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We explore the connections between the concepts of coherence, as defined
by deFinetti, and arbitrage in financial markets.

1. Introduction. Let Ω be a set of states with aσ-field of subsetsA. Let
X stand for a set of measurable real-valued functions defined onΩ. WhetherX
contains unbounded functions will be made clear in each context. The elements of
X will be called gambles, risky assets, or random variables. Functions of elements
of X will also be called by those same names.

DeFinetti took the concept of random variables as gambles very seriously, and
used the concept to motivate the familiar concepts of probability and expectation.
For each gambleX, he assumed that “You” would assign a valueP (X), called the
previsionof X so that you would be willing to accept the gambleβ[X − P (X)]
as fair for all positive and negative valuesβ. The only constraint that deFinetti
envisioned for you and your previsions is that you insisted that there be no positive
amount that you had to lose for sure. For example, you would not be allowed to
call a gamble fair if its supremum were negative. On the other hand, the criterion
is weak enough to allow you call a gamble fair if its supremum is 0, even if all of
its possible values are negative.

DEFINITION 1. Let X be an arbitrary collection of gambles. Suppose that
each gambleX ∈ X has a previsionP (X). The collection of previsions is
called coherentif, for every finite n (no larger than the cardinality ofX ) and
everyX1, . . . , Xn ∈ X and everyβ1, . . . , βn ∈ IR,

sup
ω∈Ω

n∑
i=1

βi[Xi(ω)− P (Xi)] ≥ 0.

If the previsions are not coherent, they are calledincoherent.

Notice that previsions are incoherent if and only if there exist finiten, ε > 0, and
realβ1, . . . , βn such that for allω

n∑
i=1

βi[Xi(ω)− P (Xi)] < −ε.(1)
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In other words, your previsions are incoherent if and only if there is some positive
amount that you can be forced to lose by combining finitely many of your fair
gambles. A combination of gambles that produces the inequality in (1) is called
a Dutch book, and previsions are coherent if and only if no Dutch book can be
constructed.

The motivation for the definition of coherent previsions is that, if a collection
of gambles are individually fair, then a finite sum of them should also be fair.
Infinite sums were not of interest to deFinetti. One reason might have been the fact
that infinite sums of real numbers are not necessarily defined when both positive
and negative values are included. Even in cases in which limits of partial sums
exist, the limits can depend on the order in which the sums are arranged.

The concept of arbitrage is similar to, but slightly stronger than, that of in-
coherence. The formation of a fair gamble as a multiple ofX − P (X) makes it
natural to think ofP (X) as a price to pay for a risky assetX. To avoid arbitrage,
it is necessary that your prices don’t allow you to lose almost for certain with no
chance of winning. The sticky part is defining “almost for certain”. To do this,
we introduce a subcollectionN ⊂ A called thenull events. These events must
satisfy:

• if A ∈ N andB ⊆ A, thenB ∈ N ,

• if A,B ∈ N , thenA ∪B ∈ N ,

• Ω 6∈ N .

The three conditions above can be recognized as the conditions defining anideal
of subsets ofΩ. A set is callednon-null if it is not null.

DEFINITION 2. Let X be a collection of risky assets. Suppose that each
X ∈ X has a priceP (X). An arbitrage opportunity(or simply anarbitrage)
exists if there exist a finiten, X1, . . . , Xn ∈ X , andβ1, . . . , βn ∈ IR such that∑n

i=1 βiP (Xi) ≤ 0 and
∑n

i=1 βiXi(ω) ≥ 0 for all ω with strict inequality forω in
a “non-null” set.

There are some connections between arbitrage and incoherence. Suppose, for
example, that all constant gambles (assets) are inX . That is, for each realc, the
gambleXc with Xc(ω) = c for all ω is inX . Then, previsions will be incoherent
and an arbitrage will exist unlessP (Xc) = c for all c. For the remainder of this
paper, we will assume that allXc ∈ X and that the price and/or prevision ofXc is
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c for all realc. These assumptions cannot affect whether or not the previsions are
coherent nor can they affect whether or not arbitrages exist.

Incoherence implies the existence of arbitrage but not vice-versa, as Proposi-
tion 1 and Example 1 show.

PROPOSITION1. If previsions are incoherent, there is an arbitrage opportu-
nity.

PROOF. If previsions are incoherent, there existn, X1, . . . , Xn, ε > 0, and
γ1, . . . , γn such that

∑n
i=1 γi[Xi − P (Xi)] < −ε. Let βi = −γi for i = 1, . . . , n

andc = ε+
∑n

i=1 βiP (Xi) and letX0(ω) = cwith β0 = −1. Then
∑n

i=0 βiXi(ω) >
0 for all ω and

∑n
i=0 βiP (Xi) = −ε. So, there is an arbitrage no matter which sets

count as null.�

EXAMPLE 1. Consider a simple state space withΩ = {0, 1}. LetX(ω) = ω
andP (X) = 0. Suppose thatN = {∅} is the collection of null events. Then this
single prevision is coherent, but it leads to the obvious arbitrage opportunity.

Example 1 could be “fixed” by declaring{1} to be another null event. The next
example, however, cannot be fixed.

EXAMPLE 2. Let Ω = ZZ+. Let X(ω) = 1/ω and P (X) = 0. Since
supω β[X(ω) − 0] ≥ 0 for all real β, this prevision is coherent. On the other
hand,P (X) ≤ 0 whileX(ω) > 0 for all ω, hence there is an arbitrage no matter
which events we declare to be null.

2. Unbounded Random Variables. WhenX includes unbounded quanti-
ties, it may be impossible to assign finite previsions to all of them.

EXAMPLE 3. LetΩ = ZZ+, and letY (ω) = 2ω. Also, defineXi(ω) = I{ω}(i)
for i ∈ ZZ+. Suppose thatP (Xi) = 1/2i for all i, corresponding to a geometric
distribution overΩ. Finally, let

Yi(ω) = Y (ω)I[1,i](ω) =
i∑

j=1

2jXj(ω),

for all i > 0, so thatYi is Y truncated to the interval[1, i]. It is easy to see
that Y ≥ Yi for all i and thatP (Yi) = i for all i > 0. If P (Y ) could take a
value, it would have to be∞, but such a prevision is not consistent with idea that
β[Y − P (Y )] is a fair gamble for some nonzeroβ.
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In cases like Example 3, we will use the notationP (Y ) =∞ to mean thatβ[Y −p]
is acceptable for all finitep and allβ ≥ 0. Similarly, P (X) = −∞ means that
β[X−p] is acceptable for all finitep and allβ ≤ 0. In this way, infinite previsions
mean that only one-sided bets are acceptable for the corresponding unbounded
random variables.

3. Extending Previsions and Prices. Both coherence and arbitrage have
equivalent formulations in terms of linear inequalities. In what follows,X stands
for an arbitrary linear combination of gambles or assets. WhenX is a linear
combination of gambles, we useP (X) to mean

∑n
i=1 βiP (Xi) if X =

∑n
i=1 βiXi

where theXi ∈ X .
Say thatX ≤ c if X(ω) ≤ c for all ω. Such an inequality will be called aweak

linear inequality. Say thatX ≺ c if X(ω) ≤ c for all ω andX(ω) < c for all ω in
some non-null set. Such an inequality will be called anon-null linear inequality.

PROPOSITION2. The previsions for gambles in a setX are coherent if and
only if every weak linear inequality satisfied by the gambles is also satisfied by the
previsions.

To prove Proposition 2, notice that
∑n

i=1 βi[Xi − P (Xi)] < −ε if and only if∑n
i=1 βiXi + ε <

∑n
i=1 βiP (Xi). A similar idea establishes the following.

PROPOSITION3. The prices for assets in a setX lead to no arbitrage op-
portunities if and only if every non-null linear inequality satisfied by the assets is
satisfied as a strict inequality by the prices.

DEFINITION 3. A linear functionalon a linear spaceX is a real-valued linear
function. Apositivelinear functional is a linear functionalL such thatL(X) ≥ 0
wheneverX ≥ 0. A strictly positivelinear functional is a positive linear func-
tionalL such thatL(X) > 0 if X � 0. A positive linear functionalL is countably
additive if, for every nonnegative increasing sequence{Xn}∞n=1 that has a limit
X, limn L(Xn) = L(X). A positive linear functional ismerely finitely additiveif
it is not countably additive.

Both coherence and arbitrage have equivalent formulations in terms of linear func-
tionals. The following two results have straightforward proofs.

PROPOSITION4. The previsions for gambles in a setX are coherent if and
only there is a positive linear functionalL defined on the linear span ofX such
thatL(X) = P (X) for all X ∈ X andL(1) = 1.
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PROPOSITION5. (FUNDAMENTAL THEOREM OFASSETPRICING) The prices
for assets in a setX admit no arbitrage opportunities if and only there is a
strictly positive linear functionalL defined on the linear span ofX such that
L(X) = P (X) for all X ∈ X andL(1) = 1.

Extending a coherent set of previsions to include another gamble not in the
linear span ofX is similar to extending an arbitrage-free set of prices to include
another asset not in the linear span ofX .

PROPOSITION6. (FUNDAMENTAL THEOREM OFPREVISION) Suppose that
coherent previsions are given for all gambles in a setX . LetY be a real-valued
function not inX . Let

A = {X : X ≤ Y andX is in the linear span ofX},
A = {X : X ≥ Y andX is in the linear span ofX}.

Define

P (Y ) = sup
X∈A

P (X),

P (Y ) = inf
X∈A

P (X).

ThenP (Y ) can be taken to be any number in the closed interval[P (Y ), P (Y )]
and the resulting previsions are still coherent. Furthermore, no value outside of
that closed interval would be a coherent value ofP (Y ).

Proposition 6 is a version of the theorem in Section 3.10 of de Finetti (1970).
The proof of this version is similar to the proof of Proposition 7 below. One
example of Proposition 6 is contained in Example 3, assuming thatX contains the
bounded gambles in the example but notY . In that exampleP (Y ) = P (Y ) =∞.
The interpretation of infinite prevision in Proposition 6 is precisely the one given
immediately after Example 3.

A more intriguing example of Proposition 6 is the following.

EXAMPLE 4. Let Ω = ZZ+ and letP (I{n}) = 2−n for all n. Let Y (n) = n
for all n. ThenP (Y ) = 2 andP (Y ) = ∞. This time, we have many choices for
P (Y ), namely anything in the closed interval[2,∞].
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We will return to Example 4 later to illustrate some other interesting features of
prevision for unbounded gambles. In particular, the prevision of a random variable
is not merely a function of its distribution as is the mathematical expectation.

For arbitrage-free asset prices, we have the following similar result.

PROPOSITION7. Suppose that prices are given for all assets in a setX such
that there are no arbitrage opportunities. LetY be a real-valued function not in
X . Let

B = {X ≺ Y : X is in the linear span ofX},
B = {X � Y : X is in the linear span ofX}.

Define
P (Y ) = sup

X∈B
P (X), P (Y ) = inf

X∈B
P (X).

ThenP (Y ) can be taken to be any number in the open interval(P (Y ), P (Y ))
and there will be no arbitrage opportunities. Furthermore, choosing a price for
Y outside of the closed interval[P (Y ), P (Y )] would lead to arbitrage.

PROOF. First, we show that prices outside of the closed interval lead to arbi-
trage. Suppose thatP (Y ) < P (Y ) (the case ofP (Y ) > P (Y ) is similar). Let
X ∈ B be such thatP (X) ≥ [P (Y ) + P (Y )]/2. WriteX =

∑n
i=1 βiXi where

eachXi ∈ X . SinceX ≺ Y , we have0 ≺ Y −X. By constructionP (Y −X) ≤ 0.
This constitutes an arbitrage.

For the main assertion, assume, to the contrary, thatP (Y ) is chosen inside
the open interval, but that there is an arbitrage. The coefficient ofY in the arbi-
trage must be nonzero or there would have been an arbitrage even withoutY . So,
suppose that

βP (Y ) +
n∑
i=1

βiP (Xi) ≤ 0,(2)

βY (ω) +
n∑
i=1

βiXi(ω) ≥ 0,(3)

for all ω with strict inequality forω ∈ A, a non-null set. Assume thatβ < 0 (the
other case is similar). It follows from (3) that

n∑
i=1

−βi
β
Xi(ω) ≥ Y (ω),(4)
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for all ω with strict inequality forω ∈ A. Hence, the random variable on the left
side of (4), call itX, must be an element ofB in the statement of the proposition.
The fact thatP (Y ) < P (X) is a contradiction to (2).�
The following example illustrates why the interval of possible prices is open in
the main assertion of Proposition 7.

EXAMPLE 5. LetΩ = ZZ+. LetN be the collection of all finite subsets. Let
X consist of the linear span of all constant functions and all indicators of sin-
gletons, i.e.,I{n} for all n. Let P (I{n}) = 0 for all n andP (c) = c for each
constantc. If X =

∑k
i=1 βiXi � 0, thenX(n) is a positive constant for all but

finitely manyn andP (X) equals that constant. There are no arbitrage opportuni-
ties. Now, suppose that we want to add the random variableY (n) = 1/n for all
n. ThenP (Y ) = 0 = P (Y ), and Proposition 7 gives us no leeway to choose an
arbitrage-free price forY . Indeed,P (Y ) = 0 leads to arbitrage all by itself as in
Example 2.

Sometimes it is possible to avoid arbitrage by choosingP (Y ) equal to an end-
point of the open interval in Proposition 7. For example, ifY is itself a linear
combination of elements ofX , thenP (Y ) = P (Y ) and the common value avoids
arbitrage.

The difference between coherence and lack of arbitrage hinges on consider-
ations of continuity. The following definition introduces a stronger continuity
condition than is required for lack of arbitrage.

DEFINITION 4. A free lunchis a net{(Xα, Yα) : α ∈ ℵ} where eachXα is
in the linear span ofX and eachYα is arbitrary and such thatXα � Yα for all α,
limα Yα = Y � 0, andlim infα P (Xα) ≤ 0.

Delbaen and Schachermayer (1994) give a version of Proposition 5 for stochastic
processes that relies on a condition that is weaker than no free lunch but still
stronger than no arbitrage. We will not pursue that condition here.

PROPOSITION8. If there is an arbitrage opportunity, then there is a free
lunch.

PROOF. Suppose that there exists an arbitrage opportunity. Then there is anX
in the linear span ofX with P (X) ≤ 0 andX � 0. Letℵ = ZZ+ in Definition 4,
Xα = X for all α, andYα = X − 1/α for all α. ThenXα � Yα for all α,
limα Yα = X � 0, andlim infα P (Xα) = P (X) ≤ 0. �
The converse of Proposition 8 is false as illustrated in Example 6.
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EXAMPLE 6. In Example 5, letℵ = ZZ+,

Xα(n) =

(
1

n

)
I{1,...,α}(n) +

(
1

α

)
I{α+1,...}(n),

andYα = Y for all α. SinceP (Xα) = 1/α, this is a free lunch.

Requiring that there be no free lunch requires that prices be a countably addi-
tive linear functional.

PROPOSITION9. If prices are merely finitely additive, then there is a free
lunch.

PROOF. If prices are merely finitely additive, then there exists a sequence
{Zn}∞n=1 andZ such thatZn ≤ Z for all n, limn Zn = Z, but limn P (Zn) <
P (Z). Let c ≤ P (Z) − limn P (Zn). Let ℵ = ZZ+. For eachα ∈ ℵ, let Yα =
Zα − Z + c/2 andXα = Yα + c/4. ThenXα � Yα for all α, limα Yα = c/2 � 0,
andlimα P (Xα) ≤ −c/4. �
For more discussion of free lunch when probabilities are countably additive, see
Kreps (1981).

4. Finitely Additive Probability. An alternative method of extending coher-
ent previsions is provided by the Hahn-Banach theorem. Suppose thatX consists
of a collection of bounded gambles andY ⊇ X is a larger set of bounded gambles
with larger linear span thanX . The Hahn-Banach theorem guarantees the exis-
tence of an extension of a positive linear functionalL on the linear span ofX to a
linear functionalL′ on the linear span ofY. We can make sure thatL′ is positive
using the fundamental theorem of prevision. We have not been able to apply the
same reasoning to asset prices and arbitrage without additional conditions.

LetY containX and all indicatorsIA for setsA in some collection of subsets
of Ω. For example, we could include all subsets or just those in some field or
someσ-field. When we extend our previsions to the linear span ofY and then
restrict the extension to just the collection of indicators, we have a finitely additive
probability.

To be specific, letµ(A) = P (IA). Thenµ(Ω) = 1, µ(A) ≥ 0 for all A, and
µ(A ∪ B) = µ(A) + µ(B) whenA ∩ B = ∅. Every finitely additive probability
µ has a unique decomposition asαµc + (1 − α)µf where0 ≤ α ≤ 1, µc is
countably additive, andµf is purely finitely additive. (See Schervish, Seidenfeld
and Kadane, 1984.)
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DEFINITION 5. A probability ν is purely finitely additiveif, for every ε >
0, there exists a countable partition{An}∞n=1 of Ω such that

∑∞
n=1 ν(An) < ε.

A probability ν is strongly finitely additiveif there exists a partition such that∑∞
n=1 ν(An) = 0.

In Proposition 7, letµ be the probability derived from the pricesP . If the null sets
are the setsC with µ(C) = 0 and if the purely finitely additive component ofµ
is not strongly finitely additive, thenP (Y ) can be taken equal to any value from
P (Y ) to P (Y ). This result allows us to use the Hahn-Banach theorem to extend
a strictly positive linear functional from an arbitrary collection of bounded assets
to a larger collection of bounded assets while preserving strict positivity.

Suppose that we have a positive linear functional defined on a linear spaceL.
This space might be the linear span ofX or it might also contain indicators for
some events. IfX is a simple function, i.e.X =

∑n
i=1 aiIAi where eachIAi ∈ L,

thenP (X) =
∑n

i=1 aiµ(Ai). This looks a lot like the first part of the definition of
the Lebesgue integral with respect toµ.

Let X ∈ L be bounded, and suppose thatX−1(A) has its indicator inL for
every intervalA. Then, there exist sequences of simple functions{Xn}∞n=1 and
{Xn}∞n=1 such that, for alln,

• Xn ≤ X ≤ Xn,

• Xn −Xn ≤ 1/2n,

• Xn ≤ Xn+1, andXn+1 ≤ Xn.

It follows that
P (X) = lim

n→∞
P (Xn) = lim

n→∞
P (Xn).

This also looks like a part of the definition of the Lebesgue integral.
The general theory of integration with respect to finitely additive measures

starts with a finitely additive signed measure defined on a fieldF of subsets of
Ω. Many interesting functions are not measurable with respect to a typical field.
The general definition of finitely additive integral is fraught with measurability
considerations.

Without going into details, there are conditions under which a nonmeasurable
function f still has a “uniquely defined” finitely additive integral. In particular,
there needs to be a sequence{fn}∞n=1 of integrable simple functions such that the
outer absolute measure of{ω : |fn(ω) − f(ω)| > ε} goes to 0 for everyε > 0
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and the functions are anL1 Cauchy sequence. See Dunford and Schwartz (1988,
Section III.2) for more detail on the general theory of finitely additive integrals.

An alternative definition of integral begins with a positive linear functional
L on a linear space of functionsL. Such a functional is aDaniell integral if
fn ↓ 0 impliesL(fn)→ 0. This last condition is equivalent to countable additivity
for indicator functions (using pointwise convergence inL). So, the following
definition seems natural.

DEFINITION 6. A positive linear functionalL is a finitely additive Daniell
integral. We call such anL the finitely additive Daniell integral with respect toµ
if L(IA) = µ(A) for each setA at whichµ is defined.

There is a question of whether or not we should add a weaker continuity condition
to the definition before callingL a finitely additive integral.

EXAMPLE 7. LetF be a field of subsets ofΩ, and letµ be a finitely addi-
tive probability. LetL consist of the set of all bounded measurable real-valued
functions onΩ. DefineL(f) =

∫
fdµ, the finitely additive Daniell integral with

respect toµ. Suppose thatfn → f uniformly. Then,L(fn)→ L(f).

With the definition of a finitely additive Daniell integral, we have the following
rewording of the result on Proposition 4: “Previsions for a collection of gambles
are coherent if and only if they are the finitely additive Daniell integrals of the
gambles.” To put the claim into perspective, recall Example 4.

EXAMPLE 8. LetΩ = ZZ+ and letP (I{n}) = 2−n for all n. LetX(n) = n for
all n. ThenP (X) = 2 andP (X) = ∞ in both Propositions 6 and 7. This time,
we have many coherent (and arbitrage-free) choices forP (X). In particular, we
could chooseP (X) = 4, which does not match the countably additive integral of
X.

DoesP (X) = 4 match a finitely additive integral in Example 8? The answer
is “yes” according to the fundamental theorem of prevision and the equivalence of
coherence with the existence of positive linear functionals. We can even make the
linear functional continuous. Of course, every positive linear functionalL such
thatL(1) = 1 is continuous in the topology of uniform convergence. But the
topology of uniform convergence does not extend nicely to sets with unbounded
functions.

Suppose that You want to assign the valuec ≥ 2 asP (X) in Example 8. Let
L be the linear span ofX and the bounded functions. Eachf ∈ L has a unique
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representation asf = αX + h whereh is bounded. DefineL(f) = αc + P (h).
ThisL extendsP from the bounded functions toL.

Let ‖ · ‖∞ be theL∞ norm with respect to the (countably additive) measureµ
that derives fromP . Let d > 0. Forf = αX + h, define

‖f‖ = ‖h‖∞ + |α|d.

It is easy to check that this is a norm. We can see thatL is continuous with respect
to this norm. Notice that‖αnX+hn‖ → 0 if and only ifαn → 0 and‖hn‖∞ → 0.
But thenL(αnX + hn) = αnc+ P (hn)→ 0.

In this topology, no sequence of bounded functions converges to an unbounded
function, although some sequences of unbounded functions do converge to bounded
functions. Despite the fact that the underlying measureµ (that derives fromP on
the bounded functions) is countably additive, the extension ofP to L is merely
finitely additive in the sense of Definition 3. For example, letXn = min{X,n}
for all n and notice thatlimnXn = X but limn P (Xn) = 2 < P (X).

The assignment ofP (X) = 4 puts constraints on the values that we could
assign as previsions for other unbounded random quantities.

• If Y ≥ 0 andlimn→∞ Y (n)/n =∞, thenP (Y ) =∞.

• If Y ≥ 0 and limn→∞ Y (n)/n = 0, thenP (Y ) must equal its expected
value.

If two random variables have the same distribution, then they have the same
expectation. The same is not true of prevision if the random variables are un-
bounded.

Suppose that we have two fair coins, and we believe that their flips are inde-
pendent of each other. LetX be the number of the flip on which the first coin lands
heads for the first time. LetY be the number of the flip on which the second coin
lands heads for the first time. Coherence does not require thatP (X) = P (Y ). Of
course, violatingP (X) = P (Y ) implies finite additivity of the previsions in the
sense of Definition 3.

5. The Numeraire. The finitely additive nature of previsions like those in
the previous examples becomes more apparent when we consider a change of
numeraire. Results about coherence were stated in terms of random variables and
numerical previsions. Implicit in all this is what is meant by a unit. That is, we
payP (X) units to receiveX(ω) units in stateω. If all units are dollars, we can
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make sense of this. Similarly, if all units are Euros, we can make sense of it. If
we are willing to contemplate both currencies simultaneously, then we have to
consider the exchange rate. In particular, the exchange rate itself can be a random
variable.

EXAMPLE 9. LetX be a function fromΩ to IR. If we think ofX as specifying
a number of dollars in each state, this will be different than ifX specifies a number
of Euros in each state. The distinction is caused by the fact that the exchange rate
can be random. To keep things straight, letPD andPE stand for previsions when
the random quantities are assumed to be in units of dollars and Euros respectively.

Suppose that there are three statesΩ = {ω1, ω2, ω3} which have equal proba-
bilities in the following sense. When prizes are dollars, each of the actsXi = I{ωi}
for i = 1, 2, 3 hasPD(Xi) = 1/3. So, I am willing to pay $1/3 in order to get $1
if ωi occurs and 0 if not, fori = 1, 2, 3.

Suppose that the three states have different exchange rates, however. For ex-
ample, ifω1 occurs,E1=$1.10, ifω2 occurs,E1=$1.20, and ifω3 occursE1=$1.30.
Let c1 = 1.1, c2 = 1.2, c3 = 1.3, and defineC(ωi) = ci for i = 1, 2, 3. ThenC is
the random exchange rate in $/E, and1/C is the random exchange rate inE/$.

For each gambleY in dollars,Y ′ = Y/C is the same gamble reexpressed in
units of Euros. Similarly, ifY ′ is a gamble in units of Euros, thenY = Y ′C is the
same gamble in dollars.

It is fairly easy to show the following facts:

• The marginal exchange rate in $/E is PD(C) = 1/PE(1/C), andPE(1/C)
is the marginal exchange rate inE/$.

• For each gambleY in dollars and its equivalentY ′ = Y/C in Euros,
PE(Y ′) = PD(Y )/PD(C) andPD(Y ) = PE(Y ′)/PE(1/C).

Example 9 illustrates another interesting feature that applies regardless of
whether previsions are countably additive or merely finitely additive.

EXAMPLE 10. Consider again the three gambles (from Example 9) in dollars,
Xi = I{ωi} for i = 1, 2, 3. We hadPD(Xi) = 1/3 for i = 1, 2, 3. Now consider
the same three numerical functions as Euro values instead of dollar values. Then

PE(Xi) =
PD(XiC)

PD(C)
=
ci/3

1.2

=


0.3056 if i = 1,
0.3333 if i = 2,
0.3611 if i = 3.
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The states have different probabilities when elicited in Euros instead of dollars.

The point of Example 10 (extracted with modification from Schervish, Seidenfeld
and Kadane, 1990) is that if one interprets the prevision of the indicator of an
event as the probability of the event, one must realize that what counts as a unit
(the numeraire) makes a difference.

The effect of finitely additive previsions on exchange rate changes can be il-
lustrated by returning to Example 8. There,X had the distribution of the number
of tosses of a fair coin until the first head, but we gaveX the prevision 4. Suppose
that this prevision was in dollars. Suppose that the random exchange rate in $/E

is C = X. ThenPD(C) = 4 is the marginal exchange rate. What are the new
probabilities for each state{n} when elicited in Euros?

As before

PE(I{n}) =
PD(I{n}C)

PD(C)
=

n

2n+2
,

for n = 1, 2, . . .. It is easy to see that
∑∞

n=1 PE(I{n}) = 1/2. We started with
a countably additive probability over the states. Then we performed a change
of numeraire which produced a finitely additive probability. The reason is that
we had assigned the random exchange rate a finitely, but not countably, additive
prevision. Nevertheless, the previsions in one currency are coherent if and only if
the previsions in the other currency are coherent, so long as the marginal exchange
rate is strictly positive and finite.

6. Summary. Although the coherence and arbitrage-free conditions are sim-
ilar, they are not identical. Forbidding arbitrage is a stronger requirement than re-
quiring coherence. Each is equivalent to the existence of certain linear functionals
that reproduce previsions/prices. Each allows mere finite additivity. Absence of
arbitrage does preclude certain finitely additive setups while coherence allows all
finitely additive setups. A condition even stronger than being arbitrage-free is “no
free lunch” which precludes all mere finite additivity as well as some countably
additive setups. Extending coherent previsions to include an additional gamble is
always possible. Extending arbitrage-free prices to include an additional gamble
is sometimes possible.

Regardless of whether prices are countably or finitely additive, the choice of
unit (numeraire) makes a difference in how previsions/prices are interpreted. In
particular, changes in numeraire can change probabilities of events. In this sense,
a change of numeraire is similar to a change to an equivalent measure. Previ-
sions/prices for unbounded quantities can be merely finitely additive even if prob-
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abilities are countably additive. In such cases, a change of numeraire can convert
the probabilities to be merely finitely additive.
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