomposition of

Σ(θ)−1 and zjk is a vector of standard normal variates. This produces matrices Aj which

are identically distributed to those using Equation (46), as can be shown easily using basic

properties of the normal distribution.

Equation (47) facilitates the computation of the matrices Aj:

1. Nearby `, `∗ for which `− `∗ is even are binned in groups of four, summed to reduce the

size of x further to 221 data values. This introduces little loss of information since the

spectra are typically very smooth, and, as described above, such modes are moderately

correlated. As this is a linear transformation of a normal vector, x remains Gaussian,

and we still let µ and Σ denote the mean vector and covariance matrix, respectively,

now assumed to be of reduced size.

2. The matrices {D(θi)}
p
i=1 are calculated and stored to disk. p is small enough that this

does not introduce significant storage demands.

3. For each 1 ≤ j ≤ q, the matrix G(ηj) is constructed, and then used over a sequence

of iterations k = 1, 2, . . . , n where different vectors zjk of standard normal variates are

formed using the NAG routine G05FDF, its inner product is stored as bjk. Set

Mjk ≡ G(ηj)
T zjk + µ(ηj) . (48)

Then, for each of i = 1, 2, . . . , p,

Nijk ≡ D(θi) (Mjk − µ(θi)) (49)

is calculated using the matrices stored at step two. Each of these matrix multiplications

exploits the upper triangular form of the Cholesky decomposition. Finally, the (k, i)

entry of Aj is initialized with Nijk
TNijk − bjk.

4. The quantity

log |Σ(ηj)| − log |Σ(θi)| (50)

is added to all entries of the ith column of Aj. This is simple using already-generated

quantities since for general positive definite matrix A,

log(|A|) = 2
∑

i

log(Chol(A)(i, i)) = −2
∑

i

log
(
Chol

(
A−1

)
(i, i)

)
. (51)
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LAPACK (Anderson et al., 1999) routines were used to compute Cholesky decompositions

and matrix inverses. After the above steps, Aj holds minus two times the logarithm of the

likelihood ratios shown in Equation (46). Working with the logarithms allows for much more

stable calculations, avoiding products of very small or very large numbers. For this reason,

the LFA Search subroutine accepts these log ratios as its main argument.

The process of building the Aj matrices and approximating the LFA/LRA was done on

a subset of 32 processors of Seaborg, a parallel computer housed at NERSC at Lawrence

Berkeley Laboratory. All steps of the process are parallelized; separate processors build

different matrices Aj, and LFA Search is likewise designed to run with different processors

handling different subsets of the nulls ηj. It takes an average of 27 seconds to form one

matrix D(θi), and 16.5 seconds to completely construct one of the Aj matrices. With all 32

processors, it takes approximately 210 minutes to do both of the above steps for all 24,000

nulls. The iterations that comprise the LFA Search procedure take about 0.03 seconds each.

In a batch of runs of the entire process, total CPU time consumed ranged from 6.75 to 9.00

hours, the variability due to differences in time to convergence for the iterative search for

the LFA/LRA.

9.2 Proofs

9.2.1 Proof of Theorem 1

We prove a stronger theorem: The assumptions that ν is a probability measure, that Γ has

a finite number of vertices, and that vθ(·) is bounded from above are not necessary. It is

necessary, however, that ν be σ-finite and that 0 ≤ vθ(η) < ∞. These results are taken

directly from EHS, modified to fit this situation.

Lemma 2. As a function of d (fix π ∈ Γ), Rπ(d) is a weak-star lower semicontinous mapping

of L∞[ν × µ] into [0,∞].

Proof. This is almost verbatim the proof of Lemma 1 in EHS. A slight change was needed

to allow for the additional generality introduced by the penalty function.

Fix π ∈ Γ. Form {Aj}
∞
j=1, an increasing sequence of nested ν-measurable subsets of Θ

such that ν(Aj) < ∞, vθ(η) ≤ j for η ∈ Aj, and ∪jAj = Θ. Then,
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Rπ(d) =

∫

Θ

∫

X

fη(x) rπ(η, x) d(η, x)µ(dx) ν(dη)

= sup
j

∫

Θ

∫

X

[
1Aj

(η) fη(x) rπ(η, x)
]
d(η, x) µ(dx) ν(dη)

by monotone convergence. For fixed j the double integral is a weak-star continuous functional

in d because the term in brackets is a member of L1[ν ×µ]. As the supremum of a collection

of weak-star continuous functionals, Rπ(d) is weak-star lower semicontinuous.

The following two results come directly from EHS (Theorem 4 and Lemma 2, respectively),

and they are stated without proof.

Lemma 3. Let M be a convex set and let T : M × N → [−∞,∞] be linear in M and

convex-like in N , in the sense that for each n0, n1 ∈ N, κ ∈ (0, 1), there is nκ ∈ N such that

κT (m, n0) + (1 − κ) T (m, n1) ≥ T (m, nκ)

for all m ∈ M . If N is a compact topological space and T (m, n) is lower semicontinuous in

n for each m, then

inf
n∈N

sup
m∈M

T (m, n) = sup
m∈M

inf
n∈N

T (m, n) . (53)

Lemma 4. If α ∈ [0, 1], then Dα ⊆ L∞[ν × µ] is weak-star compact.

Combining the above results, Lemma 1, and the definition of π0 gives

inf
d∈Dα

sup
π∈Γ

Rπ(d) = sup
π∈Γ

inf
d∈Dα

Rπ(d) = sup
π∈Γ

Rπ(dπ) . (54)

This proves Theorem 1.

9.2.2 Proof of Theorem 2

We will assume that nm = m. It should be clear that this has no effect on the limiting

results.

Lemma 5 (Van Zwet (1980)). Suppose J, J1, J2, . . . are each Lebesgue measurable func-

tions [0, 1] → IR, are uniformly bounded, and are such that for all t ∈ (0, 1),

lim
m→∞

∫ t

0

Jm(u) du =

∫ t

0

J(u) du.
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Let U1, U2, . . . be a sequence of independent uniform(0, 1) random variables. Define U1:m, U2:m, . . . , Um:m

to be U1, U2, . . . , Um placed in increasing order. Next, let g : [0, 1] → IR be a Borel measurable,

integrable function and define

gm(t) ≡ g
(
U[mt]+1:m

)

where [x] denotes the integer portion of x. Then,

∫ 1

0

Jm(u) gm(u) du
a.s.
−→

∫ 1

0

J(u) g(u) du.

Lemma 6. Fix η ∈ Θ and π. Then,

Zm,π(η) ≡ inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk) K̄
a.s.
−→ inf

d∈Dα

∫

Θ

γd(θ, η) vθ(η)π(dθ) .

Proof. We will apply Lemma 5 defining Jm(u) equal to one for u ≤ 1−αm and zero otherwise;

J(u) is equal to one for u ≤ 1 − α and zero otherwise. Let R denote the cumulative

distribution function for rπ(η, X) when X is distributed as Pη, i.e. R(x) = Pη(rπ(η, X) ≤ x).

The function g(·) of Lemma 5 is g(u) = inf{x : R(x) ≥ u}. Thus, if U is a uniform(0, 1)

random variable, g(U) is a random variable with cdf R(·) since inf{x : R(x) ≥ u} ≤ y if and

only if R(y) ≥ u. (This is the familiar “inversion” method for generating random variates

from an arbitrary CDF.) We know g(·) is integrable since

∫ 1

0

|g(u)| du = E(|g(U)|) = Eη(rπ(η, X)) ≤ M.

Next define u′ = inf{u : g(u) = g(1 − α)}, a = g(1 − α), and

c =





1−α−u′

Pη(rπ(η,X)=a)
, if Pη(rπ(η, X) = a) > 0

0, otherwise
.
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Then,
∫ 1

0

J(u) g(u) du =

∫ u′

0

g(u) du +

∫ 1−α

u′

g(u) du

= E
(
g(U) 1{U<u′}

)
+ E

(
g(U) 1{u′≤U≤1−α}

)

= E
(
g(U) 1{g(U)<g(u′)}

)
+ a(1 − α − u′) (55)

= E
(
g(U) 1{g(U)<a}

)
+ a(1 − α − u′)

= Eη

(
rπ(η, X)1{rπ(η,X)<a}

)
+ c Eη

(
rπ(η, X)1{rπ(η,X)=a}

)

=

∫

X

rπ(η, x) d∗(η, x) Pη(dx)

= inf
d∈Dα

∫

X

rπ(η, x) d(η, x) Pη(dx) (56)

= inf
d∈Dα

∫

Θ

γd(θ, η) vθ(η) π(dθ) (57)

where

d∗(η, x) =





1, if rπ(η, x) < a

c, if rπ(η, x) = a

0, otherwise

.

Here, equation (55) holds because g(U) < g(u′) if and only if U < u′; equation (56) holds

because d∗ ∈ Dα.

Next, begin by considering the function U : X × [0, 1] → [0, 1] defined by

U(x, w) = Pη(rπ(η, X) < rπ(η, x)) + wPη(rπ(η, X) = rπ(η, x)) ,

where X is distributed as Pη. Then, if W1, W2, . . . are independent uniform(0, 1) random

variables, and X1, X2, . . . are independent random variables distributed as Pη, we have that

U1 ≡ U(X1, W1), U2 ≡ U(X2, W2), . . . are independent uniform(0, 1) random variables. Fur-

ther,

g(Ui) = inf {x : R(x) ≥ Ui}

= inf {x : R(x) ≥ U(Xi, Wi)}

= inf {x : Pη(rπ(η, X) ≤ x) ≥ U(Xi, Wi)}

= rπ(η, Xi) .

Let X1:m, X2:m, . . . , Xm:m denote X1, X2, . . . , Xm ordered by the value of rπ(η, Xi) (the

way in which ties are handled is unimportant). Likewise, U1:m, U2:m, . . . , Um:m denotes
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U1, U2, . . . , Um placed in increasing order. Note that U(x1, w1) < U(x2, w2) if and only if

either rπ(η, x1) < rπ(η, x2) or rπ(η, x1) = rπ(η, x2) and w1 < w2. So, g(Ui:m) = rπ(η, Xi:m).

Thus,
∫ 1

0

Jm(u) gm(u) du =

∫ 1−αm

0

gm(u) du

=
1

m

m∑

k=1

g(Uk:m) d∗(η, k)

=
1

m

m∑

k=1

rπ(η, Xk:m) d∗(η, k)

= inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk) (58)

where

d∗(η, k) =





1, if k < k′

(1 − αm) m − k′ + 1, if k = k′

0, if k > k′

with k′ = inf{k ∈ Z : k ≥ (1 − αm)m}.

Combining Lemma 5 with equations (57) and (58) we find that

inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk)
a.s.
−→ inf

d∈Dα

∫

Θ

γd(θ, η) vθ(η)π(dθ) .

Next, define

K̄ ≡


K ×

(
1

m

∑

i

∑

k

rπ(η, Xk)

)−1

∧ 1. (59)

By the law of large numbers K̄ → 1 almost surely since

E

[
∑

i

rπ(η, Xk)

]
≤ pM < K. (60)

Hence,

Zm,π(η) ≡ inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk) K̄
a.s.
−→ inf

d∈Dα

∫

Θ

γd(θ, η) vθ(η)π(dθ) . (61)

Lemma 7. As m → ∞,

E[Zm,π(Tjm)] −→ Rπ(dπ) . (62)
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Proof. Through two applications of the bounded convergence theorem, we can see that for

fixed η ∈ Θ

E[Zm,π(η)] −→ inf
d∈Dα

∫

Θ

γd(θ, η) vθ(η)π(dθ) (63)

and that ∫

Θ

E[Zm,π(η)] ν(dη) −→

∫

Θ

[
inf

d∈Dα

∫

Θ

γd(θ, η) vθ(η)π(dθ)

]
ν(dη) . (64)

But ∫

Θ

E[Zm,π(η)] ν(dη) = E[Zm,π(Tjm)] (65)

and
∫

Θ

[
inf

d∈Dα

∫

Θ

γd(θ, η) vθ(η)π(dθ)

]
ν(dη) = inf

d∈Dα

∫

Θ

∫

Θ

γd(θ, η) vθ(η) π(dθ) ν(dη)

= Rπ(dπ) .

The infimum and integral can be switched because, as established in Lemma 2.1, the infimal

d is formed by minimizing for fixed η.

Lemma 8. {Um}
∞
m=1 is a sequence of random variables such that

Um =
1

qm

qm∑

j=1

Vjm (66)

where

1. {Vjm}
qm

j=1 are i.i.d. for each m and independent across different m;

2. E[Vjm] ≡ µm → µ;

3. {Vjm}
qm

j=1 are nonnegative and uniformly bounded for all m; and

4. the sequence {qm}
∞
m=1 is strictly increasing.

Then Um
a.s.
−→ µ.

Proof. Fix ε > 0. For m large enough that |µm − µ| < ε/2,

P[|Um − µ| > ε] ≤ P[|Um − µm| > ε/2] ≤

(
16

ε4

)
E
[
(Um − µm)4] (67)
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using the Markov inequality. Setting Wjm ≡ Vjm − µm,

E
[
(Um − µm)4] = q−4

m E



(

qm∑

j=1

Wjm

)4



= q−4
m

(
qmE

[
W 4

1m

]
+ 3qm(qm − 1) E

[
W 2

1m

]2)

≤ c q−2
m ≤ c m−2,

where c is a constant independent of m. (See page 85 in Billingsley (1995), the proof of

Theorem 6.1). Hence, by Borel-Cantelli,

P[|Um − µ| > ε i.o.] = 0. (68)

This implies that Um → µ almost surely.

The results above combined imply that as m → ∞,

R̂π(dπ,m) =
1

qm

qm∑

j=1

Zm,π(Tjm)
a.s.
−→ Rπ(dπ) (69)

for any probability distribution π on Θ.

Lemma 9. Let π, π′ ∈ Γ such that π =
∑

i wiπi and π′ =
∑

i w
′
iπi. Then, for all m,

∣∣∣R̂π(dπ,m) − R̂π′(dπ′,m)
∣∣∣ ≤ K‖w − w′‖1. (70)

Proof. For fixed indices j and m, let d′ be the decision procedure d ∈ D′
αm

that minimizes

the minimum of
∑

k

rπ(Tjm, Xjkm) d(Tjm, Xjkm) (71)

and
∑

k

rπ′(Tjm, Xjkm) d(Tjm, Xjkm) . (72)

Hence, d′ is either dπ,m or dπ′,m. Thus,

|Zm,π(Tjm) − Zm,π′(Tjm)| ≤
∑

i

|wi − w′
i|

(
1

m

∑

k

rπi
(Tjm, Xjkm) d′(Tjm, Xjkm) Kjm

)

≤ K

p∑

i=1

|wi − w′
i|

= K ‖w − w′‖1.
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The fact that

R̂π(dπ,m) =
1

qm

qm∑

j=1

Zm,π(Tjm) (73)

leads to the desired result.

Lemma 9 implies that the family {R̂π(dπ,m)}∞m=1 is equicontinuous as functions of the weight

vector w associated with π. The space of possible weights is compact, so the pointwise

convergence established above for fixed π is uniform in π. (See Royden (1988), page 168,

Lemma 39). This completes the proof of Theorem 2. �
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