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ABSTRACT

The observational limitations of astronomical surveys lead to significant sta-

tistical inference challenges. One such challenge is the estimation of luminosity

functions given redshift (z) and absolute magnitude (M) measurements from an

irregularly truncated sample of objects. This is a bivariate density estimation

problem; we develop here a statistically rigorous method which (1) does not as-

sume a strict parametric form for the bivariate density; (2) does not assume

independence between redshift and absolute magnitude (and hence allows evo-

lution of the luminosity function with redshift); (3) does not require dividing

the data into arbitrary bins; and (4) naturally incorporates a varying selection

function. We accomplish this by decomposing the bivariate density φ(z, M) via

log φ(z, M) = f(z) + g(M) + h(z, M, θ)

where f and g are estimated nonparametrically, and h takes an assumed paramet-

ric form. There is a simple way of estimating the integrated mean squared error

of the estimator; smoothing parameters are selected to minimize this quantity.

Results are presented from the analysis of a sample of quasars.

Subject headings: truncation bias, luminosity function, statistical procedures,

quasars

1. Introduction

Astronomers commonly seek to estimate the space density of objects, and a sky survey

such as the Sloan Digital Sky Survey (SDSS) (York et al. 2000) can yield a representative

sample useful for this purpose, due to the assumed isotropy of the Universe. Figure 1 depicts

redshift and absolute magnitude measurements for a sample of quasars given in Richards et
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al. (2006). These are a subset of the SDSS quasar sample (Data Release 3), chosen to be

statistically valid for purposes such as exploring the evolution with redshift of the luminosity

function, i.e. the space density of quasars as a function of absolute magnitude. This paper

describes a new method for estimating these luminosity functions, and presents results from

the analysis of this quasar sample.

For the purposes of the statistical inference problem, imagine the dots in Figure 1

as observations of bivariate data {(zi, Mi) : i = 1, 2, . . . , n} from some distribution with

probability density φ(z, M), i.e. the probability that a randomly chosen quasar falls in

a region B is
∫

B
φ(z, M)dz dM . (Equivalently, in a sample of size n, one expects that

n
∫

B
φ(z, M)dz dM will fall in the region B.) Hence, the luminosity function at redshift z

is, up to a multiplicative constant, the cross-section of the bivariate density at z, denoted

φ(z, ∗).

The main challenge is estimation of this bivariate density given truncated data. Only

objects with apparent magnitude within some range are observable. When this bound on

apparent magnitude is transformed into a bound on absolute magnitude1, the truncation

bound takes an irregular shape, varying with redshift. K-corrections further complicate this

boundary, leading to the dashed region in Figure 1. Also, the sample is not assumed to

be complete within this region, and the probability of observing an object will vary with

position on the sky, along with other factors. Incorporating this selection function into the

analysis is a secondary challenge.

Nonparametric estimators are advantageous in cases where either there does not ex-

ist a commonly agreed upon parametric physical model, or there is a desire to validate a

parametric model. See Wasserman et al. (2001) for an overview of the potential of non-

parametric methods in astronomy and cosmology. A fully nonparametric approach is not

possible here, since some assumptions must be placed on the form of the density in order to

infer its shape over the unobservable region. Under such conditions, one approach would be

to fit a sequence of increasingly complex parametric models in an attempt to obtain a good

fit to the data. A less subjective alternative is a semiparametric approach which merges

a nonparametric method with sufficient structure from a parametric form to obtain useful

results. This work describes a semiparametric approach to estimating the bivariate density,

and hence the luminosity functions, under irregular truncation.

This is a long-standing challenge in astronomical data analysis, with a variety of pro-

posed methods. Interesting qualitative and simulations-based comparisons between different

1Here, a flat cosmology with ΩΛ = 0.7, Ωm = 0.3, H0 = 70 km s−1 Mpc−1 is assumed when making this

transformation.
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approaches can be found in Willmer (1997) and Takeuchi et al. (2000). A parametric model

fit using maximum likelihood is a common choice, since it addresses the truncation bias

in a natural manner; see, for instance, Sandage et al. (1979), Boyle et al. (2000) and the

parametric models fit and referenced in §6 of Richards et al. (2006). These models have the

drawback of imposing a tight constraint on the luminosity function in a case where there is

not a consensus parametric form.

Some proposed methods are nonparametric, but assume that redshift and absolute mag-

nitude are independent, and hence assume that there is no evolution of the luminosity func-

tion with redshift. These include the nonparametric maximum likelihood method described

in Lynden-Bell (1971) and Jackson (1974) and adapted for double truncation in Efron & Pet-

rosian (1999), along with the methods in Efstathiou (1988), Choloniewski (1986), the 1/Vmax

estimator of Schmidt (1968) and Felten (1976). The semiparametric method of Wang (1989)

also assumes independence. Maloney & Petrosian (1999) apply a nonparametric technique

which assumes independence after having transformed the bivariate data using a parametric

form. Any method which assumes independence can be applied over small redshift ranges

(usually called bins). Nicoll & Segal (1983) and Page & Carrera (2000) describe other binning

approaches. Binning forces the difficult choices of bin centers and widths, and independence

is still assumed over the width of the bin.

This work was motivated by the goal of developing a statistically rigorous method which

(1) does not assume a strict parametric form for the bivariate density; (2) does not assume

independence between redshift and absolute magnitude; (3) does not require dividing the

data into arbitrary bins; and (4) naturally incorporates a varying selection function. This

was accomplished by decomposing the bivariate density φ(z, M) into

log φ(z, M) = f(z) + g(M) + h(z, M, θ) (1)

where h(z, M, θ) will take an assumed parametric form; it is intended to model the de-

pendence between the two random variables. For example, there may be a physical, para-

metric model for the evolution of the luminosity function which could be incorporated into

h(z, M, θ). Alternatively, one could use h(z, M, θ) = θzM as a first-order approximation

to the dependence. The functions f and g are estimated nonparametrically, with bandwidth

parameters to control the amount of smoothness in the estimate. Using the quasar sample

of Figure 1, the estimates obtained here are quite consistent, if not a bit smoother, than

those found in Richards et al. (2006). This analysis confirms the finding of the flattening of

the slope of the luminosity function at higher redshift.

The paper is organized as follows. §2 briefly describes the quasar sample used here.

§3 gives an overview of the idea of local maximum likelihood, a nonparametric extension of

maximum likelihood, and describes in detail the semiparametric approach taken here. §4
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describes how the integrated mean squared error can be approximated using cross-validation;

the bandwidths can then be chosen to minimize this quantity. §5 presents some results from

the analysis of the Richards et al. (2006) quasar sample, along with the results from some

simulations. More detailed derivations, along with theory for approximating the distribution

of the estimator, can be found in Schafer (2006). The approach was implemented as a Fortran

subroutine with R wrapper2.

2. Data

The full Richards et al. (2006) sample, shown in Figure 1, consists of 15,343 quasars.

From these, any quasar is removed if it has z ≥ 5.3, z ≤ 0.1, M ≥ −23.075, or M ≤ −30.7. In

addition, for quasars of redshift less than 3.0, only those with apparent magnitude between

15.0 and 19.1, inclusive, (after the application of K-corrections) are kept; for quasars of

redshift greater than or equal to 3.0, only those with apparent magnitude between 15.0 and

20.2 are retained. These boundaries combine to create the irregular shape shown by the

dashed line in Figure 1. This truncation removes two groups of quasars from the Richards

et al. (2006) sample. First, there are 62 quasars removed with M ≥ −23.075. This was done

to mitigate the effect of the irregularly-shaped, very narrow region in the lower left corner

of Figure 1. Second, there are 224 additional quasars with z ≤ 3 and apparent magnitude

larger than 19.1; these fall in an extremely poorly sampled region, which can also be noted

from Figure 1. Hence there are 15,057 quasars remaining after this truncation.

The sample is not assumed to be complete within this region. Associated with each sam-

pled quasar is a value for the selection function, which can be interpreted as the probability

that a quasar at this location, and of these characteristics would be captured by the sample.

Details regarding how the selection function was approximated via simulations, along with

many other details regarding the sample, can be found in Richards et al. (2006).

2It is available for download, along with documentation, from

http://www.stat.cmu.edu/∼cschafer/BivTrunc
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3. The Model

The approach taken here is built upon a nonparametric extension of maximum likelihood

called local likelihood modeling. This section begins by describing local likelihood density

estimation in the general case. This is then adapted to the problem at hand, initially for the

case assuming the random variables are independent. The case where dependence is allowed

is then described as a simple extension.

3.1. Local Likelihood Density Estimation

To contrast the standard global approach to estimation with the local approach em-

ployed here, consider the following. Assume the data X = (X1, X2, . . . , Xn) are realizations

(observations) of independent, identically distributed random variables from a distribution

with density f0. With classic maximum likelihood estimation, one chooses a single estimate

from among a class of candidates for f0; let F denote this class. Specifically, the maximum

likelihood estimator (f̂MLE) for f0 is defined as the f ∈ F which maximizes

n∑

j=1

log f(Xj) −

[
n

(∫
f(x) dx − 1

)]
(2)

or, equivalently, the f ∈ F which maximizes

n∑

j=1

log f(Xj) − n

∫
f(x) dx. (3)

(The notation Xj simultaneously indicates a random variable with unknown density f0, and

the observed realization of that random variable.) Although written here like a density

estimation problem, one could imagine the class F being indexed by a parameter θ; hence

this also captures the usual maximum likelihood estimator for parametric problems. For

example, one could define F to consist of all Gaussian densities as mean µ and variance σ2

vary. In cases where each f ∈ F is a density (e.g., the aforementioned Gaussian case), the

expression in brackets of equation (2) is always zero, and thus unnecessary. However, it is

often advantageous to let F be a wider class of smooth, nonnegative functions; then the

bracketed term forces f̂MLE to be a probability density.

With local modeling, instead of seeking the single member of the class F to be the

estimate of f0, the goal is to approximate f0(x) for x near u, yielding the local estimate f̂u.

Typically, log f0 can be approximated locally by a polynomial; in fact, a linear form for log f̂u

usually suffices. See Figure 2. On the left plot, the dashed line gives the logarithm of the
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Gaussian density with mean zero and variance one. Local linear estimates log f̂u are shown

for each of u ∈ {−2.5,−1.5, 0, 1.5, 2.5}. It is unimportant that f̂u(x) is not a good estimate

of f0(x) for x far from u, since many such local estimates will be found and then smoothed

together. These local estimates were calculated with a simulated data set consisting of 10,000

values. The method for finding these local estimates is outlined next.

In independent work, Loader (1996) and Hjort & Jones (1996) localized the likelihood

criterion of equation (3) near u ∈ IR by writing

Lu(fu,X) ≡

n∑

j=1

K∗(Xj, u, λ) log fu(Xj) − n

∫
K∗(x, u, λ) fu(x) dx, (4)

where K∗(x, u, λ) is a kernel function parametrized by λ > 0. A standard choice would

be K∗(x, u, λ) = K((x − u)/λ) where K is a probability density, but more specific forms

will be considered (and required) below. The choice of λ typically has much more influence

on the estimator than does the choice of the kernel function. The local estimate f̂u is

found by maximizing Lu(fu,X) over log fu belonging to some simple class, usually degree p

polynomials expanded around u:

log fu(x) = au0 + au1(x − u) + · · · + aup(x − u)p . (5)

Thus, the model is locally parametric with parameters au0, . . . , aup. One imagines repeating

this procedure at a grid of u-values, call this grid G, and hence obtaining a family of local

estimates f̂ ≡ {f̂u : u ∈ G}. As a result, f̂ is the family f of local estimates which maximizes

L(f ,X) ≡
∑

u∈G

Lu(fu,X) . (6)

The final local likelihood estimator f̂LL is constructed by smoothing together the local esti-

mates:

f̂LL(x) ≡

(
∑

u∈G

K∗(x, u, λ) f̂u(x)

)/(∑

u∈G

K∗(x, u, λ)

)
, (7)

thus making dual use of λ. Returning to Figure 2, the plot on the right shows f̂LL, the result

of smoothing together 101 local linear estimates (G consists of 101 values between -3 and 3).

In this case, λ = 0.05. It is clear that the estimate comes very close to the true density.

In what follows, simply assume that K∗ is chosen so that

∑

u∈G

K∗(x, u, λ) = 1 (8)
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for all x and hence

f̂LL(x) =

(
∑

u∈G

K∗(x, u, λ) f̂u(x)

)
. (9)

This is a departure from the original approach of Loader (1996) and Hjort & Jones (1996),

who instead used f̂(x) ≡ f̂x(x).

The criterion L(f ,X) appears awkward upon first sight, but it possesses the following

property: Considering (X1, . . . , Xn) again as random variables with unknown density f0, then

〈L(f ,X)〉 is maximized by choosing the family f which sets fu(x) = f0(x) for all u and all x.

If that choice were made, the estimate would be f̂LL = f0. Thus, since L(f ,X) ≈ 〈L(f ,X)〉,

the local estimate log f̂u will approximate the degree p Taylor expansion of log f0(x) for

x around u. The expected value of the standard likelihood criterion is also maximized by

setting the density equal to the truth, but this localized version has the advantage of allowing

the choice of λ to adjust the amount of smoothness in the estimator. In §4, an objective

method for bandwidth selection is described. There is an apparent conflict between the

choice of λ and the choice of the number of local models (the cardinality of G) since small G

will lead to smooth estimates. In the applications here, G is chosen large, so that the amount

of smoothing is completely dictated by λ.

3.2. Density Estimation under Truncation

Now return to the bivariate density estimation problem using truncated astronomical

data. The available data are denoted z ≡ (z1, z2, . . . , zn) and M ≡ (M1, M2, . . . , Mn), the

vectors of redshifts and absolute magnitudes, respectively. Let A denote the region outside

of which the data are truncated and let A(z, ∗) ≡ {M : (z, M) ∈ A} denote the cross-section

of A at z; A(∗, M) is defined similarly. Let φ(z, M) denote the unknown joint density of

random variables z and M .

The approach taken here originates in the following naive method. For the moment

assume z and M are independent so that φ(z, M) = f(z)g(M) where f is the density

for redshift and g is the density for absolute magnitude. Clearly, the available data allow

estimation of the redshift density for observable quasars, denote this density f ∗. This is

related to f by

f ∗(z) = k

∫

A(z,∗)

h(z, M) dM = kf(z)

∫

A(z,∗)

g(M) dM (10)

where k is a normalizing constant which forces f ∗ to integrate to one. Assuming for the

moment that g were known, it is possible to turn an estimator for f ∗ into an estimator for
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f by solving equation (10) for f :

f̂NAIVE(z) ∝ f̂ ∗(z)
/(∫

A(z,∗)

g(M) dM

)
. (11)

Starting with an initial guess at g, we could iterate between assuming g is known, and

estimating f , and vice versa.

This procedure is portrayed in Figure 3. Using the quasar data set described in §2, the

upper left plot depicts A(1.5, ∗) along the vertical axis, with absolute magnitudes ranging

from -29.9 to -25.85. An (arbitrary) assumption is made regarding the density for absolute

magnitude (g), shown as the solid curve in the upper right plot. For example, one can find

that ∫

A(1.5,∗)

g(M) dM ≈ 0.24, (12)

and thus conclude that the observed sample catches 24% of the quasars at z = 1.5. (The

fact that some quasars are missed within A is considered later when the selection function

is incorporated into the analysis.) The lower left plot shows how the proportion of quasars

observed varies with redshift, i.e. it is a graph of

∫

A(z,∗)

g(M) dM (13)

versus z. The dashed line in the lower right plot is f̂ ∗(z), the estimated redshift density for

observable quasars. The solid curve is f̂NAIVE, as defined above, found by dividing f̂ ∗(z) by

the proportion of quasars observed at redshift z, and then normalizing to force the estimate

to be a density.

Figure 3 also illustrates problems with this approach. First, the sharp corner of A

at z = 3.0 leads to a sharp feature in the estimate f̂NAIVE. In other words, smooth f ∗

does not produce a smooth f̂NAIVE. Second, consider the behavior of f̂NAIVE(z) for z where∫
A(z,∗)

g(M)dM is small, for instance z > 4.0: Even a small error in the estimate of
∫
A(z,∗)

g(M)dM will lead to a large error in f̂NAIVE(z). The fundamental challenge is that

a well-chosen estimator (i.e., well-chosen smoothing parameters) for f ∗ does not necessarily

lead to f̂NAIVE being a good estimator for f . In addition, it is possible to construct exam-

ples where this iterative approach will converge to different estimates starting from different

initial values for g.
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3.3. Local Likelihood Density Estimation with Offset

Despite the aforementioned problems with the use of f̂NAIVE, that approach can be

improved using the local likelihood methods of §3.1. In what follows, f ∗ is estimated using

local polynomial models which include an additive offset term. This offset is chosen so that

when subtracted off, what remains is a good estimator for f . The procedure is fundamentally

the same as that for constructing f̂NAIVE: Starting with an initial guess as to the value of

the density for absolute magnitude (g), the relationship between f , g, and f ∗ (shown in

equation (10)) is exploited to construct an estimator for f . (Here it is assumed that φ(z, M)

is normalized so that
∫
A

φ(z, M) dz dM = 1, but this choice is arbitrary since the estimate

can be extended outside of A and then renormalized as appropriate.)

To start, rewrite equation (10) as

log f ∗(z) = log (kf(z)) + log

(∫

A(z,∗)

g(M) dM

)
, (14)

where k is the constant required to force
∫
A

φ(z, M) dz dM = 1. Consider the goal of

estimating f(x) for x near u. Ideally, it would be possible to fit a local model

log (kfu(x)) = au0 + au1(z − u) + · · ·+ aup(z − u)p (15)

to obtain both the local estimate f̂u and the needed normalizing constant k, but truncation

does not allow for direct estimation of f . Instead, write a local version of equation (14) as

log f ∗
u(z) = log (kfu(z)) + log

(∫

A(z,∗)

g(M) dM

)
. (16)

and then substitute in the expression for log(kfu) from equation (15) into equation (16) to

get

log f ∗
u(z) = au0 + au1(z − u) + · · ·+ aup(z − u)p + log

(∫

A(z,∗)

g(M) dM

)
. (17)

Of course, it is possible to estimate f ∗ with the available data and equation (17) makes it

clear that a good way of doing this would be to fit a local polynomial model with

log(offsetf ) ≡ log

(∫

A(z,∗)

g(M) dM

)
(18)

included as an offset. (Recall that, for the moment, g is assumed known.) In other words,

instead of maximizing the local likelihood criterion Lu(f
∗
u , z) over log f ∗

u that are polynomials

expanded around u (as in equation (5)), maximize over functions of the form

au0 + au1(z − u) + · · ·+ aup(z − u)p + log(offsetf ) . (19)
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Write Lu(kfu×offsetf , z) as the local likelihood at u when the offset is included.

Label the parameters which maximize Lu(kfu×offsetf , z) as âu0, . . . , âup. Comparing

equations (15) and (17), note that

âu0 + âu1(z − u) + · · ·+ âup(z − u)p (20)

is an estimate of log(kf(z)) and hence

exp(âu0 + âu1(z − u) + · · · + âup(z − u)p) (21)

is the local (near u) estimate of kf(z). As before, this is repeated for a grid of values u ∈ G

and the result is the family f̂ which maximizes

L(f×offsetf , z) ≡
∑

u∈G

Lu(kfu×offsetf , z) , (22)

and the estimate of kf is found by smoothing together these local estimates:

∑

u∈G

K∗(z, u, λ) exp(âu0 + âu1(z − u) + · · ·+ âup(z − u)p) . (23)

Here, it is stressed that estimates of kf are smoothed together, instead of estimates of f ∗.

This is important because now λ can be chosen to obtain the optimal amount of smoothing

for the best estimate of kf . This avoids the problems which were evident at z = 3.0 in

Figure 3. A method for choosing λ is described in §4. Also, the constant k is present in all

of these estimates, but it will turn out in the next step that this is exactly what we need:

There is no need to renormalize and get separate estimates of f and k.

In this next step, g will be estimated holding kf fixed at its current estimate. To ease

notation, define

âu(z) ≡ âu0 + âu1(z − u) + · · · + âup(z − u)p . (24)

With an estimate of kf in hand, now let g∗ denote the density for the observable M so that

since

g∗(M) = k g(M)

∫

A(∗,M)

f(z) dz (25)

it follows that

log g∗(M) = log g(M) + log

(
k

∫

A(∗,M)

f(z) dz

)
. (26)

Now consider local models of the form

log g∗
v(M) = bv(M) + log

(
k

∫

A(∗,M)

f(z) dz

)
(27)
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where

bv(M) ≡ bv0 + bv1(M − v) + · · ·+ bvp(M − v)p (28)

and now

log

(
k

∫

A(∗,M)

f(z) dz

)
(29)

is the logarithm of the offset; note that an estimator for this was found above in equation

(23):

̂offsetg =

∫

A(∗,M)

[
∑

u∈G

K∗(z, u, λ) exp(âu(z))

]
dz. (30)

This leaves ∑

v∈G

K∗(M, v, λ) exp(b̂v(M)) (31)

as an estimator for g. This is then used to reestimate the offset term used in equation (17),

and the process repeats. This is conceptually the same procedure as was used to create

f̂NAIVE above, since the estimate of h is found by alternating estimating f and g.

3.4. The Global Criterion

This section will tie together the ideas of the previous. The iterative procedure described

above is computationally tractable, and has intuitive appeal. Remarkably, it is also possible

to pose the estimation problem in another manner which is not as computationally useful,

but will lead to analytical results. Define

L∗(f , g, z,M) ≡

n∑

j=1

{
∑

u∈G

K∗(zj, u, λ)au(zj) +
∑

v∈G

K∗(Mj, v, λ)bv(Mj)

−

∫

A

[
∑

v∈G

K∗(M, v, λ) exp(bv(M))

][
∑

u∈G

K∗(z, u, λ) exp(au(z))

]
dM dz

}
(32)

as the global criterion. It is a function of both families of local models, f and g. The key

is to notice that if g is held fixed at its current estimate ĝ, maximizing L∗(f , ĝ, z,M) over

local models f is identical to maximizing L(f × ôffsetf , z) with fixed estimate of the offset

term. To see this, recall equation (18) and note that an estimator for offsetf is

ôffsetf =

∫

A(z,∗)

(
∑

v∈G

K∗(M, v, λ) exp(b̂v(M))

)
dM (33)
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and from equations (22) and (4),

L
(
f × ôffsetf , z

)
=

∑

u∈G

Lu

(
kfu × ôffsetf , z

)
(34)

= k′ +
∑

u∈G

[
n∑

j=1

K∗(zj, u, λ) log (kfu(zj)) (35)

− n

∫ z

z

K∗(z, u, λ) kfu(z)

[∫

A(z,∗)

(
∑

v∈G

K∗(M, v, λ) exp(b̂v(M))

)
dM

]]
dz (36)

= k′ +
n∑

j=1

{
∑

u∈G

K∗(zj, u, λ)au(zj) (37)

−

∫

A

[
∑

u∈G

K∗(z, u, λ) exp(au(z))

][
∑

v∈G

K∗(M, v, λ) exp(b̂v(M))

]
dz dM

}
(38)

= k′′ + L∗(f , ĝ, z,M) (39)

where k′ and k′′ are constants which do not depend on f , and z and z are the lower and

upper bounds on redshift, respectively. An analogous statement could be made for finding

g when f̂ is held fixed. Thus, the iterative search method described in §3.2 is equivalent to

maximizing this global criterion.

3.5. Including Dependence and the Selection Function

Until now, the derivation of the approach has assumed that random variables z and

M are independent. Dependence will be incorporated by including a parametric portion

h(z, M, θ) so that the assumption becomes that

log φ(z, M) = f(z) + g(M) + h(z, M, θ) . (40)

A restriction placed on h is that it must be linear in the real-valued parameters θ. In the

absence of a physically-motivated model, a useful first-order approximation is h(z, M, θ) =

θzM . The global criterion of equation (32) is naturally updated to

L∗(f , g, z,M, θ) ≡

n∑

j=1

wj

{
∑

u∈G

K∗(zj, u, λ)au(zj) +
∑

v∈G

K∗(Mj, v, λ)bv(Mj) + h(zj, Mj, θ)

−

∫

A

exp(h(z, M, θ))

[
∑

v∈G

K∗(M, v, λ) exp(bv(M))

][
∑

u∈G

K∗(z, u, λ) exp(au(z))

]
dM dz

}
.(41)
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Note that with this form, when f and g are held constant, maximizing L∗ over θ is equivalent

to finding the maximum likelihood estimate of θ. Note also that the sum over the n data

pairs has also been updated to allow specification of a weight wj > 0. In this case, the natural

choice for the weight is the inverse of the selection function for that data pair. The intuition

is that a pair with selection function of 0.5 is “like” two observations at that location.

Finally, with a criterion of this form, this estimator can be fit into a general class of

statistical procedures called M-estimators. See the Appendix (§A) for an overview of M-

estimators.

3.6. Normalization of the Estimate

The described procedure returns an estimate normalized to be a probability density

over the observable region A. Of course, it could be renormalized to meet the goals of the

analysis, but care should be taken if the renormalization involves multiplying by a constant

which is itself estimated from the data. In certain cases, namely when there is a small

sample, this could result in significantly understated standard errors. Luminosity curves

are usually stated in units of Mpc−3mag−1, and are obtained by multiplying the bivariate

density (normalized to be a probability density over A) by a redshift-dependent constant;

thus no adjustment of the standard errors is needed in this case.

4. Bandwidth Selection

The choice of the bandwidth λ (the smoothing parameter) is critical. Choosing λ too

large results in an oversmoothed, highly biased estimator; choosing λ too small leads to

a rough, highly variable estimator. This is the bias/variance tradeoff. Fortunately, it is

possible to select λ to balance these two in a meaningful, objective manner.

Although this discussion applies in general to the problem of density estimation, here

it will be described in terms of estimating the bivariate density φ over A. Let φ̂λ denote a

general estimator for φ which is a function of a smoothing parameter λ. Then,

IMSE

(
φ̂λ

)
≡

∫

A

〈
(
φ̂λ(z, M) − φ(z, M)

)2
〉 dz dM

=

∫

A

[
〈
(
φ̂λ(z, M) − 〈φ̂λ(z, M)〉

)2
〉+

(
〈φ̂λ(z, M)〉− φ(z, M)

)2
]

dz dM

=

∫

A

[
Variance

(
φ̂λ(z, M)

)
+ Bias2

(
φ̂λ(z, M)

)]
dz dM (42)
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is the integrated mean squared error for φ̂λ. IMSE is a natural measure of the error in the

estimator, and it is apparent from equation (42) how it balances the bias and variance of

the estimator.

Although IMSE cannot be calculated, there is an unbiased estimator. It holds that

∫

A

〈
(
φ̂λ(z, M) − φ(z, M)

)2

〉 dz dM = 〈
∫

A

φ̂2
λ(z, M) dz dM〉

−2〈
∫

A

φ̂λ(z, M) φ(z, M) dz dM〉+ k

where k is a constant which does not depend on λ, so it can be ignored. Let φ̂λ(−j)(zj, Mj)

denote the estimate of the density at (zj, Mj) found using the data set with this jth data

pair removed. Following Rudemo (1982),

〈n−1

n∑

j=1

φ̂λ(−j)(zj, Mj)〉 = 〈
∫

A

φ̂λ(z, M) φ(z, M) dz dM〉 (43)

so that the least-squares cross-validation score (LSCV),

LSCV(λ) ≡

∫

A

φ̂2
λ(z, M) dz dM − 2n−1

n∑

j=1

φ̂λ(−j)(zj, Mj) (44)

is an unbiased estimator for IMSE(φ̂λ) − k, and hence minimizing it over λ approximates

minimizing the IMSE. See Hall (1983) and Stone (1984) for theoretical results showing the

large-sample optimality of choosing smoothing parameters to minimize this criterion.

Figure 4 gives an example of bandwidth selection by minimizing LSCV. Here, 100

simulated values are taken from the Gaussian distribution with mean zero and variance

one. The left plot shows how LSCV varies with the choice of bandwidth, and leads to a

choice of λopt = 1.25. The right plot compares the density estimate using three bandwidths

(λopt, λopt/3, 3λopt) with the true density. With the bandwidth too small, there are nonsmooth

features, and the bias is low but the variance is high. With the bandwidth too large, the

estimate is smoothing out the prominent peak in the center. Here, the variance of the

estimate is low, but the bias is high. The optimal choice gives an estimate close to the truth,

and is found using a bandwidth which balances estimates of the bias and variance.

The weighting due to the selection function needs to be taken into account in the

previous discussion. Recall that the weight wj is conceptualized as the number of equivalent

observations represented by this data pair. Thus “leaving out” observation j is achieved by

reducing its weight from wj to wj − 1 in the criterion (equation 41). But one must imagine
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repeating this wj times (for each equivalent observation which observation j represents). Let

neff =
∑

wj denote the effective sample size. The new relationship is

〈n−1
eff

n∑

j=1

wj φ̂λ(−j)(zj, Mj)〉 = 〈
∫

A

φ̂λ(z, M) φ(z, M) dz dM〉 (45)

where φ̂λ(−j)(zj, Mj) now indicates the estimator evaluated at (zj, Mj) when the weight on

observation j is reduced from wj to wj − 1.

Direct calculation of the leave-one-out estimates would be computationally intractable.

Schafer (2006) describes an approximation based on the second-order Taylor expansion of

the criterion function. This approximation proves to be highly accurate and computationally

simple.

4.1. Variable Bandwidths

The method described in §3.2 involves fitting local polynomial models at each of a grid

of values u ∈ G, for both the z and M directions. These derivations were all performed

assuming fixed bandwidth λ used for each of these models. This was merely for notational

convenience; there is no reason that different bandwidths could not be chosen for each of

these local models. In fact, given that the variables are on different scales, it would be

unreasonable to assume the same bandwidth would be a good choice for each. In the results

given in the next section, a stated bandwidth is assumed to be on the scale of the variables

after they have been transformed to lie in the unit interval, and bandwidths are given as

(λz, λM) pairs. Allowing the bandwidth to further vary over the different local models gives

the overall model fit much flexibility, and LSCV can be minimized as before. A full search

over this high-dimensional space is not feasible in practice, however.

5. Results

This section describes the results of the application of this method to some real and

simulated data sets. In all cases, linear models are fit when doing the local likelihood

modeling (p = 1), and G is a grid of 100 evenly spaced values in both the z and M dimensions.

The parametric portion is set as h(z, M, θ) = θzM . Bandwidths (λz, λM) are stated as

proportions of the range for that variable, e.g. λz = 0.05 means that the bandwidth for the

local models for redshift cover 5% of the range 0.1 < z < 5.3.
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5.1. Analysis of SDSS Quasar Sample

This method was applied to the sample of quasars described in §2. As stated above,

the method is capable of incorporating the selection function via differential weighting in

the criterion (equation (41)), but the selection function does present some challenges in this

case. For quasars with z ≈ 2.7 the selection function drops as low as 0.04 due to difficulty

in distinguishing quasars from stars of spectral type A and F. This gives a weight of 25 to

these quasars, which would be fine if it were exact, but these weights are calculated based

on simulations and Richards et al. (2006) states that the selection function in this region “is

quite sensitive to such uncertain details of the simulation.” They limit the weight on any

observation to 3.0 to account for this. This limit was also imposed in the analysis here.

Figure 5 shows how LSCV varies with λz and λM . The criterion is minimized when

λz = 0.05 and λM = 0.17. The grid of values at which LSCV is calculated is spaced by

0.01 because, as will be seen below, fluctuations of the bandwidths on this scale lead to very

little change in the estimates. The minimum value is -0.0078262, but no significance can

be attached to this value, since LSCV is not an unbiased estimate of IMSE, but instead of

IMSE plus an unknown additive constant.

Figure 6 shows, using the solid contours, the estimate of the quasar density (two-

dimensional luminosity function) as a function of z and M , when λz = 0.05 and λM = 0.17.

This estimate is normalized to integrate to one over the entire dashed (observable) region.

Recall from §3.3 that this is the form which the algorithm provides. Fortunately, this is

the ideal form for the estimate. The (effective) count of quasars in the surveyed region is

neff = 16858.51 and the survey covers 1622 deg2. Thus, the quasar count in a region R of

(z, M) space can be estimated using

neff

(
(180/π)2

1622

)[∫

R

φ̂(z, M) dz dM

]
. (46)

The estimate of θ is −0.41, with a standard error of 0.03. Although it is not possible to

assign physical significance to this value for θ, it is clear that the possibility that θ = 0 is

ruled out, and hence there is very strong evidence for evolution of the luminosity function

with redshift.

This estimate has an apparent irregularity in the shape of the density estimate for

z ≈ 3.5. (Note the “bumps” in the solid contours for all values of M at z ≈ 3.5.) Quasars of

this redshift are given larger weight due to interference from stars of spectral type G and K.

Although it is not possible to be certain, it appears that the weighting may not be sufficiently

accurate for the quasars. The weights may be underestimated leading to a corresponding

dip in the density estimate. The bandwidth (λz) is sufficiently small to pick up this artifact.
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In fact, LSCV forces the bandwidth to be small enough so it can model this feature. It is

hoped that in future work the uncertainty in the weights can be incorporated into LSCV.

For comparison, another estimate was constructed using λz = 0.15 for local models centered

on redshift values larger than 2.0, while still using λz = 0.05 for z ≤ 2.0. This estimate is

shown as the dotted contours. The increased smoothing removes the artifact.

Figure 7 shows the estimated count of quasars with M < −23.075 as a function of

redshift. As in Figure 6, the solid curve is the estimate with the LSCV-optimal bandwidths,

and the dashed estimate is found using the increased smoothing. Figure 8 shows quasar

counts as a function of absolute magnitude at a collection of redshift values. Comparisons are

made with the estimates given in Richards et al. (2006) which were found using the bin-based

method of Page & Carrera (2000). The error bars in both Figures 7 and 8 are one standard

error, but represent statistical errors only. The error bars do not account for incorrect

specification for the parametric form h. But, if there is bias from the incorrect specification of

h, the binned estimates must share these biases. This would be surprising since, while having

higher variance, estimates constructed from binning do not make assumptions regarding

the evolution of the luminosity function, and hence a well-constructed estimate should be

approximately unbiased.

Figure 8 also provides insight into the sensitivity of the estimate to the bandwidth

choice. It would be of great concern if small changes in bandwidth led to significant changes

in the estimate. To explore this, eight additional estimates were constructed using every

possible combination of λz ∈ {0.04, 0.05, 0.06} and λM ∈ {0.16, 0.17, 0.18}. The results are

shown as gray curves in each plot of Figure 8, but are only visible at M > −25 and z ≥ 3.75.

The fluctuations are small relative to the size of the error bars. Clearly, the estimates are

insensitive to these perturbations.

5.2. Simulation Results

Simulations were performed to further explore the behavior of the estimator. For these,

the estimate shown in the dotted contours in Figure 6 is taken to be the true bivariate

density; the truncation region is unchanged. The idea is to ask the following: If the truth

were, in fact, the estimate found here, would this method be able to reach a good estimate

of the density under identical conditions (same sample size and truncation region)? Hence,

the new data sets were simulated consisting of 16,589 (z, M) pairs within the observable

region. The first of these data sets was utilized to find the optimal smoothing parameters;

these were found to be λz = 0.06 and λM = 0.16. Each of the other 19 data sets was

analyzed using these values, so that these simulations also provide insight into the adequacy
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of this approach to bandwidth selection. Figure 9 shows the results from the simulations

by comparing estimates of the cross-sections of the estimates φ̂ at four different redshifts.

Each dashed curve is an estimate from one of the 20 data sets. The solid curve is the truth.

These results show strong agreement between the estimates and the truth over the regions

where data are observed. There is some bias in the tails, but this is in regions far from any

observable data. In addition, these simulations provide strong evidence that the estimates

of the standard errors are accurate: The variability in the estimates is comparable to the

size of the error bars.

6. Summary

The semiparametric method described here is a strong alternative to previous approaches

to estimating luminosity functions. The primary advantage is that it allows one to estimate

the evolution of the luminosity function with redshift without assuming a strict parametric

form for the bivariate density. Instead, one only needs to specify the parametric form for

a term which models the dependence between redshift and absolute magnitude. Future

work will focus on specifying a physically-motivated form for this parametric portion, but

the results from the analysis of a sample of quasars reproduce well those from Richards

et al. (2006) while only assuming a simple, first-order approximation to the dependence.

Other portions of the bivariate density are modeled nonparametrically, and are functions of

smoothing parameters. Using least-squares cross-validation, these smoothing parameters can

be chosen in an objective manner, by minimizing a quantity which is a good approximation

to the integrated mean squared error. Results from simulations show that, with a data set

of this size, the method is indeed capable of recapturing the true luminosity curves under

the truncation observed in these cosmological data sets.

The author gratefully acknowledges the comments of the referee, which greatly improved

this paper, and the contributions of Peter Freeman, Chris Genovese, and Larry Wasserman of

the Department of Statistics at Carnegie Mellon University. The author’s work is supported

by NSF Grants #0434343 and #0240019. Funding for the SDSS and SDSS-II has been pro-

vided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science

Foundation, the U.S. Department of Energy, the National Aeronautics and Space Adminis-

tration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education

Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS

is managed by the Astrophysical Research Consortium for the Participating Institutions.

The Participating Institutions are the American Museum of Natural History, Astrophysical

Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve Univer-



– 19 –

sity, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study,

the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear

Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scien-

tist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory,

the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics

(MPA), New Mexico State University, Ohio State University, University of Pittsburgh, Uni-

versity of Portsmouth, Princeton University, the United States Naval Observatory, and the

University of Washington.

REFERENCES

Boyle, B., Shanks, T., Croom, S., Smith, R., Miller, L., Loaring, N., and Heymans, C. 2000,

MNRAS, 317, 1014

Choloniewski, J. 1986, MNRAS, 223, 1

Efron, B. & Petrosian, V. 1999, J. Am. Stat. Assoc., 94, 824

Efstathiou, G., Ellis, R., Peterson, B. 1988, MNRAS, 232, 431

Felten, J. 1976, ApJ, 207, 700

Hall, P. 1983, Ann. Stat., 11, 1156

Hjort, N. & Jones, M. 1996, Ann. Stat., 24, 1619

Jackson, J. 1974, MNRAS, 166, 281

Loader, C. 1996, Ann. Stat., 24, 1602

Lynden-Bell, D. 1971, MNRAS, 155, 95

Maloney, A., & Petrosian, V. 1999, ApJ, 518, 32

Nicoll, J. & Segal, I. 1983, A&A, 118, 180

Page, M. and Carrera, F. 2000, MNRAS, 433

Qin, Y.-P., & Xie, G.-Z. 1999, A&A, 341, 693

Richards, G., et al. 2006, ApJ, 131, 2766

Rudemo, M. 1982, Scan. J. of Stat., 9, 65



– 20 –

Sandage, A., Tammann, G., & Yahil, A. 1979, ApJ, 232, 352

Schafer, C. (2006) Submitted. Available as CMU Dept. of Stat. Tech Report #842

http://www.stat.cmu.edu/tr/tr842/tr842.html

Schmidt, M. 1968, ApJ, 151, 393

Stone, C. 1983, Ann. Stat., 12, 1285

Takeuchi, T., Yoshikawa, K., & Ishi, T. 2000, ApJS, 129, 1

Willmer, C. 1997 AJ, 114, 898

Wang, M.-C. 1989, J. of Amer. Stat. Assoc. 84, 742

Wasserman, L., Miller, C., Nicol, R., Genovese, C. Jang, W., Connolly, A., Moore, A., &

Schneider, J. 2001, astro-ph/0112050

Woodroofe, M. 1985, Ann. Stat., 13, 163

York, D. 2000, AJ, 120, 1579

7. Appendix

A. M-estimators

The procedure described in §3 can be fit into a general class of statistical estimators

called M-estimators. In the simplest case, a M-estimator for a parameter is constructed by

maximizing a criterion of the form

β̂M ≡ arg max
β ∈Θ

[
n∑

j=1

ϕ(β, Xj)

]
(A1)

where (X1, X2, . . . , Xn) are the observed data, assumed to be realizations of independent,

identically distributed random variables and β is the parameter to be estimated. The func-

tion ϕ is some criterion. For example, in the case of finding the maximum likelihood estimate

of β, the function ϕ(β, x) = log fβ(x), where fβ is the density corresponding to parameter

This preprint was prepared with the AAS LATEX macros v5.2.
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β. Most least squares problems can be stated as M-estimators. Standard theory for M-

estimators can be applied to obtain an approximation to the distribution of β̂M, which can

then be used to find standard errors and form confidence intervals.

In the case at hand, Xj is the pair (zj, Mj), β = (f , g, θ), and

ϕ(β, Xj) ≡
∑

u∈G

K∗(zj, u, λ)au(zj) +
∑

v∈G

K∗(Mj, v, λ)bv(Mj) + h(zj, Mj, θ)

−

∫

A

exp(h(z, M, θ))

[
∑

v∈G

K∗(M, v, λ) exp(bv(M))

][
∑

u∈G

K∗(z, u, λ) exp(au(z))

]
dM dz.(A2)

See Schafer (2006) to see the derivations of the approximate distribution for the estimator

in this case.

The M-estimator could be generalized to the following:

β̂MW ≡ arg max
β ∈Θ

[
n∑

j=1

wjϕ(β, Xj)

]
(A3)

where wj > 0 is the weight given to the jth observation. This allows for easy incorporation of

the selection function into the analysis. The statistical theory for this weighted M-estimator

is a simple extension of that for the standard M-estimator.
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Fig. 1.— Quasar data from the Sloan Digital Sky Survey, the sample from Richards et al.

(2006). Quasars within the dashed region are used in this analysis. The removed quasars

are those with M ≤ −23.075, which fall into the irregularly-shaped corner at the lower left

of the plot, and those with z ≤ 3 and apparent magnitude greater than 19.1, which fall into

a very sparsely sampled region.
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Fig. 2.— An illustration of local likelihood density estimation. The dashed line in both plots

is the logarithm of the Gaussian density with mean zero and variance one (f0 in the notation

of §3.1). In the left plot, depicted are local linear estimates (f̂u) of the density for each of

u ∈ {−2.5,−1.5, 0, 1.5, 2.5}. A simulated data set consisting of 10,000 values is utilized. In

fact, local linear estimates are found for 101 values of u equally spaced between -3 and 3.

These local estimates are smoothed together to get the final estimate (f̂LL) shown in the

right plot.
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Fig. 3.— An explanation of the naive, but motivating idea. The left plot in the first row

depicts the cross-section of the observable region at z = 1.5 (denoted A(1.5, ∗)) with absolute

magnitudes ranging from -29.9 to -25.85. In the right plot, the solid curve is an assumed

density for absolute magnitude. 24% of the area under this curve falls in A(1.5, ∗), thus one

would assume that the observed sample catches 24% of the quasars at redshift z = 1.5. (For

now, ignore selection effects.) In the second row, the left plot shows how this proportion

observed varies with redshift. The dashed line in the right plot is the estimated density for

observable quasars (f̂ ∗), i.e. the estimate ignoring truncation. The solid curve is f̂NAIVE,

which equals f̂ ∗ divided by the curve on the left and then rescaling to make it a density.

Note that the estimate at z = 1.5 actually decreases after this adjustment because quasars

are relatively well-observed at that redshift. Note how the sharp feature in the observable

region at z = 3.0 creates both the increase in proportion observed and the steep drop of

f̂NAIVE at that redshift.
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Fig. 4.— An illustration of bandwidth selection by minimizing LSCV. The true density

is the Gaussian with mean zero and variance one, and a sample of size 100 is used in the

estimation. The chosen bandwidth is 1.25. The plot on the right shows how the optimal

bandwidth yields an estimate (dashed line) near to the truth (solid line), while choosing the

bandwidth too small (dash/dot line) or too large (dotted line) leads to poor estimates.
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Fig. 5.— LSCV as a function of λz and λM for the analysis of the quasar data. Each

dot represents a (λz, λM) combination for which LSCV was calculated. The criterion is

minimized when λz = 0.05 and λM = 0.17.
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Fig. 6.— Estimates of the bivariate density. The contours are lines of constant density,

with the estimate normalized to integrate to one over the observable (dashed) region. Thus,

it is possible to estimate the number of quasars in a particular subset of (z, M)-space by

integrating this function over that subset, multiplying by the observed count, and then

dividing by the fraction of the sky covered by this survey. The solid contours are found

using λz = 0.05 and λM = 0.17, which were the values of that minimized LSCV. Note the

irregularity in the estimate at z ≈ 3.5. This can be traced to similar fluctuations in the

selection function. Another estimate was obtained by keeping λz = 0.05 for z ≤ 2.0, but

using λz = 0.15 for z > 2.0, and is shown as the dotted contours. Using the larger bandwidth

smooths out some of these artifacts.
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Fig. 7.— Estimates of the luminosity function as a function of redshift, integrated over

absolute magnitudes less than -23.075. The solid curve is the estimate using λz = 0.05 and

λM = 0.17. The depicted error bars are for this estimate and represent one standard error;

these account for statistical errors only. The dashed curve is the smoother estimate found

by keeping λz = 0.05 for z ≤ 2.0, but using λz = 0.15 for z > 2.0.
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Fig. 8.— Estimates of the luminosity function at different redshifts (dark solid lines and error bars),

compared with estimates from Richards et al. (2006) (light solid lines and error bars). These are cross-

sections of the estimate shown in Figure 6, using λz = 0.05 and λM = 0.17 (the solid contours). Error bars

represent one standard error and account for statistical errors only. Eight additional estimates were found

by perturbing λz and λM by ±0.01. These estimates are shown as the gray curves (only visible at M > −25

and z ≥ 3.75).
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Fig. 9.— Results from simulations. The solid curve is the truth, and the dashed curves are

the estimates from each of the 20 simulations. The error bars are one standard error, and

found by averaging (in quadrature) the error bars over the 20 simulations.


