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Abstract

The goal of clustering is to detect the presence of distinct groups in a data set
and assign group labels to the observations. Nonparametric clustering is based
on the premise that the observations may be regarded as a sample from some
underlying density in feature space and that groups correspond to modes of this
density. The goal then is to find the modes and assign each observation to the
domain of attraction of a mode. The modal structure of a density is summarized
by its cluster tree; modes of the density correspond to leaves of the cluster tree.
Estimating the cluster tree is the primary goal of nonparametric cluster analy-
sis. We adopt a plug-in approach to cluster tree estimation: estimate the cluster
tree of the feature density by the cluster tree of a density estimate. For some
density estimates the cluster tree can be computed exactly, for others we have to
be content with an approximation. We present a graph-based method that can
approximate the cluster tree of any density estimate. Density estimates tend to
have spurious modes caused by sampling variability, leading to spurious branches
in the graph cluster tree. We propose excess mass as a measure for the size of a
branch, reflecting the height of the corresponding peak of the density above the
surrounding valley floor as well as its spatial extent. Excess mass can be used
as a guide for pruning the graph cluster tree. We point out mathematical and
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algorithmic connections to single linkage clustering and illustrate our approach on
several examples.

Keywords: Cluster analysis, level set, single linkage clustering, excess mass, nearest
neighbor density estimation, runt test.
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1 Introduction

The goal of clustering is to identify distinct groups in a data set and assign a group
label to each observation. We use the term “distinct groups” in the sense of Carmichael,
George, and Julius (1968): contiguous, densely populated areas of feature space, sep-
arated by contiguous, relatively empty regions. This definition, while quite general,
admittedly is not all-encompassing: Figures 1(a) - 1(c) would be regarded as showing
two groups, while Figure 1(d) would not.

(a) (b) (c) (d)

Figure 1: (a)-(c) Distinct groups in the sense of Carmichael, George, and Julius; (d)
Groups that would not be considered distinct.

To cast clustering as a statistical problem we regard the data X = {x1, . . . ,xn} ⊂ Rm

as a sample from some unknown probability density p(x). There are two statistical
approaches to clustering. The parametric approach (Fraley and Raftery 1998, 1999;
McLachlan and Peel 2000) is based on the assumption that each group g is represented
by a density pg(x) that is a member of some parametric family, such as the multivariate
Gaussian distributions. The density p(x) then is a mixture of the group densities, and
the number of mixture components and their parameters are estimated from the data.
Observations can be labeled using Bayes’ rule.

In contrast, the nonparametric approach adopted in this paper is based on the premise
that groups correspond to modes of the density p(x). The goal then is to find the modes
and assign each observation to the “domain of attraction” of a mode. Searching for
modes as a manifestation of the presence of groups was first advocated in D. Wishart’s
(1969) paper on Mode Analysis. According to Wishart, clustering methods should be
able to detect and “resolve distinct data modes, independently of their shape and vari-
ance”.

Hartigan (1975, Section 11; 1981) expanded on Wishart’s idea and made it more precise
by introducing the notion of high density clusters. Define the level set L(λ; p) of a density
p at level λ as the subset of the feature space for which the density exceeds λ:

L(λ; p) = {x |p(x) > λ}.
Hartigan defined the high density clusters at level λ as the connected components of
L(λ; p).
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Hartigan also pointed out that the collection of high density clusters has a hierarchical
structure: for any two clusters A and B (possibly at different levels) either A ⊂ B or
B ⊂ A or A ∩ B = ∅. This hierarchical structure is summarized by the cluster tree of
p. Each node N of the tree represents a subset D(N) of the support L(0; p) of p — a
high density cluster of p — and is associated with a density level λ(N). The cluster
tree is easiest to define recursively (Stuetzle 2003). The root node represents the entire
support of p and has associated density level λ(N) = 0. To determine the descendants of
a node N we find the lowest level λd for which L(λ; p)∩D(N) has two or more connected
components. If there is no such λd then p has only one mode in D(N), and N is a leaf of
the tree. Otherwise, let C1, . . . , Ck be the connected components of L(λd; p) ∩D(N). If
k = 2 (the usual case) we create daughter nodes representing the connected components
C1 and C2, both with associated level λd, and apply the definition recursively to the
daughters. If k > 2 we create daughter nodes representing C1 and C2 ∪ · · · ∪ Ck and
recurse. (Our terminology is different from the one used by Hartigan (1975); Hartigan
refers to the connected components of all level sets as high density clusters, while we
reserve this term for connected components of level sets associated with the nodes of the
cluster tree.)

Figure 2 shows a density and the corresponding cluster tree. It is worth noting that the
topology of the cluster tree of a density is invariant under nonsingular affine transforma-
tions of feature space; only the levels of the nodes change. In particular, the topology
does not depend on the choice of units of measurement.
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Figure 2: (a) Density; (b) cluster tree. The shaded area represents the excess mass of
the left daughter of the root node. The hashed area represents the size of the right
daughter of the root node.
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We regard estimating the cluster tree as the fundamental goal of nonparametric cluster
analysis. In this paper we propose a graph-based approach to cluster tree estimation
which we call generalized single linkage clustering. In Section 2 we review previously
suggested clustering methods that can be described in terms of level sets. In Section 3
we present the basic idea of our graph-based approach, and in Section 4 we illustrate
our algorithm on a simple example. In Section 5 we describe a way of measuring the
“prominence” of modes of a density, motivating a method for pruning branches of a
cluster tree likely to correspond to spurious modes caused by sampling variability. In
Section 6 we point out mathematical and algorithmic connections between our approach
and single linkage clustering. In Section 7 we show additional examples. Section 8 with
a summary and ideas for future work concludes the paper.

2 Previous work

Several previously suggested clustering methods can be described in terms of level sets
and high density clusters.

Probably the earliest such method is Wishart’s (1969) one level mode analysis. The goal
of one level mode analysis is to find the connected components of L(λ; p) for a given
density level λ chosen by the user. The idea is to first compute a kernel density estimate
p̂ (Silverman 1986, Chapter 4) and set aside all observations with p̂(xi) ≤ λ, i.e., all
observations not in the level set L(λ; p̂). If the connected components of L(λ; p) are well
separated then the remaining high density observations should fall into clearly separated
groups. Wishart suggests using single linkage clustering of the high density observations
to identify the groups. One level mode analysis anticipates some of the “sharpening”
ideas later put forth by P.A. Tukey and J.W. Tukey (1981).

A reincarnation of one level mode analysis is the dbscan algorithm of Ester, Kriegel,
Sander, and Xu (1996). dbscan consists of four steps: (a) for each data point calculate
a kernel density estimate using a spherical uniform kernel with radius r; (b) choose a
density threshold λ and find the observations with p̂(xi) > λ; (c) construct a graph
connecting each high density observation to all other observations within distance r; (d)
define the clusters to be the connected components of this graph. All observations not
within distance r of a high density observation are considered “noise”.

dbscan is closely related to Walther’s (1997) method for estimating level sets and to
the clustering algorithm of Cuevas, Febrero, and Fraiman (2000, 2001). Walther’s level
set estimator consists of two steps: (i) compute an estimate p̂ of the underlying density
p; (ii) approximate the level set of p̂ by a union of balls Br with suitably chosen radius
r. In his theoretical development Walther uses a kernel density estimate for step (i),
although operationally any density estimate could be substituted. The approximation
L∗(λ; p̂) of L(λ; p̂) is constructed by first partitioning the data X (or a larger Bootstrap
sample generated from p̂) into subsets X+ = {xi | p̂(xi) > λ} and X− = {xi | p̂(xi) ≤ λ},
and then forming the union of those balls around points in X+ that do not contain any
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points in X−:
L̂(λ; p) = L∗(λ; p̂) = [(X− ⊕Br) ∩ X+]

′ ⊕Br .

Here the ⊕ operator denotes dilation:

X ⊕Br = {x + y |x ∈ X ,y ∈ Br} .

The representation of L̂(λ; p) as a union of balls is computationally very convenient; for
example, it is easy to find the connected components. The crux of the matter, of course,
is the choice of r. Walther gives a formula for r in terms of the behavior of p on the
boundary ∂L(λ; p) of the level set L(λ; p): If

‖∇p(x)‖ > m and

‖∇p(x)−∇p(y)‖ < k ‖x− y‖
for all x,y on ∂L(λ; p) then we should choose r = m/k. Of course, m and k for the
true density p will be unknown in practice. However, the goal is to approximate L(λ; p̂),
which suggests substituting the corresponding quantities for p̂. To our knowledge this
approach has not been explored.

The level set estimator of Cuevas et al. (2000, 2001) differs from Walther’s estimate in
that L∗(λ; p̂) is taken to be the union of balls Br around all points in X+:

L̂(λ; p) = L∗(λ; p̂) = X+ ⊕Br .

Walther claims that his estimator performs better asymptotically. It certainly makes
more sense: an approximation to L(λ; p̂) should not contain points for which p̂(x) <
λ. Cuevas et al. propose several methods for choosing r, based solely on interpoint
distances of points sampled from p̂. They do not make use of the fact that an analytic
expression for p̂ is available and function values, derivatives, etc can be obtained, and
they have a somewhat ad-hoc flavor.

A weakness of one level mode analysis or any method that attempts to find clusters based
on a level set for a single level λ is apparent from Figure 2. The degree of separation
between connected components of L(λ; p), and therefore of L(λ; p̂), depends critically
on the choice of the cut level λ, which is left to the user. Moreover, there might not be
a single value of λ that reveals all the modes.

Citing the difficulty in choosing a cut level, Wishart (1969) proposed hierarchical mode
analysis, which can be regarded as a heuristic for computing the cluster tree of a kernel
density estimate p̂, although it appears that Wishart did not view it thus. (The word
“tree” does not occur in the section of his paper on hierarchical mode analysis.) We
use the term “heuristic” because there is no guarantee that hierarchical mode analysis
will indeed correctly compute the cluster tree of p̂ as defined above. Wishart’s (1969)
algorithm constructs the tree by iterative merging (i.e., is an agglomerative algorithm).
It is quite complex, probably because its iterative approach is not well matched to the
tree structure it is trying to generate.
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The basic weakness of one level mode analysis was also noted by Ankerst, Breuning,
Kriegel, and Sander (1999) who proposed OPTICS, an algorithm for “Ordering Points
to Identify the Clustering Structure”. OPTICS generates a data structure that allows
one to calculate efficiently the result of dbscan for any desired density threshold λ.
It also produces a graphical summary of the cluster structure. The idea behind their
algorithm is hard to understand.

Stuetzle’s (2003) runt pruning method estimates the cluster tree of the feature den-
sity by computing the cluster tree of the nearest neighbor density estimate and then
pruning branches believed to correspond to spurious modes. In this paper we present a
generalization of runt pruning to other density estimates.

Klemelae (2004, 2005) proposed tools for visualizing the level sets of density estimates
that are piecewise constant over (hyper)-rectangles, such as histograms or discretized
kernel estimates. Level sets and their connected components for such density estimates
are easy to obtain. Klemelae defines a “level set tree” which is different from the cluster
tree in that it has nodes at every one of the (finitely many) levels occuring as values of
p̂.

For sake of completeness we also mention an alternative method for estimating level sets
based on the concept of “excess mass” put forth by Hartigan (1987). The excess mass
of a set C at level λ is defined as

E(λ,C; P ) =
∫

C
(p(x)− λ) dx

= P (C)− λµ(C) .

Here P (C) and µ(C) denote probability content and Euclidean volume of C, respec-
tively. It is easy to see that L(λ; p) maximizes E(λ,C; P ) among all Borel sets. This
observation suggests estimating L(λ; p) by maximizing empirical excess mass E(λ,C; Pn)
over a collection C of sets (Mueller and Sawitzki 1991; Polonik 1995). The Borel sets are
too large a class for the estimator to be consistent; C has to be a V-C class, or at least
a Glivenko-Cantelli class for the true density. An example is the class of all ellipsoids.
The need to specify a class of sets that are supposed to contain the true level set can be
regarded as a strength or a weakness, depending on one’s point of view. It allows one
to incorporate prior knowledge about the shape of the level set into the estimation pro-
cedure, but on the other hand such information may not be available. Another problem
with the approach is its computational complexity.

3 A graph-based approach to estimating the cluster

tree of a density

An obvious way of estimating the cluster tree of a density p from a sample is to first
compute a density estimate p̂ and then use the cluster tree of p̂ as an estimate for

7



the cluster tree of p. This plug-in approach works for histograms or binned kernel
density estimates which, however, are only viable in low dimensions (Nugent 2006). For
many other estimates suitable for high-dimensional data, like Gaussian mixtures, kernel
estimates, or projection pursuit estimates, computing level sets, and therefore computing
the cluster tree, seems intractable. Instead we define and solve a closely related, but
much simpler graph problem.

Let p̂ij be the minimum value of the density estimate p̂ over the line segment connecting
observations xi and xj:

p̂ij = min
t∈[0,1]

p̂((1− t)xi + txj) .

Let G be the complete graph over the observations with edge weights p̂ij and vertex
weights p̂ii. Define the threshold graph G(λ) as the subgraph of G consisting of the
edges and vertices with p̂ij > λ. By construction, the vertices of G(λ) are exactly the
observations in L(λ; p̂).

There is also a link between the connected components of L(λ; p̂) and the connected
components of the threshold graph G(λ): Two observations in the same connected
component of G(λ) are guaranteed to lie in the same connected component of L(λ; p̂)
because they are connected by a path in G along which p̂ij > λ. Note that the reverse is
not necessarily true: there might be a curve x(t) : [0, 1] → Rm with x(0) = xi, x(1) = xj

and p̂(x(t)) ≥ λ for all t ∈ [0, 1], even if there is no path in the graph G with this property.
Therefore, observations in the same connected component of L(λ; p̂) may lie in different
connected components of G(λ). However, erroneous splits are rare if p̂ is smooth; we
present some evidence for this assertion in Section 7. We will altogether miss connected
components of L(λ; p̂) that do not contain any observations, but those are probably
artifacts of the density estimate and not of interest. In any case, our real target are
the level sets L(λ; p) of the feature density and their connected components; occasional
mistakes in identifying connected components of L(λ; p̂) are but one component of the
overall estimation error.

The connected components of G(λ) for different values of λ have a tree structure, just
like the connected components of L(λ; p̂). We call this tree the graph cluster tree; it
is our approximation to the cluster tree of p̂. Like the cluster tree of a density, the
graph cluster tree is easiest to define recursively. Each node N of the graph cluster tree
represents a subgraph D̃(N) of G and is associated with a density level λ(N). We refer
to the vertex set of D̃(N) as the graph high density cluster associated with N . The
root node represents the entire graph G and has associated density level λ(N) = 0. To
determine the descendants of a node N we find the lowest level λd for which G(λ)∩D̃(N)
has two or more connected components. If there is no such λd then N is a leaf of the tree.
Otherwise, let C1, . . . , Ck be the connected components of G(λ) ∩ D̃(N). If k = 2 (the
usual case) we create daughter nodes representing the connected components C1 and
C2, both with associated level λd, and apply the definition recursively to the daughters.
If k > 2 we create daughter nodes representing C1 and C2 ∪ · · · ∪ Ck and recurse.

Remark 1: In our graph-based approach the observations play two conceptually differ-
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ent roles. First, they are used to compute the density estimate p̂. Second, they form the
vertices of the graph G. The graph is merely a tool for approximating the structure of
the level sets of p̂. We could use a different set of “test” points as the graph vertices. For
example, we could generate a large sample from p̂, which would reduce the likelihood
of erroneously splitting connected components of level sets of p̂. We would end up with
cluster labels for the test points and could then label the original observations using any
classification method.

4 Computing the graph cluster tree

The recursive definition of the graph cluster tree given at the end of Section 3 translates
directly into a recursive cluster tree algorithm for its computation. Note that when we we
apply the splitting procedure to the subgraph D̃(N) associated with a node N the only
values for the threshold λ we have to consider are the weights of the edges in D̃(N).
However, we can simplify the algorithm and its visualization and expose similarities
to other clustering methods (Section 6) by making use of a connection between the
threshold graphs of the graph G and of its maximal spanning tree T :

Proposition 1: Let G be an edge weighted graph and T its maximal spanning tree.
Then two vertices belong to the same connected component of G(λ) iff they belong to
the same connected component of T (λ).

A proof of Proposition 1 can be found in the Appendix. Proposition 1 implies that we
can apply the recursive cluster tree algorithm to the maximal spanning tree of G instead
of G itself.

We still face an operational problem: the edge weights

p̂ij = min
t∈[0,1]

p̂((1− t)xi + txj)

of G for j 6= i are not known explicitly but are solutions of an optimization problem. One
way of dealing with this problem is to approximate the p̂ij using a numerical optimizer,
most simply a grid search. We used this method used to generate the examples presented
in the paper.

We do have a more principled but computationally more demanding approach that can
be shown to produce the correct tree. It is based on two observations: (i) to compute
the maximal spanning tree of G and the graph cluster tree we only need the order of
the edge weights of G; their exact values are not important; (ii) if the density estimate
p̂ is smooth (for example a kernel estimate with a smooth kernel or a Gaussian mixture
estimate) then we can obtain upper and lower bounds on the p̂ij using Taylor expansions.
These bounds can be made arbitrarily tight at the cost of additional evaluations of p̂
and its derivatives. This approach is described in Nugent (2006). In the examples we
have tried, grid search and exact computation produce very similar results.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Data set and isopleths of kernel density estimate; (b) maximal spanning
tree of G with “shortest” edge dashed; (c) maximal spanning tree with second shortest
edge dashed; (d) first split resulting in two connected components; (e) first split of
banana; (f) second split of banana.
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Figure 4: (a) Graph cluster tree; (b) clusters corresponding to leaves of graph cluster
tree. Numbers above leaves are labels, numbers below interior nodes are runt excess
masses.

We now illustrate the cluster tree algorithm on a simple two-dimensional example. Fig-
ure 3(a) shows a data set consisting of two obvious groups, which we will refer to as the
“lump” and the “banana”. Superimposed are the isopleths of a kernel density estimate.

Figure 3(b) shows the maximal spanning tree of G. The “shortest” edge, the one with
lowest edge weight p̂ij and the first one to be broken during the recursive thresholding
process, is dashed. The minimum of the density along this edge is assumed at one of
the end points, drawn in grey. Therefore, thresholding eliminates this edge and the end
point, leaving us with one connected component.

Figure 3(c) illustrates the second step of the algorithm. The second shortest edge, the
second one to be broken, is dashed; edges and vertices below the current threshold are
drawn in grey. Again, the minimum of the density along the edge is assumed at an end
point, and thresholding leaves us with one connected component.

The thresholding process progressively peels off edges and vertices until we reach the
stage shown in Figure 3(d), where for the first time thresholding results in two connected
components, essentially the lump and the banana, with a few low density points removed.

Applying the thresholding process to the lump does not result in any more splits - edges
and vertices are removed until we are left with an empty graph. We therefore focus on
the banana. Figure 3(e) shows the first split of the banana. There are no further splits
of the lower part of the banana, while there is one additional split of the upper part,
shown in Figure 3(f).

The graph cluster tree shown in Figure 4(a) has four leaves, corresponding to the lump
and the three fragments of the banana. In Figure 4(b) observations in the high density
clusters corresponding to the leaves of the tree are indicated by numbers; the remaining
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observations (the fluff) are drawn in grey. The numbers below the interior nodes of the
tree are their runt excess masses (Section 5).

Remark 2: The density estimate has at least one additional mode, visible in Figure 3(a)
between the lump and the banana, that does not manifest itself in the cluster tree because
there are no observations in its vicinity. The valley between the two modes in the upper
part of the banana is shallow and not visible in Figure 3(a) due to the choice of contour
levels.

Remark 3: The maximal spanning tree edge connecting the lump and the banana in
Figure 3(d) might seem implausible. Note, however, that there are many edges of the
complete graph G with very similar edge weights crossing the density valley separating
the lump from the banana. Which of those has the largest edge weight and therefore
ends up in the maximal spanning tree depends on minor details of the density estimate
and the locations of the grid points along the edges.

Remark 4: For the data in this example we would hope to obtain a graph cluster tree
with two leaves corresponding to the lump and the banana, respectively. However, den-
sity estimates are inherently noisy, and the occurrence of spurious modes is unavoidable.
Note, though, that the two valleys separating the three spurious modes in the banana
are shallow, and the separation between them is not nearly as clear as the separation
between the lump and the banana. This fact is not apparent from the graph cluster tree
in Figure 4(a) because the tree only indicates the levels of the valleys, not the heights
of the peaks. In Section 5 we propose a measure for the “prominence” of a high density
cluster incorporating both its spatial extent and the rise of its peak (or peaks) above the
valley separating it from the rest of feature space. Given such a measure, we can then
prune branches of the graph cluster tree corresponding to clusters with low prominence.

Remark 5: As illustrated in Figure 4(b), the graph high density clusters corresponding
to the leaves of the graph cluster tree do not form a partition of the data. If we want a
partition, we need a way of assigning the fluff to the clusters. In keeping with the recur-
sive nature of the clustering process, it is natural to make this assignment recursively.
Consider Figure 3(d) where we make the first split. The graph high density clusters
corresponding to the daughters of the root node are the solid black points in the lump
and the banana, respectively. The grey points are fluff, and the picture suggests a way
of assigning the fluff to the graph high density clusters: Breaking the dashed edge splits
the maximal spanning tree into two subtrees, and we assign each fluff point to the high
density cluster in its subtree. The same recipe can be applied at any stage of the algo-
rithm. A problem with this method is that it occasionally results in counter-intuitive
assignment of outliers. The minimum densities along the edges in G connecting an out-
lier to the rest of the observations will all be small, and which of them is the smallest will
depend, for example, on the locations of the grid points used to approximate the edge
weights. An alternative is to assign the fluff using a nearest neighbor rule. The details
of fluff assignment do not appear to make much difference in terms of performance.
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5 Pruning the graph cluster tree

There is an obvious way of measuring the prominence of a high density cluster in the
population case. Consider Figure 2 showing a density with three modes and the corre-
sponding cluster tree. Recall that each node N of the cluster tree represents a subset
D(N) of the feature space and is associated with a level λ(N). We propose to measure
the prominence of a high density cluster by its excess mass

E(N) = E(λ,D(N); P ) =
∫

D(N)
(p(x)− λ(N)) dx .

In Figure 2(a) the excess mass associated with the left daughter of the root node is
represented by the shaded area.

To find a sample analogon to E(N) observe that

∫

D(N)
dx =

∫

D(N)

1

p(x)
p(x) dx

∼ 1

n

∑

i

I(xi ∈ D̃(N))
1

p(xi)
,

and therefore

E(N) ∼ Ẽ(N) =
1

n

∑

i

I(xi ∈ D̃(N)) (1− λ(N)

p(xi)
) .

The estimate Ẽ(N) for E(N) may be poor if the number of observations in the corre-
sponding graph high density cluster D̃(N) is small. However, Ẽ(N) is a sensible measure
of prominence. If the estimated densities for the observations in D̃(N) are close to λ
(low elevation of the peak above the valley floor) then λ(N)/p(xi) ≈ 1 and Ẽ(N) is
small. If the peak has a high elevation above the valley floor, on the other hand, then
λ(N)/p(xi) ≈ 0 and Ẽ(N) is large.

In order to prune the graph cluster tree we choose an excess mass threshold γ and remove
all nodes with excess mass Ẽ(N) < γ and their incident edges. Note that excess mass is
monotone: If node N2 is a descendant of N1 then Ẽ(N2) < Ẽ(N1). Monotonicity implies
that pruning will not result in any isolated branches or nodes. The resulting graph may
no longer be a binary tree, but it can be converted into one by splicing out degree 2
nodes.

The nodes of the graph cluster tree surviving the pruning process are those whose daugh-
ters both have excess mass > γ. Define the runt excess mass of an interior node as the
smaller of the excess masses of its two daughters. The numbers 46, 2, and 0 next to
the interior nodes of the graph cluster tree in Figure 4(a) are the runt excess masses,
multiplied by the sample size and rounded for readability. (Informally we use the term
“excess mass” for both Ẽ(N) and round(n Ẽ(N)). Multiplying by the sample size ex-
presses excess mass in units of observations.) Clearly there is only one split separating
two prominent peaks of the estimated density, namely the one represented by the root
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node; the remaining two split off minor bumps. Pruning the graph cluster tree with
excess mass threshold 46 results in a tree with two leaves representing the lump and the
banana, respectively.

It would be desirable to have an automatic method for determining an appropriate value
for the threshold γ. We do not yet have such a method, so the choice will have to be
subjective (see Section 7).

Remark 6: A simpler measure of “significance” of a mode is its size

S(N) =
∫

D(N)
p(x) dx

which can be estimated by

S̃(N) =
1

n

∑

i

I(xi ∈ D̃(N)) .

In Figure 2(a) the size associated with the left daughter of the root node is represented
by the hashed area. Hartigan and Mohanty (1992) used size as an indicator for “signif-
icance” in their runt test for unimodality. Like excess mass, size is monotone and can
be used for pruning the graph cluster tree. The runt sizes for the three interior nodes of
the tree in Figure 4(a) are 96, 26, and 5. So in this example, runt size does not provide
as clear a guide for pruning as runt excess mass.

6 Connections to single linkage and k-th nearest neigh-

bor clustering

Single linkage and generalized single linkage clustering are connected through the nearest
neighbor density estimate

p̂(1)(x) =
1

d1(x,X )
,

where d1(x,X ) = mini d(x,xi). In a way, p̂(1) barely deserves the name “density esti-
mate”: it has a singularity at every observation and cannot even be normalized. On the
other hand, it does provide a sensible measure of density in the non-technical sense of
the word: p̂(1)(x) is small if x is far away from the observations, and large if x is close.

Let G be the complete graph over the observations with edge weights

p̂
(1)
ij = min

t∈[0,1]
p̂(1)((1− t)xi + txj)

and vertex weights p̂
(1)
ii = ∞.

Proposition 2: The graph cluster tree of G is isomorphic to the single linkage dendo-
gram.
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A proof of Proposition 2 is given in the appendix.

The commonly used method of extracting clusters from a single linkage dendogram is
dendogram cutting. Stated in terms of the graph cluster tree, dendogram cutting is
equivalent to choosing a density threshold λ∗ and removing all nodes with level λ(N) >
λ∗ and their incident edges. There are two problems with this pruning strategy. First
it tends to result in many singletons or tiny clusters consisting of outliers, and one or
a few large clusters. This problem could be remedied by choosing a size threshold and
discarding all clusters of size smaller than the threshold. However, there is a more
fundamental problem: dendogram cutting forms the clusters based on a single level set
of the nearest neighbor density estimate and, as Figure 2 illustrates, there may not be
a single level revealing all the groups or modes. An alternative is to apply the pruning
method described in Section 5. Note that the nearest neighbor density estimate has a
singularity at each data point (p̂(1)(xi) = ∞) and therefore the measure of prominence

Ẽ(N) =
1

n

∑

i

I(xi ∈ D̃(N)) (1− λ(N)

p(xi)
)

reduces to the fraction of observations in the graph high density cluster D̃(N), i.e., to
size. Extracting clusters from a single linkage dendogram by pruning branches with small
size was proposed by Stuetzle (2003), who also provided experimental results suggesting
that pruning is vastly superior to dendogram cutting.

There is also a connection between generalized single linkage clustering and Wong’s k-
th nearest neighbor clustering (Wong 1979; Wong and Lane 1983). Wong and Lane’s
method was motivated by the realization that the nearest neighbor density estimate is
not consistent and that therefore the level sets of the nearest neighbor density estimate
will not be consistent estimates of the level sets of the feature density. Instead they use
the k-th nearest neighbor density estimate

p̂(k)(x) ∼ 1

dk(x,X )
,

where dk(x,X ) is the k-th smallest distance between x and one of the xi.

Wong and Lane’s method has three steps: (i) construct the complete graph over the
observations with edge weights wij = 1/2 (1/p̂(k)(xi) + 1/p̂(k)(xj)) if xi is among the
(Euclidean) k nearest neighbors of xj or xj is among the k nearest neighbors of xi (i.e.,
the edge connecting xi and xj is in the k-nearest neighbor graph) and wij = ∞ otherwise;
(ii) calculate the minimal spanning tree of the edge weighted graph; (iii) compute the
single linkage dendogram from the minimal spanning tree.

To see the connection to generalized single linkage note that: (i) the minimal spanning
tree for edge weights wij is the maximal spanning tree for edge weights 1/wij; (ii) if
xi and xj are close in Euclidean distance (i.e., the connecting edge is in the k-nearest
neighbor graph) then p̂(k) is roughly constant along the line segment connecting xi and
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xj and thus 1/wij ∼ p̂
(k)
ij ; (iii) the maximal spanning tree of G will mostly connect

observations that are close in Euclidean distance. Therefore, zero-ing out the weights
for edges of G not in the k-nearest neighbor graph will leave the maximal spanning tree
and the structure of its threshold graphs basically unchanged.

7 Examples

The goal of this section is to illustrate generalized single linkage clustering on some
examples. In the context of the examples we also compare different density estimates and
alternative ways of computing the edge weights, and we investigate the correspondence
between leaves of the graph cluster tree and modes of the density estimate.

Density estimation: We compare clustering results for two different density esti-
mates: the nearest neighbor density estimate and a kernel density estimate with spherical
Gaussian kernel and bandwidth determined by least squares cross-validation (Silverman
1986). The nearest neighbor estimate is computationally attractive because the maximal
spanning tree of G is the Euclidean minimal spanning tree of the observations, and com-
puting a Euclidean minimal spanning tree for 10,000 points in ten dimensions only takes
about a minute on a standard PC. We chose kernel estimates as the competitor because
they are well understood and easy to implement, and least squares cross-validation offers
a simple way for automatic bandwidth selection. Unless otherwise noted, we sphere the
data before clustering. Sphering is advisable when using automatic bandwidth selec-
tion with a spherical kernel; otherwise the bandwidth is essentially determined by the
variance of the smallest principal component.

Edge weights: For a kernel density estimate the edge weights

p̂ij = min
t∈[0,1]

p̂((1− t)xi + txj)

are not available in closed form and have to be approximated. A simple approximation
method is grid search: approximate p̂ij by the minimum of p̂ over a regular grid on
the line segment connecting xi and xj. In the examples we used ten grid points. We
compare the clustering results for grid search with the results for a global optimization
method (Nugent, 2006) that is guaranteed to produce the correct graph cluster tree (see
Section 4).

Choosing an excess mass threshold for pruning: We sort the runt excess masses
for the interior nodes of the graph cluster tree in decreasing order. Typically there is
a small number of large values followed by a long trail of small values, like 98, 32, 22,
4, 3, 3, 3, 2, 2, 1, 1,. . . in Example 1 below. A large runt excess mass indicates a split
separating two prominent modes whereas a small runt excess mass indicates separation
of a spurious mode most likely caused by variability of the density estimate. We scan
the values from small to large looking for the first clear break, in our example between
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4 and 22, and then choose the larger value as the threshold. In our case there are three
runt excess masses greater than or equal to the threshold, leading to a pruned tree with
three interior nodes and four leaves.

Leaves versus modes: There is a one-to-one correspondence between modes of p̂ and
leaves of the cluster tree of p̂. As pointed out in Section 3, however, the same is not
necessarily true for the graph cluster tree. The graph cluster tree may fail to reflect
modes of p̂ whose domain of attraction does not contain any observations and, more
importantly, multiple leaves may correspond to the same mode due to spurious splits of
level sets of p̂. To see how much of a problem is presented by incorrect splits, we use
numerical optimization. We start a numerical optimizer at each of the n observations and
then cluster the resulting local optima using Ward’s clustering method, a hierarchical
version of k-means clustering. Define the loss associated with a partition as the sum of
squared distances of the observations from their closest cluster means. Initially, every
observation is a cluster. At any stage of the algorithm, Ward’s method merges the two
clusters leading to the smallest increase in loss. When applying Ward’s method to the
local optima there typically is a clear jump in the loss. A jump after the i-th merge
indicates that the local optima fall into n− i clusters corresponding to n− i modes.

Measuring agreement between partitions: Let P1 and P2 be two partitions of a set
of n objects. The partitions define a contingency table: let nij be the number of objects
that belong to subset i of partition P1 and to subset j of partition P2. We measure the
agreement between P1 and P2 by the adjusted Rand index (Hubert and Arabie 1985)
defined as

R =

∑
ij

(
nij

2

)
−∑

i

(
ni·
2

) ∑
j

(
n·j
2

)
/
(

n
2

)

1
2

(∑
i

(
ni·
2

)
+

∑
j

(
n·j
2

))
−∑

i

(
ni·
2

) ∑
j

(
n·j
2

)
/
(

n
2

) .

Here ni· =
∑

j nij, and n·j is defined analogously.

The adjusted Rand index has a maximum value of 1 which is achieved when the two
partitions are identical up to re-numbering of the subsets. It has expected value 0 under
random assignment of the objects to the subsets of P1 and P2 that leave the marginals
ni· and n·j fixed.

7.1 Three artificial examples based on the Olive Oil data

The Olive Oil data consist of measurements of eight chemical components on 572 samples
of olive oil. The samples come from three different regions of Italy. The regions are
further partitioned into nine areas: areas A1 . . . A4 belong to region R1, areas A5 and
A6 belong to region R2, and areas A7. . . A9 belong to region R3.

Figure 5 shows a two-dimensional data set “Olive-5-2d” obtained by projecting the five
areas A5. . . A9 on the plane spanned by the first two Fisher discriminant coordinates
and then sphering the projected data. We chose this data set as an example because
the areas are distinct but have different densities, shapes, and degrees of separation.
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Figure 5: Areas A5 - A9 of Olive Oil data, projected on first two discriminant coordi-
nates.

In Example 1 we cluster Olive-5-2d. For Examples 2 and 3 we add three and eight
independent standard Gaussian noise variables, respectively, obtaining data sets “Olive-
5-5d” and “Olive-5-10d”. By construction, all the group information in Olive-5-5d and
Olive-5-10d is contained in the first two variables, which makes it easy to display and
compare clustering results.

Example 1: Applying least squares cross-validation to Olive-5-2d gives bandwidth h =
0.07. The unpruned graph cluster tree of the corresponding kernel density estimate has
49 leaves, suggesting that the density estimate has 49 modes. To obtain an alternative
estimate for the number of modes we start a numerical optimizer at each of the 249
observations and apply Ward’s method to the local optima. The loss for the first 202
merges stays below 5 × 10−4 and then abruptly jumps to 1.7 × 10−1, suggesting that
there are at least 249 − 202 = 47 distinct local optima. We conclude that the kernel
estimate indeed has roughly 50 modes.

The runt excess masses of the graph cluster tree (sorted in decreasing order, multiplied
by the sample size, and rounded for easier parsing), are 98, 32, 22, 4, 3, 3, 3, 2, 2, 1,
1,. . . , suggesting a runt excess mass threshold of 22 for pruning. The resulting pruned
tree has four leaves. For comparison, the runt sizes are 98, 47, 32, 14, 13, 11, 7, 6, 5,
5,. . . ; runt size pruning with threshold 32 gives the same pruned tree as runt excess
mass pruning with threshold 22. The graph high density clusters corresponding to the
leaves of the pruned tree are shown in Figure 6(a). Black symbols represent observation
in cluster cores, grey symbols represent fluff. The method is unable to separate areas
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(a) (b)

Figure 6: (a) Clustering of Olive-5-2d based on kernel density estimate; (b) clustering
based on nearest neighbor estimate.

A7 and A9. The adjusted Rand index is 0.75.

Approximating the edge weights using grid search gives almost the same results as using
the exact edge weights. The rand index comparing the respective four-cluster partitions
is 0.98.

Figure 6(b) shows the corresponding result for the nearest neighbor density estimate.
The runt sizes are 98, 51, 32, 21, 19, 12, 10, 10, 9, 9, 8,. . . , suggesting a runt size
threshold of 19 and a six cluster solution. The core of area A7 is now recognized as
distinct from area A9, but area A5 is erroneously split. The rand index is 0.72.

Example 2: We now move on to the five-dimensional data set Olive-5-5d. The band-
width chosen by least squares cross-validation is 0.45. The unpruned graph cluster tree
has 43 leaves. The alternative estimate for the number of modes, using optimization as
described above, is 64.

The runt excess masses of the graph cluster tree are 21, 3, 1, 1,. . . , suggesting runt
excess mass threshold 21 for pruning and two clusters. The runt sizes are 72, 21, 3, 2,
2, 2, . . . , suggesting a runt size threshold of 21 and three clusters. This is one of the
rare cases we have encountered where pruning based on excess mass and pruning based
on size result in different numbers of clusters. The adjusted Rand index for two clusters
is 0.38, versus 0.58 for three clusters. Figure 7(a) shows the three cluster solution. The
adjusted Rand indices for comparing approximate and exact edge weights are 0.98 for
both solutions.

Figure 7(b) shows the corresponding result for the nearest neighbor density estimate.
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(a) (b)

Figure 7: (a) Clustering of Olive-5-5d based on kernel density estimate; (b) clustering
based on nearest neighbor estimate.

The runt sizes are 87, 37, 18, 11, 11, 8, 8 7, 5,. . . , suggesting a four cluster solution.
Areas A7 and A9 are merged, but the remaining areas are correctly separated. The
adjusted Rand index is 0.62.

Example 3: Finally we consider the ten-dimensional data set Olive-5-10d. The band-
width chosen by least squares cross-validation is 0.68. The unpruned graph cluster tree
has 209 leaves. The alternative estimate for the number of modes is 219. The runt
excess masses are 5, 3, 2, 2, 2,. . . and the runt sizes are 19, 8, 7, 5, 5, 4, 4,. . . , suggesting
one or two clusters, respectively. Figure 8(a) shows the solution, which separates region
R2 from region R3. The adjusted Rand index is 0.17. The adjusted Rand index for
comparing approximate and exact edge weights is 0.97.

Figure 8(b) shows the corresponding result for the nearest neighbor density estimate.
The runt sizes are 16, 9, 9, 6, 5, 5, 5,. . . , suggesting a two cluster solution. Again,
regions R2 and R3 are separated, but there are only very few observations in the cluster
cores. The adjusted Rand index is 0.17.

7.2 The Olive Oil data

We show the results for the kernel estimate. Least squares cross-validation gives a
bandwidth of 0.23. The unpruned graph cluster tree has 514 leaves. The alternative
estimate for the number of modes is 501. The runt excess masses are 128, 86, 46, 26,

20



(a) (b)

Figure 8: (a) Clustering of Olive-5-10d based on kernel density estimate; (b) clustering
based on nearest neighbor estimate.

24, 24, 18, 17, 11, 9, 8, 7, 7, 6, 6, . . . , and the runt sizes are 129, 89, 47, 33, 25, 24, 22,
20, 11, 9, 9, 8,. . . , both suggesting a nine cluster solution. Figure 9 shows the graph
cluster tree. Table 1 shows a table of area (vertical axis) against leaf code (horizontal
axis). Generalized single linkage clustering is unable to isolate area A4; area A3, which
has by far the largest number of observations, is split into two clusters (leaf codes 62
and 63); and areas A7 and A8 are not cleanly separated. The adjusted Rand index is
0.62, reflecting the erroneous split of area A3. The adjusted Rand index for comparing
approximate and exact edge weights is 0.98.

The runt sizes for the nearest neighbor estimate are 129, 89, 47, 33, 25, 25, 24, 20, 11,
11, 9, 9, . . . , again suggesting nine clusters. The results are virtually indistinguishable
from those for the kernel estimate.

7.3 The Acute Lymphoblastic Leukemia data

The purpose of this example is to illustrate that generalized single linkage clustering
can be applied to very high-dimensional data sets. The Acute Lymphoblastic Leukemia
(ALL) data are oligonucleotide microarray gene expression levels of 12558 genes for
each of 360 ALL patients. Yeoh et al. (2002) divided the patients into seven diagnostic
groups corresponding to six known leukemia subtypes (T-ALL, E2A-PBX1, BCR-ABL,
TELAML1, MLL rearrangement, and Hyperploid>50 chromosomes), and one unknown
type, labeled OTHER. The data were taken from the Kent Ridge Bio-Medical Data Set
Repository, where they have been split into training and test sets. We clustered the
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Figure 9: Graph cluster tree of Olive Oil data for kernel density estimate. Numbers
above the leaves are labels; numbers below the interior nodes are runt excess masses.

training set comprising 215 patients.

We first selected the 1000 genes with the highest variance and normalized the expres-
sion profiles to have zero mean and unit variance; squared Euclidean distance be-
tween patients then measures the correlation between the corresponding expression
profiles. Sphering does not make sense in this example, as the observations lie in a
213-dimensional subspace of 1000-dimensional space. Next, we computed the graph
cluster tree for the nearest neighbor density estimate (the single linkage dendogram).
The largest runt sizes are 36, 27, 21, 14, 8, 5, 5,. . . , suggesting five clusters. Figure 10
shows the (pruned) graph cluster tree, and Table 2 shows a table of ALL subtype (ver-
tical axis) against leaf code (horizontal axis). The T-ALL, E2A-PBX1, and TEL-AML1
subtypes correspond to clusters with leaf codes 3, 4, and 23; the remaining subtypes
are not isolated. These results are qualitatively similar to the ones obtained by Murua,
Stanberry, and Stuetzle (2007) using Potts model clustering. The adjusted Rand index
of the generalized single linkage partition is 0.55, compared to 0.53 for Potts model
clustering.
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6 62 63 30 28 29 9 8 5
A1 24 1 0 0 0 0 0 0 0
A2 0 1 6 49 0 0 0 0 0
A3 0 95 108 3 0 0 0 0 0
A4 5 0 10 20 0 0 0 1 0
A5 0 0 0 0 64 1 0 0 0
A6 0 0 0 0 5 28 0 0 0
A7 0 0 0 0 0 0 32 16 2
A8 0 0 0 0 0 1 0 49 0
A9 0 0 0 0 0 0 0 0 51

Table 1: Olive oil data: leaf code (horizontal axis) tabulated against area (vertical axis).

3 4 10 22 23
BCR-ABL 0 0 0 6 3
E2A-PBX1 0 18 0 0 0

Hyperdip>50 0 1 0 41 0
MLL 0 4 10 0 0

OTHERS 0 2 14 24 12
T-ALL 28 0 0 0 0

TEL-AML1 0 0 0 0 52

Table 2: ALL data: leaf code (horizontal axis) tabulated against ALL subtype (vertical
axis).

8 Summary and discussion

The goal of clustering is to detect the presence of distinct groups in a data set. Nonpara-
metric clustering is based on the premise that groups correspond to modes of the feature
density. The goal then is to detect modes of the density and assign each observation to
the domain of attraction of a mode. The modal structure of a density is summarized
by its cluster tree; the modes of the density correspond to the leaves of the cluster tree.
We have pursued a plug-in approach to cluster tree estimation: estimate the cluster
tree of the feature density by the cluster tree of a density estimate. For some density
estimates the cluster tree can be computed exactly, for others we have to be content with
an approximation. We have developed a graph-based method that can approximate the
cluster tree of any density estimate. Due to sampling variability, density estimates tend
to have spurious modes that do not reflect modes of the feature density and that will
lead to spurious branches in the graph cluster tree. We have proposed excess mass as
a measure for the size of branches of the graph cluster tree, reflecting the height of the
corresponding peak or peaks of the density above the surrounding valley floor and its
spatial extent. Excess mass can be used as a guide for subjective pruning of the graph
cluster tree. The graph cluster tree of the nearest neighbor density estimate is (essen-
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Figure 10: Graph cluster tree of ALL data for nearest neighbor density estimate. Num-
bers above the leaves are labels; numbers below the interior nodes are runt sizes.

tially) the single linkage dendogram. Excess mass pruning generalizes the runt pruning
method for extracting clusters from the single linkage dendogram proposed by Stuetzle
(2003).

In the examples presented in Section 7, as well as in about a half dozen others not
reported here, we have observed that:

(1) Kernel estimates with span determined by least squares cross-validation tend to have
many modes, most of them caused by sampling variability, and pruning the graph cluster
tree is crucial.

(2) Approximating the edge weights for kernel estimates by grid search gives clustering
results very similar to those obtained using the exact edge weights. The likely reason
is that only high density clusters separated from the rest of the data by deep valleys
survive pruning, and such valleys are easy to locate even by a crude optimization method
like grid search.

(3) Kernel estimates with bandwidth determined by least squares cross-validation and
nearest neighbor density estimates give comparable clustering performance.

Observation (3) came as a pleasant surprise, as the calculations for the nearest neighbor
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estimate are much faster. Note, however, that there may be other methods for bandwidth
selection and/or other density estimates resulting in better clustering results than the
nearest neighbor estimate.

There are several directions for future work:

Other density estimates. Kernel and near neighbor density estimates are known to
be susceptible to the curse of dimensionality. It may be worthwhile to investigate the
performance of generalized single linkage clustering with other density estimates poten-
tially less impacted by high dimensionality, like Projection Pursuit density estimates
(Friedman, Stuetzle, and Schroeder 1984; Friedman 1987).

Alternative pruning strategies. Excess mass pruning is based solely on the promi-
nence of peaks of the estimated density, i.e. their height and spatial extent; it does not
take into account the spatial separation between peaks. Pruning strategies taking into
account both prominence and separation may allow for better detection of small but
highly isolated groups.

Automatic pruning. Subjective pruning casts doubts on interpretations of clustering
results and makes quantitative comparisons of results difficult. A fully automatic pruning
method (analogous to model selection methods for regression and classification) would
represent a big advance.
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9 Appendix

Prop 1: Let G be an edge weighted graph and T its maximal spanning tree. Then two
vertices belong to the same connected component of the threshold graph G(λ) iff they
belong to the same connected component of T (λ).

Proof of Prop. 1:

Two vertices in the same connected component of T (λ) are in the same connected
component of G(λ) because the edges of T are a subset of the edges of G.

Now assume that vertices xi and xj are in different connected components of T (λ). This
means that the unique path in T connecting xi and xj contains at least one edge e with
weight ≤ λ. Removing e from T breaks T into two connected components T1 and T2,
one containing xi and the other containing xj. If xi and xj were in the same connected
component of G(λ) there would be a path in G connecting xi and xj for which all edge
weights are greater than λ. This path has to contain an edge e∗ connecting T1 and T2.
Replacing e with e∗ in T would lead to a tree with larger total edge weight, contradicting
the assumption that T was the maximal spanning tree of G.

Prop 2: Let G be the complete graph over the observations with edge weights

p̂
(1)
ij = min

t∈[0,1]
p̂(1)((1− t)xi + txj)

and vertex weights p̂
(1)
ii = ∞. Then the graph cluster tree of G is isomorphic to the

single linkage dendogram.

Lemma 1: A point x has estimated density p̂(1)(x) > λ iff it is within distance r = 1/λ
of at least one of the data points:

L(λ; p̂(1)) =
⋃

i

S(xi, r) ,

where S(x, r) denotes the (open) sphere around x with radius r.

Lemma 2: p̂
(1)
ij ≥ 2/d(xi,xj).

Proof of Lemma 2: Suppose there are no other data points in the sphere around the
midpoint (xi + xj)/2 with radius d(xi,xj)/2. Then p̂

(1)
ij = 2/d(xi,xj).The presence of

other data points in the sphere can only increase p̂
(1)
ij .

Lemma 3: Let (k, l) be an edge of G with weight p̂
(1)
kl > λ. Then there is a path

connecting xk and xl with maximum edge length < 2/λ.

Proof of Lemma 3: As p̂
(1)
kl is the minimum of the nearest neighbor density estimate

over the line segment [xk,xl], the assumption that p̂
(1)
kl > λ implies that the entire line
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segment [xk,xl] is covered by spheres around the observations with radius r = 1/λ
(Lemma 1):

[xk,xl] ⊂
⋃

i

S(xi, r) .

Let
Lq = [aq,bq] = [xk,xl] ∪ S(xq, r)

be the (possibly empty) intersection of the line segment [xk,xl] with the sphere of radius
r around xq. Without loss of generality assume that d(xk, aq) ≤ d(xk,bq). Choose
q1 = k. Because the Lq collectively cover [xk,xl] there has to be a q2 with bq1 ∈
S(xq2 , r). Therefore, d(xq1 ,xq2) < 2r. Repeating this argument shows that there is a
path connecting xk and xl with maximum edge length < 2r = 2/λ.

Lemma 4: The graph cluster tree of G and the cluster tree of the nearest neighbor
density estimate are isomorphic.

Proof of Lemma 4: Let X1, . . . ,Xk be vertex sets of the connected components of
G(λ). We will show that the connected components of L(λ; p̂(1)) are the sets

Li =
⋃

xj∈Xi

S(xj, 1/λ) .

Suppose that Li is connected. Then for any two vertices xj and xl in Xi there exists
a polyline connecting them with maximal edge length < 2/λ and therefore minimum
density p̂(1) > λ. This implies that xj and xl are in the same connected component of
G(λ).

On the other hand, suppose that xj and xl are in the same connected component of
G(λ). This implies that they are connected by a path with minimum edge weight > λ
and therefore maximum edge length < 2/λ (Lemma 3), and hence are in the same
connected component of L(λ; p̂(1)).

Proof of Proposition 2: According to Lemma 4, the graph cluster tree and the cluster
tree of the nearest neighbor density estimate are isomorphic. On the other hand, Stuetzle
(2003, Section 2) has shown that the cluster tree of the nearest neighbor density estimate
is isomorphic to the single linkage dendogram.
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