June 19, 2006

The Fundamental Theorems of Prevision
and Asset Pricing
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We explore the connections between the concepts of coherence, as defined
by deFinetti, and arbitrage in financial markets.

1. Introduction. Let (2 be a set of states with @field of subsets4. Let
X stand for a set of measurable real-valued functions defin€d. dWhethert’
contains unbounded functions will be made clear in each context. The elements of
X will be called gambles, risky assets, or random variables. Functions of elements
of X will also be called by those same names.

DeFinetti took the concept of random variables as gambles very seriously, and
used the concept to motivate the familiar concepts of probability and expectation.
For each gambl&’, he assumed that “You” would assign a valieX ), called the
previsionof X so that you would be willing to accept the gambleX’ — P(X)]
as fair for all positive and negative valugs The only constraint that deFinetti
envisioned for you and your previsions is that you insisted that there be no positive
amount that you had to lose for sure. For example, you would not be allowed to
call a gamble fair if its supremum were negative. On the other hand, the criterion
is weak enough to allow you call a gamble fair if its supremum is 0, even if all of
its possible values are negative.

DEFINITION 1. Let X be an arbitrary collection of gambles. Suppose that
each gambleX € X has a prevision?(X). The collection of previsions is
called coherentif, for every finite n (no larger than the cardinality ot’) and
everyXy,..., X, € Xandeverys,...,3, € R,

n

supZﬁi[Xi(w) — P(X;)] > 0.

weN i—1
If the previsions are not coherent, they are callebherent

Notice that previsions are incoherent if and only if there exist finjte > 0, and
real;, ..., 3, such that for allv

(1) > BilXiw) = P(X3)] < —e,
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In other words, your previsions are incoherent if and only if there is some positive
amount that you can be forced to lose by combining finitely many of your fair
gambles. A combination of gambles that produces the inequality in (1) is called
a Dutch book and previsions are coherent if and only if no Dutch book can be
constructed.

The motivation for the definition of coherent previsions is that, if a collection
of gambles are individually fair, then a finite sum of them should also be fair.
Infinite sums were not of interest to deFinetti. One reason might have been the fact
that infinite sums of real numbers are not necessarily defined when both positive
and negative values are included. Even in cases in which limits of partial sums
exist, the limits can depend on the order in which the sums are arranged.

The concept of arbitrage is similar to, but slightly stronger than, that of in-
coherence. The formation of a fair gamble as a multipl&of P(X) makes it
natural to think ofP(X') as a price to pay for a risky ass&t To avoid arbitrage,
it is necessary that your prices don’t allow you to lose almost for certain with no
chance of winning. The sticky part is defining “almost for certain”. To do this,
we introduce a subcollectiaW” C A called thenull events These events must
satisfy:

e if Ac NandB C A, thenB € N,
o if A, Bc N,thenAU B e N,
e OZN.

The three conditions above can be recognized as the conditions definithgghn
of subsets of). A set is callechon-nullif it is not null.

DEFINITION 2. Let X be a collection of risky assets. Suppose that each
X € X has a priceP(X). An arbitrage opportunity(or simply anarbitrage)
exists if there exist a finite, X;,...,X,, € X, andf,...,5, € R such that
Yo BiP(X;) <0and)’! | 3:X;(w) > 0forall w with strict inequality forw in
a “non-null” set.

There are some connections between arbitrage and incoherence. Suppose, for
example, that all constant gambles (assets) afe.ifhat is, for each real, the
gambleX, with X.(w) = ¢ for all wis in X. Then, previsions will be incoherent
and an arbitrage will exist unleg3(X,) = ¢ for all c. For the remainder of this
paper, we will assume that all. € X and that the price and/or prevision &f. is



c for all realc. These assumptions cannot affect whether or not the previsions are
coherent nor can they affect whether or not arbitrages exist.

Incoherence implies the existence of arbitrage but not vice-versa, as Proposi-
tion 1 and Example 1 show.

PROPOSITIONL. If previsions are incoherent, there is an arbitrage opportu-
nity.

PrROOF If previsions are incoherent, there existX,,..., X,, ¢ > 0, and
Y- SUch thaty "> | vi[X; — P(X;)] < —e. Letf; = —y; fori=1,....n
andc = e+, 5;P(X;) and letX(w) = cwith 5y = —1. Then}_" , 3;X;(w) >
0forallwand) , 3;P(X;) = —e. So, there is an arbitrage no matter which sets
count as null[]

ExampPLE 1. Consider a simple state space with= {0,1}. Let X (w) = w
andP(X) = 0. Suppose that/ = {0} is the collection of null events. Then this
single prevision is coherent, but it leads to the obvious arbitrage opportunity.

Example 1 could be “fixed” by declarinfl } to be another null event. The next
example, however, cannot be fixed.

EXAMPLE 2. Let) = Z*. Let X(w) = 1/w and P(X) = 0. Since
sup,, B[ X (w) — 0] > 0 for all real 3, this prevision is coherent. On the other
hand,P(X) < 0 while X (w) > 0 for all w, hence there is an arbitrage no matter
which events we declare to be null.

2. Unbounded Random Variables. When X' includes unbounded quanti-
ties, it may be impossible to assign finite previsions to all of them.

EXAMPLE 3. LetQ = Z", and letY (w) = 2¥. Also, defineX;(w) = I (i)
fori € Z". Suppose thaP(X;) = 1/2 for all 4, corresponding to a geometric
distribution over2. Finally, let

Yi(w) =Y (W) pq(w) = Z 2 X;(w),

for all © > 0, so thatY; is Y truncated to the intervdll,:]. It is easy to see
thatY > Y; for all : and thatP(Y;) = i for alli > 0. If P(Y) could take a
value, it would have to beo, but such a prevision is not consistent with idea that
BlY — P(Y)] is a fair gamble for some nonzetb
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In cases like Example 3, we will use the notati®”) = co to mean that[Y —p

is acceptable for all finitg and all3 > 0. Similarly, P(X) = —oo means that

B[X —p] is acceptable for all finite and allg < 0. In this way, infinite previsions

mean that only one-sided bets are acceptable for the corresponding unbounded
random variables.

3. Extending Previsions and Prices. Both coherence and arbitrage have
equivalent formulations in terms of linear inequalities. In what followsstands
for an arbitrary linear combination of gambles or assets. WKeis a linear
combination of gambles, we ug& X)) tomeany ", 3, P(X;)if X =>"" | 3:X,
where theX; € X.

Say thatX < cif X (w) < cforall w. Such an inequality will be calledwaeak
linear inequality Say thatX < cif X(w) < cforallwandX(w) < cforall win
some non-null set. Such an inequality will be callegos-null linear inequality

PROPOSITION2. The previsions for gambles in a s&tare coherent if and
only if every weak linear inequality satisfied by the gambles is also satisfied by the
previsions.

To prove Proposition 2, notice that’_, 5;,(X; — P(X;)] < —eif and only if
Sor o BiXi4+e <>, BiP(X;). Asimilar idea establishes the following.

PROPOSITION3. The prices for assets in a sét lead to no arbitrage op-
portunities if and only if every non-null linear inequality satisfied by the assets is
satisfied as a strict inequality by the prices.

DEFINITION 3. Alinear functionalon a linear spacg’ is a real-valued linear
function. Apositivelinear functional is a linear functiondl such that’.(X) > 0
wheneverX > 0. A strictly positivelinear functional is a positive linear func-
tional L such thatZ(X') > 0 if X >~ 0. A positive linear functionalL is countably
additiveif, for every nonnegative increasing sequefcg, }°2 ; that has a limit
X, lim,, L(X,) = L(X). A positive linear functional isnerely finitely additivef
it is not countably additive.

Both coherence and arbitrage have equivalent formulations in terms of linear func-
tionals. The following two results have straightforward proofs.

PrROPOSITION4. The previsions for gambles in a s&tare coherent if and
only there is a positive linear functiondl defined on the linear span df such
that L(X) = P(X) forall X € X andL(1) = 1.
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PROPOSITIONS. (FUNDAMENTAL THEOREM OFASSETPRICING) The prices
for assets in a se®’ admit no arbitrage opportunities if and only there is a
strictly positive linear functionall defined on the linear span of such that
L(X)=P(X)forall X € X andL(1) = 1.

Extending a coherent set of previsions to include another gamble not in the
linear span ofY is similar to extending an arbitrage-free set of prices to include
another asset not in the linear spantaf

PROPOSITIONG6. (FUNDAMENTAL THEOREM OFPREVISION) Suppose that
coherent previsions are given for all gambles in a 8etLetY be a real-valued
function not inX'. Let

= {X: X <Y andX isinthe linear span oft'},
= {X:X >YandX isinthe linear span oft'}.

SRS

Define

PY) = Sup P(X),

P(Y) = inf P(X).
XeA

ThenP(Y) can be taken to be any number in the closed intefal’), P(Y)]
and the resulting previsions are still coherent. Furthermore, no value outside of
that closed interval would be a coherent valueRgl).

Proposition 6 is a version of the theorem in Section 3.10 of de Finetti (1970).
The proof of this version is similar to the proof of Proposition 7 below. One
example of Proposition 6 is contained in Example 3, assumingii@intains the
bounded gambles in the example but Wotin that example?(Y) = P(Y) = oo.
The interpretation of infinite prevision in Proposition 6 is precisely the one given
immediately after Example 3.

A more intriguing example of Proposition 6 is the following.

EXAMPLE 4. LetQ = Z* and letP(I;,,;) = 27" foralln. LetY(n) = n
for all n. ThenP(Y) = 2 andP(Y) = cc. This time, we have many choices for
P(Y'), namely anything in the closed interval oo.



We will return to Example 4 later to illustrate some other interesting features of
prevision for unbounded gambles. In particular, the prevision of a random variable
is not merely a function of its distribution as is the mathematical expectation.

For arbitrage-free asset prices, we have the following similar result.

PROPOSITION7. Suppose that prices are given for all assets in a¥etuch
that there are no arbitrage opportunities. LEtbe a real-valued function not in
X. Let

= {X <Y : Xisinthe linear span oft'},
= {X > Y : Xisinthe linear span oft'}.

=l I

Define
P(Y)=sup P(X), P(Y)= inf P(X).
XeB XeB
ThenP(Y) can be taken to be any number in the open intefalY’), P(Y))
and there will be no arbitrage opportunities. Furthermore, choosing a price for
Y outside of the closed intervaP(Y), P(Y')] would lead to arbitrage.

PROOF. First, we show that prices outside of the closed interval lead to arbi-
trage. Suppose tha@(Y) < P(Y) (the case of?(Y) > P(Y) is similar). Let
X € BbesuchthaP(X) > [P(Y)+ P(Y)]/2. Write X = >""" | 3, X, where
eachX; € X. SinceX <Y, we have) < Y —X. By constructionP”(Y —X) < 0.

This constitutes an arbitrage.

For the main assertion, assume, to the contrary, #iaf) is chosen inside
the open interval, but that there is an arbitrage. The coefficieht iof the arbi-
trage must be nonzero or there would have been an arbitrage even with8Sot
suppose that

(2) BP(Y)+> BiP(X;) < 0,

3) BY (w)+ Y BiXi(w) > 0,

for all w with strict inequality forw € A, a non-null set. Assume thgt< 0 (the
other case is similar). It follows from (3) that

n
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for all w with strict inequality foro € A. Hence, the random variable on the left
side of (4), call itX, must be an element @ in the statement of the proposition.
The fact thatP(Y') < P(X) is a contradiction to (2)J

The following example illustrates why the interval of possible prices is open in
the main assertion of Proposition 7.

EXAMPLE 5. LetQ) = Z™. Let A/ be the collection of all finite subsets. Let
X consist of the linear span of all constant functions and all indicators of sin-
gletons, i.e.[j,, for all n. Let P(Iy,;) = 0 for all n and P(c) = c for each
constant.. If X = Zle G:X; » 0, thenX(n) is a positive constant for all but
finitely manyn and P(X') equals that constant. There are no arbitrage opportuni-
ties. Now, suppose that we want to add the random varigle = 1/n for all
n. ThenP(Y) = 0 = P(Y), and Proposition 7 gives us no leeway to choose an
arbitrage-free price for". Indeed,P(Y) = 0 leads to arbitrage all by itself as in
Example 2.

Sometimes it is possible to avoid arbitrage by chooditiy’) equal to an end-
point of the open interval in Proposition 7. For exampleYifs itself a linear
combination of elements ¥, thenP(Y) = P(Y) and the common value avoids
arbitrage.

The difference between coherence and lack of arbitrage hinges on consider-
ations of continuity. The following definition introduces a stronger continuity

condition than is required for lack of arbitrage.

DEFINITION 4. A free lunchis a net{(X,,Y,) : « € X} where eachX, is
in the linear span o/’ and eaclt, is arbitrary and such that,, > Y, for all «,
lim, Y, =Y > 0, andliminf, P(X,) <0.

Delbaen and Schachermayer (1994) give a version of Proposition 5 for stochastic
processes that relies on a condition that is weaker than no free lunch but still
stronger than no arbitrage. We will not pursue that condition here.

PROPOSITIONS. If there is an arbitrage opportunity, then there is a free
lunch.

PROOF Suppose that there exists an arbitrage opportunity. Then thereXis an
in the linear span of’ with P(X) < 0andX = 0. LetX = Z* in Definition 4,
X, = X forall o, andY, = X — 1/« for all «. ThenX, > Y, for all «,
lim, Y, = X > 0, andliminf, P(X,) = P(X) < 0.0
The converse of Proposition 8 is false as illustrated in Example 6.
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EXAMPLE 6. In Example 5, leR = Z*,

andY, =Y forall a. SinceP(X,) = 1/q, this is a free lunch.

Requiring that there be no free lunch requires that prices be a countably addi-
tive linear functional.

PROPOSITIONS. If prices are merely finitely additive, then there is a free
lunch.

PROOF If prices are merely finitely additive, then there exists a sequence
{Z,}52, and Z such thatZ,, < Z for all n, lim,, Z,, = Z, butlim, P(Z,) <
P(Z). Lete < P(Z) — lim,, P(Z,). Let®X = Z+. For eachn € N, letY, =
Zo—Z+c/2andX, =Y, + ¢/4. ThenX,, > Y, forall o, lim, Y, = ¢/2 > 0,
andlim, P(X,) < —¢/4. 0O
For more discussion of free lunch when probabilities are countably additive, see
Kreps (1981).

4. Finitely Additive Probability.  An alternative method of extending coher-
ent previsions is provided by the Hahn-Banach theorem. Suppos# ttatsists
of a collection of bounded gambles apid> X’ is a larger set of bounded gambles
with larger linear span thaA’. The Hahn-Banach theorem guarantees the exis-
tence of an extension of a positive linear functiohaln the linear span ot’ to a
linear functionalL’ on the linear span QY. We can make sure that is positive
using the fundamental theorem of prevision. We have not been able to apply the
same reasoning to asset prices and arbitrage without additional conditions.

Let Y containX and all indicatord 4 for setsA in some collection of subsets
of 2. For example, we could include all subsets or just those in some field or
someo-field. When we extend our previsions to the linear spag/@&nd then
restrict the extension to just the collection of indicators, we have a finitely additive
probability.

To be specific, lef(A) = P(14). Thenu(Q) = 1, u(A) > 0 for all A, and
u(AU B) = u(A) + u(B) whenA N B = (). Every finitely additive probability
p has a unique decomposition ag. + (1 — a)us where0 < a < 1, p. is
countably additive, angl, is purely finitely additive. (See Schervish, Seidenfeld
and Kadane, 1984.)



DEFINITION 5. A probability v is purely finitely additivef, for every e >
0, there exists a countable partitigat,, }>° , of Q such that) "~ v(A4,) < e.
A probability v is strongly finitely additivef there exists a partition such that

Z;L.OZI v(A,) = 0.

In Proposition 7, lej: be the probability derived from the pricés If the null sets
are the set§’ with u(C') = 0 and if the purely finitely additive component pf
is not strongly finitely additive, the®(Y") can be taken equal to any value from
P(Y) to P(Y). This result allows us to use the Hahn-Banach theorem to extend
a strictly positive linear functional from an arbitrary collection of bounded assets
to a larger collection of bounded assets while preserving strict positivity.
Suppose that we have a positive linear functional defined on a linear Space
This space might be the linear spanXfor it might also contain indicators for
some events. IX is a simple function, i.eX = ZLI a; 14, where eacliy, € L,
thenP(X) = >"" | a;u(A;). This looks a lot like the first part of the definition of
the Lebesgue integral with respectto
Let X € £ be bounded, and suppose tiat!(A) has its indicator inC for
every intervalA. Then, there exist sequences of simple functipis, }>2 , and
{X,}°°, such that, for alh,

e X, <X <X,

n— X, <1/27,

X
L4 X S Xn+1a andyn—i—l S Yn

It follows that

P(X) = lim P(X,) = lim P(X,).

n—oo n—oo

This also looks like a part of the definition of the Lebesgue integral.

The general theory of integration with respect to finitely additive measures
starts with a finitely additive signed measure defined on a fféelof subsets of
2. Many interesting functions are not measurable with respect to a typical field.
The general definition of finitely additive integral is fraught with measurability
considerations.

Without going into details, there are conditions under which a nonmeasurable
function f still has a “uniquely defined” finitely additive integral. In particular,
there needs to be a sequedd¢e}o° , of integrable simple functions such that the
outer absolute measure @b : |f,(w) — f(w)| > €} goes to O for every > 0



and the functions are al Cauchy sequence. See Dunford and Schwartz (1988,

Section 111.2) for more detail on the general theory of finitely additive integrals.
An alternative definition of integral begins with a positive linear functional

L on a linear space of functionS. Such a functional is ®aniell integral if

fn L OimpliesL(f,) — 0. This last condition is equivalent to countable additivity

for indicator functions (using pointwise convergenceln So, the following

definition seems natural.

DEFINITION 6. A positive linear functional is afinitely additive Daniell
integral. We call such arl the finitely additive Daniell integral with respect to
if L(I4) = u(A) for each setd at whichy is defined.

There is a question of whether or not we should add a weaker continuity condition
to the definition before calling a finitely additive integral.

EXAMPLE 7. Let F be a field of subsets d2, and letu be a finitely addi-
tive probability. LetL consist of the set of all bounded measurable real-valued
functions on(2. DefineL(f) = [ fdy, the finitely additive Daniell integral with
respect tqu. Suppose that, — f uniformly. Then,L(f,,) — L(f).

With the definition of a finitely additive Daniell integral, we have the following
rewording of the result on Proposition 4: “Previsions for a collection of gambles
are coherent if and only if they are the finitely additive Daniell integrals of the
gambles.” To put the claim into perspective, recall Example 4.

EXAMPLE 8. LetQ) = Z" and letP(Iy,,;) = 2" for all n. Let X (n) = n for
all n. ThenP(X) = 2 andP(X) = oo in both Propositions 6 and 7. This time,
we have many coherent (and arbitrage-free) choice®{of). In particular, we
could choose”(X) = 4, which does not match the countably additive integral of
X.

DoesP(X) = 4 match a finitely additive integral in Example 8? The answer
is “yes” according to the fundamental theorem of prevision and the equivalence of
coherence with the existence of positive linear functionals. We can even make the
linear functional continuous. Of course, every positive linear functi@gnalich
that (1) = 1 is continuous in the topology of uniform convergence. But the
topology of uniform convergence does not extend nicely to sets with unbounded
functions.

Suppose that You want to assign the vatue 2 asP(X) in Example 8. Let
L be the linear span ok and the bounded functions. Ea¢he £ has a unique
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representation ag = aX + h whereh is bounded. Defind.(f) = ac + P(h).
This L extendsP from the bounded functions 0.

Let| - ||o be theL> norm with respect to the (countably additive) meagure
that derives fronP. Letd > 0. For f = aX + h, define

LFIF= Nl + [eld.

Itis easy to check that this is a norm. We can seethatcontinuous with respect
to this norm. Notice thata, X +h,|| — 0ifand only if a;, — 0 and||h,|| — 0.
But thenL(a,, X + h,,) = ac + P(hy,) — 0.

In this topology, no sequence of bounded functions converges to an unbounded
function, although some sequences of unbounded functions do converge to bounded
functions. Despite the fact that the underlying meagugeat derives fromP on
the bounded functions) is countably additive, the extensioR & L is merely
finitely additive in the sense of Definition 3. For example, Xgt = min{ X, n}
for all n and notice thalim,, X,, = X butlim, P(X,) =2 < P(X).

The assignment oP(X) = 4 puts constraints on the values that we could
assign as previsions for other unbounded random quantities.

e If Y > 0andlim, .. Y (n)/n = oo, thenP(Y) = cc.

e If Y > 0 andlim, . Y(n)/n = 0, thenP(Y) must equal its expected
value.

If two random variables have the same distribution, then they have the same
expectation. The same is not true of prevision if the random variables are un-
bounded.

Suppose that we have two fair coins, and we believe that their flips are inde-
pendent of each other. Lat be the number of the flip on which the first coin lands
heads for the first time. Lét be the number of the flip on which the second coin
lands heads for the first time. Coherence does not requiré’itay = P(Y). Of
course, violating?(X) = P(Y') implies finite additivity of the previsions in the
sense of Definition 3.

5. The Numeraire. The finitely additive nature of previsions like those in
the previous examples becomes more apparent when we consider a change of
numeraire. Results about coherence were stated in terms of random variables and
numerical previsions. Implicit in all this is what is meant by a unit. That is, we
pay P(X) units to receiveX (w) units in statev. If all units are dollars, we can
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make sense of this. Similarly, if all units are Euros, we can make sense of it. If
we are willing to contemplate both currencies simultaneously, then we have to
consider the exchange rate. In particular, the exchange rate itself can be a random
variable.

EXAMPLE 9. LetX be afunction fronf2 to R. If we think of X as specifying
anumber of dollars in each state, this will be different thaxi 8pecifies a number
of Euros in each state. The distinction is caused by the fact that the exchange rate
can be random. To keep things straight,etand P stand for previsions when
the random quantities are assumed to be in units of dollars and Euros respectively.
Suppose that there are three states {w;,w,ws} which have equal proba-
bilities in the following sense. When prizes are dollars, each of thegcts I,
fori =1,2,3 hasPp(X;) = 1/3. So, | am willing to pay $1/3 in order to get $1
if w; occurs and O if not, for = 1, 2, 3.
Suppose that the three states have different exchange rates, however. For ex-
ample, ifw; occurs €£1=%$1.10, ifw, occurs £1=%$1.20, and ifv; occurs€1=%$1.30.
Letc; = 1.1, ¢ = 1.2, c3 = 1.3, and define”'(w;) = ¢; fori = 1,2,3. ThenC'is
the random exchange rate ir€b/and1/C is the random exchange rate&is$.
For each gambl&” in dollars,Y’ = Y/C' is the same gamble reexpressed in
units of Euros. Similarly, ifY”’ is a gamble in units of Euros, théh= Y'C' is the
same gamble in dollars.
It is fairly easy to show the following facts:

e The marginal exchange rate in&is Pp(C) = 1/Pg(1/C), andPg(1/C)
is the marginal exchange rate€i$.

e For each gamblg” in dollars and its equivalent” = Y/C in Euros,

Example 9 illustrates another interesting feature that applies regardless of
whether previsions are countably additive or merely finitely additive.

ExXAMPLE 10. Consider again the three gambles (from Example 9) in dollars,
X; = Ip,,y fori =1,2,3. We hadPp(X;) = 1/3 fori = 1,2,3. Now consider
the same three numerical functions as Euro values instead of dollar values. Then

Pu(X, —
(i) Pp(C) 1.2
0.3056 ifi=1,
— {03333 ifi=2,
0.3611 ifi=3.
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The states have different probabilities when elicited in Euros instead of dollars.

The point of Example 10 (extracted with modification from Schervish, Seidenfeld
and Kadane, 1990) is that if one interprets the prevision of the indicator of an
event as the probability of the event, one must realize that what counts as a unit
(the numeraire) makes a difference.

The effect of finitely additive previsions on exchange rate changes can be il-
lustrated by returning to Example 8. Thepé had the distribution of the number
of tosses of a fair coin until the first head, but we gavéhe prevision 4. Suppose
that this prevision was in dollars. Suppose that the random exchange ra& in $/
isC = X. ThenPp(C) = 4 is the marginal exchange rate. What are the new
probabilities for each statg:} when elicited in Euros?

As before Po(IonC)
Po(ly) = -/ - 2
e (Lny) Pp(C) on+2’
forn = 1,2,.... Itis easy to see that_ |, Pp(Ij,;) = 1/2. We started with

a countably additive probability over the states. Then we performed a change
of numeraire which produced a finitely additive probability. The reason is that
we had assigned the random exchange rate a finitely, but not countably, additive
prevision. Nevertheless, the previsions in one currency are coherent if and only if
the previsions in the other currency are coherent, so long as the marginal exchange
rate is strictly positive and finite.

6. Summary. Although the coherence and arbitrage-free conditions are sim-
ilar, they are not identical. Forbidding arbitrage is a stronger requirement than re-
quiring coherence. Each is equivalent to the existence of certain linear functionals
that reproduce previsions/prices. Each allows mere finite additivity. Absence of
arbitrage does preclude certain finitely additive setups while coherence allows all
finitely additive setups. A condition even stronger than being arbitrage-free is “no
free lunch” which precludes all mere finite additivity as well as some countably
additive setups. Extending coherent previsions to include an additional gamble is
always possible. Extending arbitrage-free prices to include an additional gamble
is sometimes possible.

Regardless of whether prices are countably or finitely additive, the choice of
unit (numeraire) makes a difference in how previsions/prices are interpreted. In
particular, changes in numeraire can change probabilities of events. In this sense,
a change of numeraire is similar to a change to an equivalent measure. Previ-
sions/prices for unbounded quantities can be merely finitely additive even if prob-
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abilities are countably additive. In such cases, a change of numeraire can convert
the probabilities to be merely finitely additive.
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