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Abstract

We consider hypothesis testing with smooth functional data by

performing pointwise tests and applying a multiple comparisons pro-

cedure. Methods based on general inequalities (such as Bonferroni’s

method) do not perform well because of the high correlation between

observations at nearby points. We consider the multiple comparison

procedure proposed by Westfall and Young (1993) and show that it ap-

proximates a multiple comparison correction for a continuum of com-

parisons as the grid for pointwise comparisons becomes finer. Simu-

lations and an application verify that this result applies in practical

settings.
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1 Introduction

In the setting of functional data analysis, an idealized observation is a

smooth function y(x) with x in some domain D. In practice, we would

typically not deal directly with the y(x) for all x ∈ D but rather evaluate

the function at some finite set of points Dm = {x1, . . . , xm} ⊂ D and pro-

duce a data vector y = (y1, . . . , ym)′ where yj = y(xj). The choice of the

set of evaluation points Dm is somewhat arbitrary. Alternatively, one may

represent the observed functions as a linear combination of basis functions,

simply store the coefficients of the expansion, and then function values can

be computed as needed. Assume we have a sample of independent functional

observations y1(x), . . . , yn(x). The dimension m of the stored vectors will

often be much larger than the sample size n. Thus, most of the inferential

methods from multivariate analysis (Rencher, 2002) cannot be used directly

since they require inversion of the sample covariance matrix. Moreover, mul-

tivariate methods do not take into account the functional nature of the data.

The methods of functional data analysis (Ramsay and Silverman, 2005) are

designed to deal with these issues.

Here we consider one important matter when the inferences are based

on the functions evaluated on a grid of points. Since the grid of evaluation

points Dm is arbitrary, a minimal requirement is that any inferential method

be somewhat independent of the choice of Dm. Furthermore, it would be

highly desirable that any such method converge to an appropriate continuum

method as the number of grid points increases and Dm becomes dense in D.
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We refer to this as the grid refinement invariance property. If the inferences

are based on coefficients of a basis function expansion, then they should

have a similar property as the order of the basis expansion become large.

Suppose we wish to test for differences in the means of curves from

several populations, i.e. functional analysis of variance. There are methods

to detect the overall difference in the mean curves (Fan and Lin, 1998; Shen

and Faraway, 2004; and Zerbe and Murphy, 1986). Just as with ordinary

analysis of variance and multivariate analysis of variance, after we decide

that the means from the two or more samples are significantly different by

an overall testing method, we want to identify more specifically where the

differences are. In the functional analysis of variance setting, a natural goal

is to determine the specific region of D where the differences occur.

For this problem, we consider a testing procedure based on a random-

ization method due to Westfall and Young (1993). This could be used as a

follow-up to an overall test, like one of the methods referenced above, or sim-

ply by itself. The Westfall-Young randomization method is a stepwise pro-

cedure which first conducts an appropriate univariate test at each x ∈ Dm

and then applies a correction for the multiple comparisons. Many multiple

comparison correction methods (e.g. Bonferroni) will be highly dependent

on the number of comparisons m, which in our setting is the number of

grid points, and any statistical significance will disappear as m → ∞. This

is very undesirable with functional data since one wants a large number of

evaluation points for high accuracy, and the number of grid points is ar-

bitrary. We will show that if one uses the method of Westfall and Young

for the multiple comparison, then as m → ∞ and Dm becomes dense in D,

the region of statistically significant differences will converge to a reasonable

limit which is almost the region that would be found if one corrected for the
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continuum of comparisons at all x ∈ D.

There exists some recent work that are related and can possibly be used

to extend our the results presented here. Efron (2007) shows how one can

use permutations and other transformations of the data to estimate and

adjust for the correlation between test statistics. It may be possible to use

this approach to satisfy other error criteria than the family wise error rate,

which is the error criterion used here. A methodology which is similar in

spirit to the procedure investigated here is found in Taylor, et. al. (2007)

but is based on extensions to Bonferroni’s inequality which are suitable for

Gaussian processes. This method doesn’t require a permutation pivotality

condition which is needed for the method analyzed here.

We describe the procedure in Section 2 in a simple setting. The main

results are in Section 3. We present some simulation results in Section 4, and

an application in Section 5. We conclude by discussing some open problems

in Section 6.

2 Example: The Two Sample Case

In this section, we consider the problem of testing equality of means in

the two sample setting. Suppose we have two independent samples yij(x),

i = 1, 2, j = 1, . . . , ni, where i denotes the population from whence the obser-

vation is drawn and j indexes the observation within the sample. Assume

the observations within the samples are independent and identically dis-

tributed. We assume the observations are realizations of Gaussian processes

with continuous mean functions µi(x) = E{yij(x)}, i = 1, 2, and a common

covariance function. We wish to test the null hypothesis H0 : µ1(x) = µ2(x),

for all x ∈ D versus the general alternative H1 : µ1(x) 6= µ2(x), for at least
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one x ∈ D. Consider the pointwise testing problems H0(x) : µ1(x) = µ2(x)

vs. H1(x) : µ1(x) 6= µ2(x). This is a simple univariate two-sample problem

for each x. Because of the Gaussian and common covariance assumptions,

the two sample t-test can be used to test each H0(x).

We assume that all curves have a common set of evaluation points xk,

1 ≤ k ≤ m. To apply the method analyzed here, one first computes a p-value

p(xk) using the univariate two sample t-test of the null hypothesis H0(xk)

at each grid point xk, and then applies a multiple comparison procedure

that controls for the family-wise error rate. To define the family-wise error

rate, consider Cm = {xk : H0(xk) is true, 1 ≤ k ≤ m}, which is the set

of grid points for which H0(xk) is true. Then the family-wise error rate

is pr{reject H0(xj) for any xj in Cm}. Note that this depends on the set of

grid points. Our goal is to make the family-wise error rate less than or equal

to α, where α is given, no matter what is the set Cm of true null hypotheses.

We will show now that for some multiple comparison procedures the

results can depend critically on the choice of the xj grid in a very undesirable

way. The simplest such procedure is the Bonferroni method. With this

procedure, for the family-wise error rate to be less than or equal to α,

we would reject any H0(xj) : µ1(xj) = µ2(xj) for which p(xj) ≤ α/m.

Alternatively, we can define a p-value which is corrected for the multiple

comparisons, namely min{1,mp(xj)}, and reject H0(xj) if this corrected p-

value is less than or equal to α. This procedure is clearly too conservative

and depends heavily on the number of grid points m. In general, the p-value

function p(x) will be continuous and positive, so as we refine the grid and

m → ∞, we will eventually not reject any H0(x). An improvement on the

Bonferroni procedure is Holm’s method (Holm, 1979). This is a sequential

step down method which proceeds as follows. First, the p-values, p(xj),
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obtained from the univariate tests are ordered, p(1) ≤ . . . ≤ p(m). Then, find

the smallest j = j∗ such that p(j) > α/(m − j). Reject all H0(xk) for which

the corresponding p(xk) < p(j∗). The rejection of the null hypothesis with

the smallest p-value is equivalent to Bonferroni’s method, so again, as we

refine the grid we will eventually fail to reject any H0(x).

Bonferroni’s and Holm’s procedures are based on the subadditivity prop-

erty of probability, which is accurate when the events of rejection are disjoint.

However, with smooth functional data, the events of rejection of H0(x) and

H0(x
′) are highly positively correlated when x and x′ are close. Thus, we

need an approach that somehow accounts for this correlation. To this end,

we present the Westfall-Young randomization method, for which Westfall

(2005) notes that it can “account for spatiotemporal correlations as well

as nonnormal distributional characteristics.” The analysis presented in the

next section verifies this claim for functional data.

To use the Westfall-Young method, we need an additional property

known as the Permutation Pivotality Condition. A general statement is

given in the next section, but with our equal covariance Gaussian model, it

is simple to obtain. Let L(W ) denote the joint distribution of the random

object W ; if W is a stochastic process then L(W ) is the collection of all

finite dimensional distributions. In the two sample setting under discussion,

suppose we randomly permute the population label i ∈ {1, 2} in the data

{yij(xk) : 1 ≤ i ≤ 2, 1 ≤ j ≤ ni, 1 ≤ k ≤ m}. Then no matter what is

the subset Cm for which the null hypotheses are true, the joint distribution

L{yij(xk) : 1 ≤ i ≤ 2, 1 ≤ j ≤ ni, xk ∈ Cm} is left unchanged. It will be the

distribution of independent and identically distributed multivariate normal

observations with mean vector µ1(xk) = µ2(xk), xk ∈ Cm and a covariance

matrix determined from the assumed common covariance function.
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We now describe the method of Westfall and Young starting from the

sorted p-values as in the Holm’s method: p(1) ≤ . . . ≤ p(m). Let π be the

permutation that maps the original grid sequence onto the sorted p-value

sequence, i.e. p(j) = p{xπ(j)}. Now, randomly permute data between the

two populations and call the resulting data set a randomized data set. We

will denote quantities computed from such a randomized data set with a

superscript ∗. Let p∗(j), j = 1, . . . ,m be the p-values computed from the

randomized data set put in the same order as the sorted p-values for the

original data set, p∗(j) = p∗{xπ(j)}. We repeat the randomization many

times, say N times, to get an array of such randomized p-values, {p∗
(j),` :

j = 1, . . . ,m and ` = 1, . . . , N}. Next, compute q∗(j),` = min{p∗(s),` : s ≥ j}

for all ` = 1, . . . , N . Now, the corrected p-value corresponding to p(j) is the

proportion of the q∗(j),` less than or equal to p(j), that is

r(j) = N−1
N

∑

l=1

I{q∗(j),l ≤ p(j)} (1)

where I(A) denotes the indicator random variable for the event A. Find the

smallest j, call it j+, such that r(j) > α. Reject H0(xj) for all j satisfying

j < j+, and accept all other H0(xj).

Let j† be given by p(xj†) = min{p(xj) : xj ∈ Cm}. It has been shown

that the method described controls the family-wise error rate to be less than

or equal to α, since pr{r(j∗) ≤ α} ≤ α (Westfall and Young, 1993). We will

show in the next section that as the set of evaluation points becomes dense

in the domain, the set {r(j) : j = 1, . . . ,m} of corrected p-values approaches

a limit which is almost the corrected p-values for the continuum of pointwise

null hypotheses H0(x), x ∈ D. Note that the correspondingly corrected p-

values under Bonferroni or Holm’s method will converge to 1 under the same

limiting conditions.
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This idea of pointwise testing with multiple corrections has already been

introduced and used in applications (Hoyte, et. al., 2001; Cox, et. al.,

2003). The novelty of this work lies in the development of limiting properties

which shows the Westfall-Young randomization method is appropriate for

functional data.

3 Theoretical Results

3.1 Main Result

We now assume a very general setup. Denote the functional data by yk(x),

x ∈ D, where k may be a vector index (e.g., k = (i, j) with i = 1, 2 and

j = 1, . . . , ni for a two sample setup). Let Y (x) denote the vector-valued

function obtained by concatenating the values of yk(x) in some convenient

way. We suppose that at each x, there is a null hypothesis H0(x) about

L{Y (x)}. There will also be a corresponding alternative hypothesis H1(x),

of course, but it will not generally be mentioned. We suppose further that

there is a test which can be summarized as a p-value p(x). The following

assumptions will be made:

1. We assume that for each x, p(x) is a valid p-value, i.e., if H0(x) is true,

then the distribution of p(x) is stochastically greater than uniform.

2. As a function of x, p(x) is continuous. Similarly, any p-value function

computed from permuted data is continuous.

3. The domain D is compact.

4. The grid points for evaluation form increasing sequence Dm, m =

1, . . . , of finite subsets of D such that
⋃∞

m=1 Dm is dense in D.
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5. The following permutation pivotality condition holds. Let

C = {x ∈ D : H0(x) is true}.

Assume G is a group of transformations that acts on vectors of the

same dimension as Y (x) through permutations on the indices k. We

suppose that for all g ∈ G,

L{gY (x) : x ∈ C} = L{Y (x) : x ∈ C} .

Here, the equality means equality of all finite dimensional distribu-

tions. Since C is not known, this condition must hold for all possible

C as well.

In the example presented in the previous section, we assumed the data

were realizations of a Gaussian process with a common covariance, and used

a two sample t-test to obtain the pointwise p-values. These were convenient

assumptions which allow one to verify the conditions above, which are clearly

more general than the setup of the previous section.

Let p∗(x) be the p-value function computed from the permuted data

obtained by selecting an element of G at random. Always p(x) will denote

the p-value function from the original data. Let pr∗ be the probability

measure associated with the random p∗’s. More precisely, pr∗(A) is the

probability measure conditional on the original data {Y (x) : x ∈ D} which

measures the proportion of the randomized p-values p∗(x) satisfying the

criteria in A.

Define

D(θ) = {x ∈ D : p(x) ≥ θ} and Dm(θ) = {x ∈ Dm : p(x) ≥ θ}.
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Let

r(θ) = pr∗
{

inf
x∈D(θ)

p∗(x) ≤ θ

}

and

rm(θ) = pr∗
{

inf
x∈Dm(θ)

p∗(x) ≤ θ

}

Note that r(j) defined in (1) satisfies r(j) = rm{p(j)}, and we have already

called r(j) a (discrete) corrected p-value. Call r{p(x)} the continuum cor-

rected p-value.

We now give a theorem that shows the continuum corrected p-value is a

valid p-value for the continuum of multiple comparisons.

Theorem 1. Let

p0 = inf
x∈C

p(x)

be the smallest p-value for which H0 is true. Then

pr{r(p0) ≤ α} ≤ α.

Proof. Define p∗0 = infx∈C p∗(x), and let F ∗ be the permutation cumulative

distribution function of p∗0. Since C ⊂ D(p0),

r(p0) ≥ pr∗
{

inf
x∈C

p∗(x) ≤ p0

}

= pr∗(p∗0 ≤ p0)

= F ∗(p0)

which implies

pr{r(p0) ≤ α} ≤ pr{F ∗(p0) ≤ α}.

By permutation pivotality,

pr{F ∗(p0) ≤ α} = pr{F ∗(p∗0) ≤ α}.
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Since pr∗ is the conditional permutation distribution given the original

data

pr{F ∗(p∗0) ≤ α} = E[pr{F ∗(p∗0) ≤ α|Y (x), x ∈ D}] = E[pr∗{F ∗(p∗0) ≤ α}],

and since F ∗ is the (conditional) cumulative distribution function of the

random variable p∗0 (given the data), it follows that F ∗(p∗0) is stochastically

larger than a uniform [0, 1] random variable, so that pr∗{F ∗(p∗0) ≤ α} ≤ α,

(Casella and Berger, 2002). Therefore,

pr{r(p0) ≤ α} ≤ E[pr∗{F ∗(p∗0) ≤ α}] ≤ α,

as was claimed.

To see how the previous result can be used, consider

R(α) = {x : p(x) < inf[p(x′) : r{p(x′)} ≥ α]}.

Then by the previous theorem,

pr {R(α) ∩ C 6= ∅} ≤ α.

Thus, if we reject H0(x) for all x ∈ R(α), the family-wise error rate will be

less than or equal to α.

Now we consider the behavior of rm(θ) as m → ∞. Since D1(θ) ⊂ . . . ⊂

Dm(θ) ⊂ D(θ), we have that rm(θ) is nondecreasing and bounded by r(θ),

so there is a limit

r∞(θ) = lim
m→∞

rm(θ) ≤ r(θ). (2)

Ideally we would have r∞(θ) = r(θ), but in fact r∞(θ) < r(θ) is possi-

ble. Because ∪mDm is dense in D and all p-value functions are assumed

to be continuous, it is easy to see that limm pr∗{infx∈Dm(θ) p∗(x) < θ} =
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pr∗{infx∈D(θ) p∗(x) < θ}. However, limm pr∗{infx∈Dm(θ) p∗(x) = θ} may be

strictly less than pr∗{infx∈D(θ) p∗(x) = θ}. The following result shows that

with a minor modification, we can achieve a bracketing of the continuum

corrected p-value through limits of the discrete corrected p-values.

Theorem 2. Let

rm(θ, ε) = pr∗
{

inf
x∈Dm(θ−ε)

p∗(x) ≤ θ + ε

}

Then for every ε > 0, rm(θ, ε) converges to a limit r∞(θ, ε) as m → ∞, and

r∞(θ) ≤ r(θ) ≤ lim
ε↓0

r∞(θ, ε).

Proof. For each fixed θ and ε, rm(θ, ε) is a nondecreasing sequence in m

and converges to some limit r∞(θ, ε) as in the derivation of (2). Note that

rm(θ, ε) is a nondecreasing function of ε for fixed m and θ, and so r∞(θ, ε) is

a nondecreasing function of ε for fixed θ. In particular, limε↓0 r∞(θ, ε) exists.

The theorem will follow once we show that for every ε > 0,

r(θ) ≤ r∞(θ, ε). (3)

By continuity of p(x), for x ∈ D(θ) there is a neighborhood of x such that

p(x′) ≥ θ − ε for all x′ in the neighborhood. Since
⋃

m Dm is dense in D, it

follows that D(θ) is contained in the closure of
⋃

m Dm(θ − ε).

Suppose p∗(x) satisfies infx∈D(θ) p∗(x) ≤ θ. Then since each p∗(x) is

continuous the infimum is achieved on the compact set D(θ) = p−1([θ, 1]),

and at any such point there is an neighborhood such that p∗(x) ≤ θ + ε on

that neighborhood. By the aforementioned inclusion of D(θ) in the closure

of
⋃

m Dm(θ−ε) and the fact that the sequence Dm is increasing, we conclude

that for all m sufficiently large infx∈Dm(θ−ε) p∗(x) ≤ θ + ε. This inclusion

argument establishes (3).
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Theorem 2 suggests one strategy for trying to approximate the con-

tinuum corrected p-values. If one is interested in a family-wise error rate

of 0.05, then consider a very fine grid of points Dm and compute, say,

pr∗{infx∈Dm(0.04) p∗(x) ≤ 0.06}. This difficulty has arisen because we have

insisted on using conservative p-values. For any finite Dm, the Westfall-

Young randomization method still gives valid multiple comparison correc-

tions on that set, and extending the inference to all of D in some approx-

imate way requires trust that the the behavior of the observed functions

is accurately captured by values on Dm. We have shown that in fact the

corrected p-values do converge to a meaningful limit which is almost the

continuum corrected p-value, unlike the Bonferroni method where the dis-

crete corrected p-values all converge to 1. In practice, we advocate simply

computing the discrete corrected p-values using the method of Westfall and

Young, and taking the leap of faith that when one observes a number of

contiguous grid points where there the corrected p-values are below 0.05,

then there is statistical significance throughout the entire region.

3.2 One Step Methods

Here we consider a simpler procedure than the one analyzed above. The

classical Bonferroni method is a one-step method: simply reject all null

hypotheses for which the p-value is less than or equal to α/m where m is the

total number of null hypotheses. This will give a family-wise error rate which

is less than or equal to α. Holm’s method is a stepwise modification which

still controls the family-wise error rate but has greater power. However,

Holm’s method is slightly more difficult to apply since it requires sorting

the p-values and comparing them with different critical values.
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A one-step method based on randomization is the following. For each

randomization, compute the minimal p-value among all the null hypotheses.

For each p-value from the real data set, a corrected p-value would be the

proportion of randomized minimal p-values which are less than or equal to

the observed p-value. One would reject the corresponding null hypothesis if

this corrected p-values is less than or equal to α.

Define continuum and discrete one-step corrected p-values as before:

q(θ) = pr∗
{

inf
x∈D

p∗(x) ≤ θ

}

,

qm(θ) = pr∗
{

inf
x∈Dm

p∗(x) ≤ θ

}

.

Clearly q(θ) ≥ r(θ), so the result of Theorem 1 holds:

pr {q(p0) ≤ α} ≤ α,

where p0 is the minimal p-value over the unknown set of all true null hy-

potheses. Thus, if we reject H0(x) only for x such that q{p(x)} ≤ α, then

the family-wise error rate will be less than or equal to α. However, we

will only reject a subset of the null hypotheses that are rejected using the

stepwise procedure of the previous section.

Next we turn to the limit of qm(θ) as m → ∞. For each θ, qm(θ) is

nondecreasing in m, and are bounded above by q(θ), so the limit exists and

q∞(θ) = lim
m→∞

qm(θ) ≤ q(θ).

As in the previous section, we may have q∞(θ) < q(θ), e.g. a particular

permutation may have infx∈D p∗(x) = θ and the infimum not achieved for

any point x ∈
⋃

m Dm so that for for this permutation, infx∈Dm
p∗(x) > θ

for all m. Thus, we must still be satisfied with a result like

q∞(θ) ≤ q(θ) ≤ lim
ε↓0

lim
m→∞

pr∗
{

inf
x∈Dm

p∗(x) ≤ θ + ε

}

.
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4 Simulation Study

Now we present a small simulation study of the method of Westfall and

Young applied to functional data. We wrote MATLAB procedures to per-

form the calculations, but we could have as well used the mt.minP function

in multtest library of R. Each example consists of two independent sam-

ples of functional data simulated from a Gaussian process with the same

covariance. In each example, the first sample has zero mean and the second

has a nonzero mean function.

To obtain zero mean Gaussian functional data, we generate 1,400 inde-

pendent and identically distributed random normal variates with zero mean

and standard deviation σ = 0.01. These white noise values are paired with

x grid points equally spaced between -0.2 and 1.2 and input to a spline

smoother with smoothing parameter λ = 0.95. We removed 200 points at

each end to obtain 1,000 equally spaced x values in [0, 1]. This approach

yields smooth curves that do not have boundary artifacts from the spline

smoothing. Note however that the variance function is still somewhat larger

near the boundary than in the middle.

In each example, we generate two samples of of functional data with

250 observations each. The first sample has zero mean function µ1(x) ≡ 0,

where 0 ≤ x ≤ 1. The second sample has nonzero mean function µ2(x). The

formulae for µ2 for each example is presented in Table 1 and their graphs

are presented in Figure 1. In each example, we first compute uncorrected

p-values (see Figure 2) using a two sample t-test at each of the 1,000 grid

points. Both Holm’s method and the method of Westfall and Young are

applied with two levels of discretization: m = 1, 000 (the original grid where

the functional data were computed) and a subgrid of m = 50 equally spaced
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Table 1: A list of four mean functions µ2. The function betaa,b(x) is the

density of the Beta(a,b) distribution. The amplitudes have been adjusted

to allow for sufficient power to detect some difference.

Name µ2(x), 0 ≤ x ≤ 1

beta spike 0.00001beta1000,1000(x)

beta 0.0001beta5,5(x)

constant 0.00015

linear 0.0004(x − 0.5)

x values. The corrected p-values are presented in Figures 3 and 4. We also

include the results of the one-step method in the second figure for both the

m = 50 and m = 1, 000 levels of discretization. For Holm’s method, we see

that there are some statistically significant (at the α = 0.05 level) results

for the first three examples at the coarser m = 50 grid, but these become

nonsignificant as the grid is refined to m = 1, 000. For the method of Westfall

and Young, note that the corrected p-values for m = 50 are very close to

but slightly smaller than those for m = 1, 000, as would be expected from

the analysis presented above. For m = 50, Westfall and Young’s method is

generally more powerful than Holm’s method, and retains this power when

the grid is refined. The one-step method is generally quite close the the full

version of the method of Westfall and Young. For the constant alternative,

the corrected p-value function for the one-step method differs to some extent

but mainly in the region where results are not significant. In all cases 10, 000

permutations were used to compute the corrected p-values for the method

of Westfall and Young and the one-step method.

Looking at the individual examples, we see that the Westfall and Young
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Figure 1: Plot of all four choices of µ2 from Table 1. The dashed line is a

horizontal line at 0.
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Figure 2: Simulation results: The uncorrected p-values.
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Figure 3: Simulation results: The corrected p-values from Holm’s procedure.

The larger circles correspond to the m = 50 and the solid curve to m =

1, 000. The horizontal slashed lines show the level 0.05.
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Figure 4: Simulation results: The corrected p-values from the Westfall-

Young randomization method and the one-step method. The circles show

the corrected p-values for m = 50 evaluation points using the full step-down

method and the X’s show the corrected p-values for m = 50 evaluation

points using the one-step method. The curves show the corrected p-values

for m = 1, 000 evaluation points. Note that the curves almost interpolate

the plotting points for the corresponding one-step or full step-down method

with m = 50. The horizontal slashed lines show the level 0.05.
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method does a good job of picking out the region of nonzero values for the

beta spike. Its performance on the other examples is not as good, although

this is dependent on the particular amplitudes chosen for each µ2. In par-

ticular, for the constant and linear choices of µ2 we see that the region of

significant difference does not accurately indicate the nature of the deviation

in the two functions.

5 Application

Here we apply the method analyzed above to real data. The application

concerns a medical device designed to detect pre-cancerous cervical lesions

by illuminating the cervix with monochromatic light at various excitation

wavelengths and measuring the fluorescence at a number of emission wave-

lengths. Further details may be found in Cox, et. al. (2003). We consider

measurements made by a single device for several different time periods.

Specifically, there are seven time periods when different factors were used to

correct for the optical and electronic transfer function. For this objective,

we will apply the multiple comparison methodology above to measurements

on a fluorescence standard (coumarin) made at different time points. The

correction factors were computed using other standards measurements. Our

null hypothesis is that the measurements made during the different periods

are indistinguishable. Thus, permuting the measurement amongst the dif-

ferent periods would make no difference under the null hypothesis. We use

the measured intensities at 390 nanometers excitation (which is near the

peak response for coumarin) at emission wavelengths between 445 and 550

nanometers in increments of 1 nanometer. There are 433 curves in total,

and the sample sizes for each of the seven time periods are 80, 35, 68, 88,
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Figure 5: Plots of raw and corrected p-values. A dotted horizontal line at

0.05 is drawn for a reference.

32, 39, and 91. The analysis of variance statistic was computed pointwise

and converted to a p-value using the F-distribution. We then applied the

Westfall-Young randomization method to correct the p-values, including the

one-step and the full step down corrections. The results are shown in Fig-

ure 5. We note that raw and Westfall-Young corrected p-values seems to

be close to each other, while the single step corrected p-values are quite

conservative in this case.

We examine the results in more detail to assess the nature of the differ-

ences. Figure 6 shows a plot of the grand mean, and the root mean squares

due to treatment and error. Of course, the analysis of variance F-statistic is

the square of the ratio of these latter two quantities. For much the domain

of emission wavelengths, the root mean square due to treatment is about
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(RMST) and root mean squared error (RMSE). The region of significance

given by the Westfall-Young randomization method are indicated by the

crosses on the horizontal line at 0.

20% of the overall signal, while the “noise” as measured by the root mean

square due to error is somewhat smaller. Such a large systematic difference

has practical significance for the intended application of this technology.

One difficulty is that the approach does not lend itself to pairwise com-

parisons at each point. However, we can informally assess which periods

are different. In Figure 7 we plot the difference between the grand mean

and the mean within each period, normalized by the average of the grand

mean over the 106 emission wavelengths. The time periods are numbered in

order. It is clear that for most of the domain, the means of periods 2 and

4 are somewhat lower than the others, and there is not an obvious pattern
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with respect to time order. While we cannot rule out the possibility that

the differences are due to some other time trend rather than deficiencies in

the correction factors, the lack of such a pattern does not support this.

6 Conclusions

We have shown that the Westfall and Young randomization method applied

to functional data works well even as the grid of evaluation points is refined

so that the number of pointwise tests becomes large. The method is prob-

ably not as powerful as an overall test for most alternatives. However, the

results from such pointwise testing are more directly interpretable than the
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results of an overall test which finds some difference in the means (or other

parameters) but may give little indication of where the difference is. Appli-

cation of the method of Westfall and Young only requires implementation

of pointwise univariate tests and does not need any modeling of covariance

or the joint distributions, as is required for an overall test.

There may be some criticisms raised with the present work. One that

has already become evident in the application in Section 5 is that when com-

paring several populations, we can use the methodology to determine where

there is a difference in the means, but not which populations are different.

Another issue is the relevance of the family-wise error rate with the advent

of false-discovery rate methods which have attracted much attention (Ben-

jamini and Hochberg, 1995), especially when the family-wise error rate tends

to be somewhat more conservative than the false discovery rate. We argue

that there still is a place for multiple comparison procedures controlling for

family-wise error rate. Westfall (2005) shows that a method that controls

for the false discovery rate can be too liberal and thus its inference may be

misleading in some applications. Furthermore, we could not find a method

comparable to that of Westfall and Young which applies to functional data

controlling for the false discovery rate, although the methods presented in

Efron (2007) may prove useful for solving this problem.

One of the surprising things that emerged from our simulation examples

was that the one-step method performed almost as well as the full step

down method of Westfall and Young in many cases. However, in the real

data example, the one step method was somewhat more conservative. We

note that calculation of the full version is more complicated than for the

one-step method but requires little additional computer time since most of

the computation is in getting the p-values.
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The widespread applicability of the method of Westfall and Young sug-

gests other approaches, such as including some principal component scores

as well as function values on a grid of evaluation points. With the additional

variables, the power at alternatives (such as the “constant” example of Sec-

tion 4) may be improved. This can be another interesting future avenue of

research.
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