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Abstract

This work develops an estimator for the bivariate density given a sample

of data truncated to a non-rectangular region. Such inference problems occur

in various fields; the motivating application here was a problem in astronomy.

The approach is semiparametric, combining a nonparametric local likelihood

density estimator with a simple parametric form to account for the dependence

of the two random variables. Large sample theory for M-estimators is utilized

to approximate the distribution for the estimator. A method is described for

approximating the integrated mean squared error of the estimator; smoothing
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parameters can be selected to minimize this quantity. Results are described

from the analysis of data from the measurements of quasars. A Fortran imple-

mentation is available, along with an R wrapper function.

Keywords: Truncated data; semiparametric method; bivariate density estima-

tion; local modelling; M-estimator; boundary effect.

1 Introduction

Given the truncated data shown in the scatter plot of Figure 1, how could one estimate

the bivariate density over (a) the irregular observable region, and (b) the entire region?

It is clear that a priori assumptions must be made in order to infer the nature of the

density. Answering question (b) requires strong assumptions, which in some cases (e.g.

a physical model) may be warranted, but question (a) is itself challenging because of

significant boundary effects. Scott and Wand (1991) demonstrated the feasibility of

using kernel density estimators for high-dimensional problems, but standard kernel

methods are inadequate with such truncation. We present a semiparametric approach

which allows one to place minimal assumptions on the form of the bivariate density

and greatly diminish artifacts due to truncation and an irregular boundary.

This inference problem appears in astronomy. Petrosian (1992) gives an excellent

overview of the motivation and history; we will summarize this background here. The

measured redshift of an astronomical object (e.g. galaxy or quasar) is a proxy for its

distance from the observer since the increase in the wavelength of light is related to

how far it has traveled. It is often of interest to determine the distribution of some

other characteristic of the object under study as a function of redshift. This leads

to data sets such as that shown in Figure 1. Each of the 11,242 dots shown in the

scatter plot represents one quasar observed by the Sloan Digital Sky Survey (SDSS)
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Figure 1: Quasar data from the Sloan Digital Sky Survey. There are 11,242 quasars in

this sample after truncation to the region indicated by the dashed line. The vertical

axis is inverted because brightness increases as absolute magnitude decreases.

(Schneider, 2003). (We are currently using Data Release 2.)

Along with the redshift of each quasar, the survey measured the apparent lu-

minosities, i.e. the observed brightness of each object. The apparent luminosity is

translated into an absolute luminosity (L), the brightness of the object at the source.

(This transformation requires that one assume a particular cosmology and assign val-

ues to unknown cosmological parameters. We will not address this problem here, but

due to this fact these data are not useful in determining the values of these phys-
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ical constants.) As a final step, the data are often expressed in terms of absolute

magnitude M = −2.5 log(L) + k where k is an unimportant constant. This is the

quantity shown on the vertical axis of the plot. The brightest quasars possess the

smallest absolute magnitude, so the vertical axis is customarily plotted “backwards.”

The luminosity function is the distribution of absolute luminosity (absolute magni-

tude) as a function of redshift. Understanding how the luminosity function evolves

with redshift is of primary interest. In statistical terms, the luminosity function is

the conditional distribution of Y (the variable on the vertical axis) given X (on the

horizontal axis). We seek to estimate the bivariate density as a means to estimating

these key conditional distributions.

The challenge is that quasars will not be observable if their apparent luminosity

lies outside of some range. When transforming this truncation bound to a bound on

absolute magnitude, we arrive at the irregular region region traced by the dashed line

in Figure 1. The larger gap in the lower right portion of the plot represents quasars

that are too dim, the smaller gap in the upper left of the plot would include those

that are too bright; these are not distinguishable from other nearby objects. This

truncation bias would also appear when observing other astronomical objects such as

galaxies.

Lynden-Bell (1971) introduced in the astronomy literature the nonparametric

maximum likelihood (NPMLE) estimator for the case of one-sided truncation of ab-

solute magnitude and Woodroofe (1985) derived some of the asymptotic properties

of this estimator. Efron and Petrosian (1999) extended the NPMLE to the case of

double truncation of absolute magnitude. Each of these papers assumes that absolute

magnitude and redshift are statistically independent (and, hence, that the luminosity

function does not evolve with redshift.) The density estimate (or distribution func-

tion estimate) which results from a NPMLE procedure places all of the probability
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on observed data values, but even smoothing this estimate may not be sufficient to

remove artifacts: An estimate can suffer from what Woodroofe (1992) referred to

as “large jumps,” where lone data points can greatly influence the estimator. Efron

and Petrosian (1999) also developed a permutation test for independence of the two

variables. Independence of absolute magnitude and redshift is a strong assumption,

and evidence suggests that it is not justified; see Boyle et al. (2000). Parametric

maximum likelihood is feasible with the irregular truncation, and Boyle et al. (2000)

utilize this approach.

A semiparametric approach was proposed by Efron and Tibshirani (1996) and

implemented for quasar data by Efron and Petrosian (1999), but in this analysis

they did not exploit the nonparametric portion of the estimator, likely due to issues

with the truncation. (Efron and Tibshirani (1996) also includes a nice application to

similarly truncated galaxy data, although they also do not consider the effect of the

truncation.) These special exponential family models estimate a density f(·) using

models of the form

log(f(x)) = f(x) +

p∑

k=1

tk(x) βk (1)

where the tk(·) are the assumed sufficient statistics, f(·) is estimated nonparametri-

cally, and the βk are estimated using maximum likelihood, once the nonparametric

portion is fixed. See also Hjort and Glad (1995), who consider “correcting” an initial

parametric density estimate by following it with a nonparametric fit.

The key advantage of our approach is that it allows one to avoid assuming that the

two variables are independent, but also avoid imposing a tight parametric form on the

bivariate density. We fit a variant on the special exponential family by decomposing

the bivariate density h(x, y) into

log h(x, y) = f(x) + g(y) + h(x, y, θ) (2)
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where h(x, y, θ) will take any form linear in the parameters; it is intended to model

the dependence between the two random variables. For example, there may be a

physical, parametric model for the evolution of the luminosity function which could

be incorporated into h(x, y, θ). Alternatively, one could use h(x, y, θ) = θxy as a first-

order approximation to the dependence. The functions f(·) and g(·) are estimated

nonparametrically, with bandwidth parameters to control the amount of smoothness

in the estimate. We develop a single criterion, related to the local likelihood function

and adjusted to account for truncation, which is maximized to obtain the estimate.

The approach allows us to avoid the question of which portion (nonparametric or

parametric) to fit first: Although an iterative fitting algorithm is developed, there is

a unique estimate which maximizes the criterion regardless of the starting point.

We implemented the method as a Fortran subroutine with R wrapper. It is avail-

able for download, along with documentation, from

http://www.stat.cmu.edu/∼cschafer/BivTrunc

The paper is organized as follows. Section 2 describes our approach in detail. Sec-

tion 3 uses asymptotic properties of M-estimators to obtain approximations to the

distribution and standard error of the estimator. Also, this section gives a description

of how the integrated mean squared error can be approximated using cross-validation

in a computationally tractable manner; the bandwidths can then be chosen to min-

imize this quantity. Section 4 presents some results from simulations and from the

analysis of the quasar data and Section 5 is a brief discussion.

2 The Model

In this section we will describe the method in detail, starting the development with

a heuristic description for the case when the two random variables are assumed in-
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dependent. Once the details for the independence case are established, incorporating

dependence is a simple extension.

Our approach originates in the following, naive method. Let h(x, y) denote the

joint density of random variables X and Y with respect to Lebesgue measure over

some rectangular region. For the moment we assume X and Y are independent;

write h(x, y) = f(x)g(y) where f(·) is the density of X and g(·) is the density of

Y . Let A denote the region outside of which of the data are truncated and let

A(x, ·) ≡ {y : (x, y) ∈ A} denote the cross-section of A at X =x. Let (X∗, Y ∗) have

the same distribution as (X, Y ) conditional on (X, Y ) ∈ A. The available data allow

for estimation of

f ∗(x) ≡ f(x)

∫

A(x,·)

g(y) dy

/∫

A

f(u) g(v) du dv (3)

for all x, since it is the marginal density of X∗. Assuming for the moment that g(·)

were known, it is possible to turn an estimator for f ∗(·) into an estimator for f(·)

using

f̂(x) ∝ f̂ ∗(x)

/(∫

A(x,·)

g(y) dy

)
(4)

and then normalizing to get a final estimate of the density. Starting with an initial

guess at g(·), we could iterate between assuming g(·) is known, and estimating f(·),

and vice versa. But, the variance of this estimator could be huge: Consider the behav-

ior of f̂(x) for x where
∫
A(x,·)

g(y)dy is small. Also, it is possible to construct examples

where this algorithm will converge to different estimates starting from different initial

guesses.

The fundamental problem is that a well-chosen estimator (i.e., well-chosen smooth-

ing parameters) for f ∗(·) does not necessarily lead to a good estimator for f(·). In

fact, if the region A has sharp corners, no amount of smoothing of f̂ ∗(·) will produce

7



a smooth f̂(·). Instead, we write

log(f ∗(x)) =

[
log(f(x)) − log

(∫

A

h(u, v)du dv

)]
+ log

(∫

A(x,·)

g(y) dy

)
(5)

and include

log

(∫

A(x,·)

g(y)dy

)
(6)

as an offset term in local polynomial models for log(f ∗(x)) and consider estimators

that allow one to control smoothing in terms of f(·), not f ∗(·).

2.1 Local Likelihood Density Estimation

We utilize the local likelihood density estimator developed independently by Loader

(1996) and Hjort and Jones (1996). In the simple case of estimating f ∗(·), the density

of X∗, we seek the function a∗
u(·) which maximizes

Lu(a
∗
u,X) ≡

n∑

j=1

K∗(Xj, u, λ)a∗
u(Xj) −

[
n

∫

X

K∗(x, u, λ) exp(a∗
u(x)) dx

]
, (7)

where K∗ is a kernel function, λ is a smoothing parameter, and data X ≡ (X1, X2, . . . , Xn)

have density f ∗(·) with respect to Lebesgue measure. The kernel function is written

as K∗(x, u, λ) because it will not, in general, be a simple function of (x−u)/λ; see Re-

mark 2 below. Equation (7) is the localized log likelihood at u (equation (6) in Loader

(1996)). Typically, L(a∗
u,X) is maximized over degree p polynomials expanded around

u:

a∗
u(x) = a∗

u0
+ a∗

u1
(x − u) + · · ·+ a∗

up(x − u)p . (8)

The use of the notation a∗
u is intended to simultaneously identify the function, and

the vector of coefficients (a∗
u0

, a∗
u1

, . . . , a∗
up) of this expansion.

Remark 1. The usual maximum likelihood estimate for a density can be found by

maximizing
n∑

j=1

log f(Xj) − n

∫
f(x) dx (9)

8



over all nonnegative functions f (possibly restricted to some smooth class). Note how

Lu(a
∗
u,X) localizes this around u by introducing the kernel weighting. The form for

localized likelihood is also motivated by noting that, just as for the standard likelihood

function, the expected value of Lu(a
∗
u,X) is maximized by setting a∗

u(x) = log f ∗(x)

for all x.

Remark 2. Our seemingly unusual choice for the form of the kernel function K∗

comes from a requirement that, for all x,

∫
K∗(x, u, λ) du = 1. (10)

Although this function could take any nonnegative form (subject to this constraint),

we will utilize

K∗(x, u, λ) = K

(
x − u

λ

)/(∫

X

K

(
x − u

λ

)
du

)
(11)

where K(·) is a “usual” kernel function, in our case the tricube kernel:

K(u) =
(
1 − |u|3

)3
1{|u|≤1}. (12)

This requirement is not the same as the common assumption that the kernel integrates

to one, because here, due to the boundary, the normalization term varies with x.

Let â∗
u denote the a∗

u which maximizes Lu(a
∗
u,X). The standard approach is to

create an estimator for f ∗(u) via f̂ ∗(u) ≡ exp(â∗
u(u)) = exp(a∗

u0), but we consider an

alternative method, motivated as follows: When fitting a local model around u, we

obtain useful information about the value of density not only at u, but also for x near

u. We use as our estimator

f̂ ∗(x) ≡
∫

X

K∗(x, u, λ) exp(â∗
u(x)) du. (13)
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In equation (13) we obtain f̂ ∗(x) by taking a weighted average of the individual â∗
u(x)

for u near x. This will lead to significant analytical and computational advantages,

and this is why it is necessary to require the kernel integrate to one in the way stated

above: For fixed x, the quantity K(x, u, λ) is the weight placed on the estimate of

f ∗(x) from the local model fit around u. We can also allow λ to vary with u, so that

f̂ ∗(x) =

∫

X

K∗(x, u, λu) exp(â∗
u(x)) du. (14)

Now we can look to choose λu so that â∗
u(x) is close to log f ∗(x) for x close to u.

Define

L(a∗,X) ≡
∫

X

Lu(a
∗
u,X) du

=

∫

X

n∑

j=1

K∗(Xj, u, λ)a∗
u(Xj) du − n

∫

X

[∫

X

K∗(x, u, λ) exp(a∗
u(x)) du

]
dx. (15)

The localized likelihood is maximized for each u ∈ X , so we are finding the family

of functions â∗ ≡ {â∗
u : u ∈ X} that maximizes

∫
X
Lu(a

∗
u,X) du. As before, this has

the property that the expected value of L(a∗
u,X) is maximized by setting a∗

u(x) =

log f ∗(x) for all u and all x, and hence L(a∗,X) is maximized by setting f̂ ∗(x) equal

to f ∗(x) for all x.

2.2 The Offset Version

We now return to the goal of estimating f(·), the marginal density for X. We could

also use the local likelihood approach; we model

log f(x) − log

(∫

A

f(u) g(v) du dv

)
≈ au(x) ≡ au0 + au1(x − u) + · · ·+ aup(x − u)p

(16)

for x near u. Recalling equation (5), our model for f ∗(·) becomes

log f ∗(x) ≈ au(x) + log

(∫

A(x,·)

g(y) dy

)
(17)
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for x near u. Note the following:

1. Instead of the above, we could define the offset term in equation (17) as

log

(∫

A(u,·)

g(y) dy

)
, (18)

but then our estimate f̂(x) would have the undesirable form found in equation

(4): A scaled version of f̂ ∗(x). The chosen version allows for smoothing of this

term via the choice of λu.

2. Finding for each u the au which maximizes Lu(au + offset,X) leads to

∫

X

K∗(x, u, λu) exp(âu(x)) du (19)

as an estimator for

f(x)

/(∫

A

h(u, v)du dv

)
. (20)

3. In practice we will set up a grid of values of u at which local models are fit. The

optimization is not difficult, since Lu(au + offset,X) is almost surely strictly

concave as a function of au0, au1, . . . , aup.

2.3 The Iterative Algorithm

The above derivation assumed that g(·) were known. Instead, imagine that g(·) is

estimated in a similar manner. Let g∗(·) denote the density for the observable Y ∗ and

consider models of the form

log g∗(y) ≈ bv(y) + log

(∫

A(·,y)

f(x) dx

)
− log

(∫

A

h(u, v)du dv

)
(21)

where

bv(y) ≡ bu0 + bu1(y − v) + · · ·+ bup(y − v)p . (22)
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Now it becomes convenient to use

log

(∫

A(·,y)

f(x) dx

)
− log

(∫

A

h(u, v) du dv

)
(23)

as the offset, since it will lead directly to an estimate of f(·), and we found an

estimator for this quantity as

log

(∫

A(·,y)

∫

X

K∗(x, u, λu) exp(âu(x)) du dx

)
(24)

using equation (19). Thus, for each v ∈ Y, the local likelihood Lv(bv + offset,Y),

where Y = (Y1, Y2, . . . , Yn), is maximized over offset polynomial forms

bv(y) + log

(∫

A(·,y)

∫

X

K∗(x, u, λu) exp(âu(x)) du dx

)
(25)

where now we use the estimate of the offset to stress that the algorithm will proceed

by alternating between estimating f(·) and g(·). But note the following:

L(b,Y) ≡
∫

Y

Lv(bv + offset,Y) dv =

∫

Y

n∑

j=1

K∗(Yj, v, λv)bv(Yj) dv

− n

∫

Y

∫

Y

K∗(y, v, λv) exp(bv(y))

(∫

A(·,y)

∫

X

K∗(x, u, λu) exp(âu(x)) du dx

)
dy dv

=

∫

Y

n∑

j=1

K∗(Yj, v, λv)bv(Yj) dv

− n

∫

A

[∫

Y

K∗(y, v, λv) exp(bv(y)) dv

][∫

X

K∗(x, u, λu) exp(âu(x)) du

]
dy dx. (26)

As before, we find b̂ ≡ {b̂v(·) : v ∈ Y} which maximizes L(b,Y) and now set

ĝ(y) ≡
∫

Y

K∗(y, v, λv) exp
(
b̂v(y)

)
dv. (27)

Returning to the first step in the process, we will use ĝ(·) in place of the unknown

g(·), and we see that

L(a,X) ≡
∫

X

Lu(au + offset,X)du =

∫

X

n∑

j=1

K∗(Xj, u, λu) au(Xj) du

− n

∫

A

[∫

Y

K∗(y, v, λv) exp(b̂v(y))dv

][∫

X

K∗(x, u, λu) exp(au(x)) du

]
dy dx.(28)
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This leads to the following critical result:

Theorem 1. Assume we place a restriction on the parameters of the local models

that
∫

X

au0 du = 0. (29)

Then the iterative algorithm will either diverge or converge to a unique â and b̂, and

hence a unique estimate of f(·) and g(·).

Proof. Consider the quantity

L∗(a,b,X,Y) ≡
∫

X

n∑

j=1

K∗(Xj, u, λu)au(Xj) du +

∫

Y

n∑

j=1

K∗(Yj, v, λv)bv(Yj) dv

− n

∫

A

[∫

Y

K∗(y, v, λv) exp(bv(y)) dv

] [∫

X

K∗(x, u, λu) exp(au(x)) du

]
dy dx

−
(∫

X

au0 du

)2

. (30)

Maximizing L∗ with b fixed is equivalent to maximizing L(a,X) with fixed offset term,

under the restriction of equation (29). Maximizing L∗ with a fixed is equivalent to

maximizing L(b,Y) with fixed offset term. Since L∗ is almost surely strictly concave

as a function of the model coefficients auk and bvk, the algorithm must converge to a

unique point regardless of the starting value.

Remark 3. Equation (29) is an identifiability condition; note that adding a constant

onto au0 for all u can be compensated for by subtracting the same constant off of all

the bu0. When the maximization is performed holding b̂ fixed, it is not important to

consider this restriction: The maximization is performed without the condition, and

then the au0 are normalized afterwards.

Remark 4. Note that

[∫

Y

K∗(y, v, λv) exp
(
b̂v(y)

)
dv

] [∫

X

K∗(x, u, λu) exp(âu(x)) du

]
(31)
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is our final estimator for

f(x) g(y)

/∫

A

h(u, v) du dv. (32)

(See equations (13) and (27).) We can now normalize to get estimates of h, f , and g.

2.4 Removing the Independence Assumption

When we remove the assumption that X and Y are independent, we write the loga-

rithm of the joint density h(x, y) as

log h(x, y) = f(x) + g(y) + h(x, y, θ) . (33)

The term h(x, y, θ) is the parametric portion of the estimator; here we use it to

model the dependency between X and Y . Here, we focus on a simple form for the

dependence: h(x, y, θ) = θxy.

We update our criterion of equation (30) to be

L∗(a,b, θ,X,Y) ≡
∫

X

n∑

j=1

K∗(Xj, u, λu)au(Xj) du +

∫

Y

n∑

j=1

K∗(Yj, v, λv)bv(Yj) dv +

n∑

j=1

h(Xj, Yj, θ)

− n

∫

A

exp(h(x, y, θ))

[∫

Y

K∗(y, v, λv) exp(bv(y)) dv

]

[∫

X

K∗(x, u, λu) exp(au(x)) du

]
dy dx −

(∫

X

au0 du

)2

, (34)

and retain the identifiability constraint of equation (29). We assume that exp(h(x, y, θ))

is strictly concave as a function of θ, e.g. h(x, y, θ) is a linear function of θ. The al-

gorithm is updated in a simple manner: Now there is a third step in which a search

for the value of θ which maximizes L∗ is sought while holding â and b̂ fixed. Note

that the offset terms become

log

(∫

A(x,·)

exp(h(x, y, θ))

∫

Y

K∗(y, v, λv) exp(b̂v(y))dv dx

)
(35)
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when finding â and

log

(∫

A(·,y)

exp(h(x, y, θ))

∫

X

K∗(x, u, λu) exp(âu(x)) du dx

)
(36)

when finding b̂. This will converge to a unique final combination (â, b̂, θ̂) which

maximizes L∗, with

exp
(
h(x, y, θ̂)

) [∫

Y

K∗(y, v, λv) exp(b̂v(y))dv

] [∫

X

K∗(x, u, λu) exp(âu(x)) du

]
(37)

being our estimator for

h(x, y)

/∫

A

h(u, v)du dv. (38)

3 Inference and Bandwidth Selection

In this section we will derive some of the key tools for statistical inference and band-

width selection for use when applying the method of the previous section. Emphasis

is placed on computational feasibility. As a first step, consider that the above deriva-

tion fits a local model at each u ∈ X when b̂ and θ̂ were held constant, and at each

v ∈ Y when â and θ̂ were held constant. In practice, we must consider a grid of

values u1, u2, . . . , ug ∈ X and v1, v2, . . . , vg ∈ Y at which these respective models are

fit. Now we denote the parameters such that the local model around ui ∈ X is

ai(x) ≡ ai0 + ai1(x − ui) + · · ·+ aip(x − ui)
p + offset (39)

and the local model around vi ∈ Y is

bi(y) ≡ bi0 + bi1(y − vi) + · · · + bip(y − vi)
p + offset. (40)

We will here focus on the case h(x, y, θ) = θxy, although extension to other cases is

not difficult. Thus, we have a list of 2(p + 1)g + 1 parameters to estimate:

β = [ a10 · · · a1p · · · ag0 ag1 · · · agp b10 · · · b1p · · · bg0 bg1 · · · bgp θ ]T

(41)
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and our new “discrete grid” criterion function is

L∗
n(β) = n−1

n∑

j=1

`j(β) (42)

where

`j(β) ≡
g∑

i=1

K∗(Xj, ui, λui
)ai(Xj) +

g∑

i=1

K∗(Yj, vi, λvi
)bi(Yj) + h(Xj, Yj, θ)

−
∫

A

exp(h(x, y, θ))

[
g∑

i=1

K∗(y, vi, λvi
) exp(bi(y))

][
g∑

i=1

K∗(x, ui, λui
) exp(ai(x))

]
dy dx

−
(

g∑

i=1

ai0

)2

(43)

and now we assume that

g∑

i=1

K∗(x, ui, λui
) =

g∑

i=1

K∗(y, vi, λvi
) = 1 (44)

for each x and y.

3.1 Approximating the Distribution of the Estimator

We will utilize standard results from the theory of M-estimators. Let Vx,y be the

matrix such that

Vx,yβ =




a1(x) + b1(y) + h(x, y, θ)

a1(x) + b2(y) + h(x, y, θ)

...

a1(x) + bg(y) + h(x, y, θ)

a2(x) + b1(y) + h(x, y, θ)

a2(x) + b2(y) + h(x, y, θ)

...

a2(x) + bg(y) + h(x, y, θ)

...

ag(x) + bg(y) + h(x, y, θ)




. (45)
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Define

Kx,y =




K∗(x, u1, λu1) K∗(y, v1, λv1)

K∗(x, u1, λu1) K∗(y, v2, λv2)

...

K∗(x, u1, λu1)K∗
(
y, vg, λvg

)

K∗(x, u2, λu2) K∗(y, v1, λv1)

K∗(x, u2, λu2) K∗(y, v2, λv2)

...

K∗(x, u2, λu2)K∗
(
y, vg, λvg

)

...

K∗
(
x, ug, λug

)
K∗
(
y, vg, λvg

)




(46)

and

Zx,y(β) ≡ diag(exp(Vx,yβ)) diag(Kx,y) (47)

so that

exp(Vx,yβ)T
Kx,y = eTZx,y(β) e (48)

where and e is a vector filled with ones. Define mj ≡ VT
Xj ,Yj

KXj ,Yj
and let c de-

note a vector the same length as β, with ones in the positions corresponding to the

parameters a10, a20, . . . ag0, and zeros everywhere else; we can now write

`j(β) = βTmj −
∫

A

eTZx,y(β) e dx dy −
(
βTc

)2
. (49)

It follows that

d`j

dβ
= mj −

∫

A

VT
x,yZx,y(β) e dx dy − 2

(
βTc
)
c. (50)

and

dE(`j)

dβdβT
= −

∫

A

VT
x,yZx,y(β)Vx,y dx dy − 2ccT = E

[
d`j

dβdβT

]
. (51)

All of this notation is needed for the following results.
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Theorem 2. There is a unique parameter vector which maximizes E(`j(β)).

Proof. Since E(`j(β)) is strictly concave as a function of β, there can be at most one

maximal β. Let α denote a scalar. For any parameter vector β,

lim
α→∞

E(`j(αβ)) = lim
α→∞

[
αβT E(mj) −

∫

A

eTZx,y(αβ) e dx dy −
(
αβTc

)2
]

= lim
α→∞

[
βT E(mj) −

∫

A

(Vx,yβ)T
Kx,ye

TZx,y(αβ) e dx dy − 2αβTc

]

= −∞. (52)

The conclusion is that in any direction β, E(`j(αβ)) eventually decreases for suffi-

ciently large α. Thus, there must be a single, unique maximal β.

Theorem 3. Let βλ denote the parameter vector which maximizes E(`j(β)) and let

β̂n denote the parameter vector which maximizes L∗
n(β). As n → ∞, β̂n

a.s.−→ βλ and

√
n
(
β̂n − βλ

)
D−→

N


0,

(
dE(`j)

dβdβT

∣∣∣∣
β

λ

)−1

E



(

d`j

dβ

∣∣∣∣
β

λ

)(
d`j

dβ

∣∣∣∣
β

λ

)T


(

dE(`j)

dβdβT

∣∣∣∣
T

β
λ

)−1

 . (53)

Proof. We will utilize results in Haberman (1989). The almost sure consistency is

given by Theorem 5.1. Note that his conditions 1, 2, and 6 are trivially true since the

parameter space is (2(p + 1)g + 1)-dimensional Euclidean space, clearly closed. His

condition 5 is implied by condition 3 which requires that E(`j(β)) be finite for all β;

this is clearly true since the random variables are bounded by the truncation.

The central limit result is Theorem 6.1 in Haberman (1989). Condition 7 requires

that the Hessian matrix

dE(`j)

dβdβT

∣∣∣∣
β

λ

(54)
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exist and be nonsingular. For any parameter vector β1 6= 0, we note that

βT
1

(
dE(`j)

dβdβT

∣∣∣∣
β

λ

)
β1 = −

∫

A

(Vx,yβ1)
T
Zx,y(βλ) (Vx,yβ1) dxdy−2βT

1 ccTβ1 < 0 (55)

since

βT
1cc

Tβ1 > 0 (56)

and Zx,y(β) is a diagonal matrix with all positive entries along the diagonal. Thus,

the matrix is negative definite, and must be invertible. Condition 10 requires that

βT
1 E

(
d`j(β)

dβ

∣∣∣∣
β1

)
< ∞ (57)

for every β1. This is again true since the criterion is continuous and the random

variables are all bounded. Conditions 7 and 10 imply conditions 8 and 9.

Remark 5. In our code we approximate

E



(

d`j

dβ

∣∣∣∣
β

λ

)(
d`j

dβ

∣∣∣∣
β

λ

)T

 ≈ n−1

n∑

j=1

(
d`j

dβ

∣∣∣∣
β̂

n

)(
d`j

dβ

∣∣∣∣
β̂

n

)T

(58)

and

dE(`j)

dβdβT

∣∣∣∣
β0

≈ dE(`j)

dβdβT

∣∣∣∣
β̂

n

. (59)

Finally, we apply the ∆-method to get asymptotic normality of our estimator of

h(x, y). Let hβ(x, y) denote our estimator for

h(x, y)

/(∫

A

h(u, v) du dv

)
, (60)

using parameter vector β, as previously discussed. Note that

hβ̂(x, y) ≡ eTZx,y(β̂) e. (61)

We have that

dhβ(x, y)

dβ

∣∣∣∣
β

λ

= VT
x,yZx,y(βλ) e, (62)
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so we can approximate

hβ̂(x, y) ∼ N
(
hβλ

(x, y) , n−1eTZx,y(β̂n)Vx,yΣ VT
x,yZx,y(β̂n) e

)
(63)

and

Cov(hβ̂(x, y) , hβ̂(x′, y′)) = n−1eTZx,y(β̂n)Vx,y Σ VT
x′,y′Zx′,y′(β̂n) e (64)

where Σ is the asymptotic covariance matrix for β̂n.

3.2 Bandwidth Selection

Standard bandwidth selection techniques can be employed with this estimator. Fol-

lowing Rudemo (1982), the integrated mean squared error of the estimator

E

[∫

A

(
hβ̂(x, y) − h(x, y)

/(∫

A

h(u, v) du dv

))2

dx dy

]
(65)

can be approximated (up to an unimportant constant) using the least squares cross-

validation estimator

∫

A

h2
β̂
(x, y) dx dy − 2

n

n∑

j=1

hβ̂(−j)
(Xj, Yj) (66)

where h
β̂(−j)

(Xj, Yj) denotes the estimate found when omitting the jth data pair from

the analysis. Alternatively, the likelihood cross-validation score is calculated as

n−1
n∑

j=1

log
(
hβ̂(−j)

(Xj, Yj)
)

. (67)

Maximizing the likelihood cross-validation approximates minimizing the Kullback-

Leibler divergence between the estimate and the true h; see Bowman (1984).

Exact computation of these leave-one-out estimates is computationally prohibitive,

so instead we make the following approximation. Let L∗
(−j)(β) denote the criterion
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evaluated with the jth data pair removed. Then

L∗
(−j)(β̂n + β′) ≈ L∗

(−j)(β̂n) + β′T


 dL∗

(−j)(β)

dβ

∣∣∣∣∣
β̂

n


+ β′T

(
d`j

dβdβT

∣∣∣∣
β̂

n

)
β′/2

= L∗
(−j)(β̂n) − β′T

(
d`j

dβ

∣∣∣∣
β̂

n

)
/ (n − 1) + β′T

(
d`j

dβdβT

∣∣∣∣
β̂

n

)
β′/2 (68)

since

0 =

(
n

n − 1

)(
dL∗

n(β)

dβ

∣∣∣∣
β̂

n

)
=


 dL∗

(−j)(β)

dβ

∣∣∣∣∣
β̂

n


+

(
d`j

dβ

∣∣∣∣
β̂

n

)
/ (n − 1) . (69)

We find that this is maximized by setting

β′ =

(
d`j

dβdβT

∣∣∣∣
β̂

n

)−1(
d`j

dβ

∣∣∣∣
β̂

n

)
/ (n − 1) =

(
dE(`j)

dβdβT

∣∣∣∣
β̂

n

)−1(
d`j

dβ

∣∣∣∣
β̂

n

)
/ (n − 1)

(70)

so we can approximate the leave-one-out estimate β̂(−j) ≈ β̂n +β′. Computationally,

this is not difficult because we already found the necessary quantities when deriving

the asymptotic covariance matrix for β̂ (see Remark 5).

Remark 6. We can only estimate the integrated squared error over A (equation 66)

since there is no available information outside of A, but we stress that the cross-

validation estimator we use estimates the expected integrated squared error in esti-

mating

h(x, y)

/(∫

A

h(u, v)du dv

)
(71)

not for estimating hβλ
(x, y). Of course, it is this former quantity we truly want to

estimate.

4 Results

In this section the method is applied to some simulated data sets, with the estimates

compared to the known truth, and to the SDSS quasar sample of Figure 1.
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4.1 Simulations

In these simulations, the observable region A is defined to be the subset of the unit

square [0, 1] × [0, 1] where y ≥ x − 0.2 and (x − 0.6)2 + (y − 0.4)2 ≥ 0.07. Three

distributions are considered for the data. In Case I, X and Y are independent,

normal random variables, each with mean 0.5 and standard deviation 0.2. In Case

II, X and Y are normal, each with mean 0.5 and SD 0.2, but the correlation between

X and Y is 0.5. In Case III, X is normal with mean 0.5 and SD 0.2, and the

conditional distribution of Y given X is normal with mean
√

X and SD 0.2. In all

simulations, a sample consisting of 10,000 (X, Y ) pairs (that fall into the observable

region) is generated. In all analyses, p = 1 and g = 50.

For illustrative purposes, Figure 2 shows one data set simulated under Case II,

along with the true density (solid contours) and the estimate (dashed contours). In

each case our method was applied to each of fifty simulated data sets. The bandwidth

used was chosen by minimizing the least squares cross-validation criterion. Tables 3,

4, and 5 summarize the results. The tables compare the true density (in column 2)

at a collection of (x, y) values with the average estimate over the 50 simulations (in

column 3). Also, the nominal standard error for each of these estimates is averaged

in quadrature over the 50 simulations (column 4) and compared with the standard

deviation of the 50 estimates. If the asymptotic theory for approximating the SE is

appropriate, these quantities should be close. Finally, column 5 shows the squared

error in the estimate averaged over the 50 simulations. If column 5 is significantly

larger than column 4, this is a sign of bias in the estimator. The most noticeable

problems occur in Case III, which is not surprising given that this is the one of the

three cases where the true density cannot be written in a form with h(x, y, θ) = θxy.

All estimates in the table are for the density normalized to one over A.
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4.2 SDSS Quasar Sample

Figures 6 through 10 show results from applying this approach to the SDSS sample

of 11,242 quasars. For this analysis, the redshift range of the observable region is 0.2

to 3.0, the lower truncation limit for absolute magnitude is

max
(
−29.28 − 2.43 log

(
1 + z −

√
1 + z

)
+ 0.61 log(1 + z) ,−27.59

)
(72)

and the upper truncation limit is

min
(
−26.26 − 2.43 log

(
1 + z −

√
1 + z

)
+ 0.61 log(1 + z) ,−22.12

)
, (73)

where z denotes redshift. The analysis was performed using p = 2 and g = 100, and

the optimal global bandwidth is 0.15 using either the least squares cross-validation

or the likelihood cross-validation criteria. (This bandwidth is stated on the scale of

the data after it has been transformed to lie in the unit square.)

Figure 6 depicts the estimate of the bivariate density superimposed on the data

with dashed truncation region. An evident problem is that the estimate is under-

smoothed outside of the observable region. This is not surprising given that the

bandwidth is chosen to limit the integrated mean squared error only over A. Fig-

ure 7 shows the estimate of the marginal distribution for redshift. Figure 8 shows

the estimate of the marginal distribution for absolute magnitude. As is customary,

this is plotted on a logarithmic scale. Figures 9 and 10 depict the estimates of the

conditional density of absolute magnitude (the luminosity function) for redshift of

0.5 and 1.5. Error bars are one standard error limits. The shaded region represents

the range over which data are not observable for that redshift. Care should be taken

when interpreting the estimate within this region.
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5 Discussion

The effect of the irregular boundary is significant when trying to estimate the density,

thus this method is useful even if one believes it is unrealistic to estimate the density

over regions where data are unobserved. The shape of the estimate shown in Figure

6, when restricted to the observable region, would have been difficult to obtain had

the density not also been estimated over the unobservable region.

The nonparametric portion of the estimator is novel in that local models are fit,

but then smoothed together, making double use of the bandwidth. This construction

led to a simple, single criterion function which, when maximized, gives the estimate.

This criterion is intuitive in that it is strongly related to the usual likelihood equation.

The results of Section 3 allow the user to vary the bandwidths over the different

local models. A wide class of models is available as these bandwidths are varied. A

simple approach was presented for estimating the integrated mean squared error of the

estimator. This is perhaps the greatest asset of this approach: One can minimize (an

estimate of) the integrated mean squared error over a wide class of models. The results

from the analysis of observed quasars show that careful selection of the bandwidths

is required, or else there will be undersmoothing in the truncated regions. Varying

bandwidths will likely address this problem; future work will focus on searching the

space of possible bandwidths in a computationally feasible manner.
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Figure 2: One simulated data set consisting of 10, 000 pairs. The outer dashed line

gives the truncation region. The data set depicted is simulated under Case II, with

the true density shown by the dashed contours. The estimate, using the described

method on this simulated data set, is shown by the solid contours.
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True Average RMS of SD of RMSE of

Estimand Value Estimate Nominal SE Estimates Estimates

bivariate density

(0.225, 0.225) 1.46 1.44 0.0579 0.0559 0.0604

(0.475, 0.225) 3.73 3.64 0.246 0.254 0.258

(0.725, 0.225) 1.99 1.95 0.281 0.262 0.282

(0.225, 0.475) 3.73 3.76 0.102 0.0952 0.107

(0.475, 0.475) 9.51 9.55 0.460 0.455 0.457

(0.725, 0.475) 5.09 5.11 0.394 0.403 0.391

(0.225, 0.725) 1.99 2.00 0.056 0.0573 0.0554

(0.475, 0.725) 5.09 5.09 0.106 0.117 0.105

(0.725, 0.725) 2.73 2.73 0.0903 0.0874 0.0896

X marginal

0.225 1.88 1.86 0.0277 0.0302 0.035

0.475 4.81 4.73 0.171 0.172 0.187

0.725 2.57 2.53 0.175 0.172 0.178

Y marginal

0.225 1.88 1.81 0.136 0.132 0.155

0.475 4.81 4.73 0.201 0.212 0.212

0.725 2.57 2.52 0.034 0.0341 0.0624

Figure 3: Simulations results for Case I.
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True Average RMS of SD of RMSE of

Estimand Value Estimate Nominal SE Estimates Estimates

bivariate density

(0.225, 0.225) 2.94 2.93 0.0732 0.0866 0.0741

(0.475, 0.225) 3.26 3.33 0.249 0.234 0.256

(0.725, 0.225) 0.451 0.486 0.0841 0.0733 0.0902

(0.225, 0.475) 3.26 3.31 0.0903 0.0893 0.100

(0.475, 0.475) 10.3 10.5 0.479 0.532 0.511

(0.725, 0.475) 4.02 4.19 0.324 0.335 0.365

(0.225, 0.725) 0.451 0.458 0.0223 0.0227 0.0232

(0.475, 0.725) 4.02 4.01 0.103 0.105 0.102

(0.725, 0.725) 4.46 4.46 0.118 0.114 0.117

X marginal

0.225 1.75 1.73 0.0282 0.0296 0.0374

0.475 4.47 4.53 0.171 0.178 0.178

0.725 2.39 2.43 0.114 0.109 0.118

Y marginal

0.225 1.75 1.73 0.0834 0.0747 0.0849

0.475 4.47 4.52 0.179 0.201 0.186

0.725 2.39 2.35 0.0311 0.034 0.055

Figure 4: Simulations results for Case II.
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True Average RMS of SD of RMSE of

Estimand Value Estimate Nominal SE Estimates Estimates

bivariate density

(0.225, 0.225) 1.08 1.09 0.0476 0.0516 0.0499

(0.475, 0.225) 0.405 0.498 0.0442 0.043 0.103

(0.725, 0.225) 0.0237 0.0171 0.00312 0.00297 0.00729

(0.225, 0.475) 2.34 2.27 0.0787 0.0771 0.109

(0.475, 0.475) 3.37 3.58 0.209 0.198 0.295

(0.725, 0.475) 0.544 0.424 0.0445 0.0421 0.129

(0.225, 0.725) 1.07 1.1 0.0315 0.0399 0.0474

(0.475, 0.725) 5.89 6.05 0.12 0.124 0.204

(0.725, 0.725) 2.62 2.48 0.0841 0.0761 0.164

X marginal

0.225 1.17 1.16 0.021 0.025 0.0233

0.475 3.00 2.91 0.067 0.0697 0.110

0.725 1.60 1.20 0.0321 0.0314 0.407

Y marginal

0.225 0.72 0.426 0.0211 0.0201 0.294

0.475 1.41 1.57 0.0675 0.0647 0.175

0.725 1.90 2.41 0.0367 0.033 0.507

Figure 5: Simulations results for Case III.
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Figure 6: Estimate of bivariate density from the analysis of the SDSS quasar sample.
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Figure 7: Estimate of marginal distribution for redshift. Error bars represent one

standard error.
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Figure 8: Estimate of log marginal density for absolute magnitude.
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Figure 9: Estimate of the log conditional density (the luminosity function) at redshift

of 0.5. The shaded region represents the range over which quasars are unobservable

at this redshift.
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Figure 10: Estimate of the log conditional density (the luminosity function) at redshift

of 1.5.

35


