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Abstract 
 
We discuss several features of coherent choice functions – where the admissible options in a decision problem are 
exactly those which maximize expected utility for some probability/utility pair in fixed set S of probability/utility pairs.  
In this paper we consider, primarily, normal form decision problems under uncertainty – where only the probability 
component of S is indeterminate.  Coherent choice distinguishes between each pair of sets of probabilities.  We 
axiomatize the theory of choice functions and show these axioms are necessary for coherence.  The axioms are 
sufficient for coherence using a set of probability/almost-state-independent utility pairs.  We give sufficient conditions 
when a choice function satisfying our axioms is represented by a set of probability/state-independent utility pairs with a 
common utility. 
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1 Introduction 
In this paper we continue our study of coherent choice functions, which we started in our (2004) “Rubinesque” theory 
of decision.  Coherent choice function theory provides a more general account of Imprecise Probabilities than the theory 
of coherent strict preference, which we used in our (1995).  Coherent choice function theory does not reduce to binary 
comparisons between options, as Example 1 (below) illustrates.  By contrast, coherent strict preference is a binary 
relation that fails, in principle, to distinguish between some convex sets of probabilities that have the same convex hull.   

Specifically, as we show in Section 2, with coherent choice functions, for each two different sets of probabilities it 
requires only a simple decision problem in order to distinguish by admissibility between them.  That is, with coherent 
choice functions, each set of probabilities has its own footprint of admissible options.   In Section 4, we illustrate this 
added generality with a non-convex (even a disconnected) set S of probabilities that share the common structure that, 
for each distribution in S, two specific events are independent.   Coherent choice with respect to the set S avoids making 
information about one event valuable in decisions that depend solely on the other event.   This is in sharp contrast with 
theories that rely on convex sets to depict Imprecise Probabilities 

Let O be a (closed) set of feasible options.  A choice function C(O) identifies the (non-empty) subset of O that are the 
admissible options in the decision problem given by the feasible set O.  We say that C(•) is coherent provided that there 
is a non-empty set S of probability/utility pairs S ={(p,u)} such that the admissible options under C are precisely those 
that are Bayes with respect to some probability/utility pair (p,u) in S.  That is, for each admissible option, for each o ∈ 
C(O), there is a pair (p,u) ∈ S such that o maximizes the p-expected u-utility over O.  For short, we will call these the 
Bayes-admissible options in O (with respect to S).  

Aside:  If the option set O is not closed, then given a set S there may be no coherently admissible options in O.  For 
example, if utility is linear and increasing in the quantity X, then in the decision-under-certainty problem with O = {0 ≤ 
x < 1}, each option is inadmissible with respect to S.  

In Section 3 we adapt Anscombe-Aumann Horse-lottery theory in order to axiomatize coherent choice functions for 
cases where only probability (not utility) is indeterminate.   This affords a representation of choice functions in the style 
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of our previous work (1995), where we represented coherent strict (binary) preference between options using sets of 
probabilities and almost-state-independent utilities.  One way to understand how the new representation generalizes our 
previous work is to consider the partial order 〈 defined on pairs of sets of options {O1,O2}: where O1 〈 O2 obtains 
whenever there are no admissible options from set O1 in a choice problem given the combined set of options O1 ∪ O2.   
When the two sets {O1,O2} are singletons, this relation reduces to the binary comparison of strict preference between 
options.  Because our (1995) theory leads to a representation in terms of sets of probabilities and almost-state-
independent utilities, that feature is inherited by our representation in Section 3. 

The use of a coherent choice function coincides with Levi’s (1980) principle of E-admissibility in cases where the set S 
is a cross-product of a convex set of probabilities and a convex set of utilities: S = P×U  for convex sets P and U.  Also, 
we find that Savage [1954, pp. 123-124, particularly where he argues that option b is “superfluous” for the decision 
pictured by his Figure 1] endorses a coherent choice rule with S a convex set of probabilities and a common utility. The 
following example, which we repeat from our ISIPTA-03 paper, illustrates how coherent choice does not reduce to 
binary comparisons in a setting where only probability is indeterminate.  

Example 1: Consider a binary decision problem, Ω = {ω1, ω2} with three feasible options O = {f,g,h}, and where utility 
is determinate: u(f(ω1)) = u(g(ω2)) = 0.0, u(f(ω2)) = u(g(ω1)) = 1.0, and u(h(ω1)) = u(h(ω2)) = 0.4. Let uncertainty over 
the states be indeterminate, with P = {p: 0.25 ≤ p(ω2) ≤ .75}.  We rehearse three decision rules for this problem. 

Γ-Maximin – Maximize minimum expected utility over the feasible options.  This rule is well studied in Gilboa and 
Schmeidler (1989).  In brief, Γ-Maximin induces a preference ordering over options, but fails the von Neumann-
Morgenstern Independence postulate.  Under Γ-Maximin only {h} is admissible from the set {f,g,h}. 

Maximality (Sen/Walley) – admissible options are those that are undominated in expectations (over p ∈ P) by any 
single alternative option.  Under Maximality all three options are admissible from the set {f,g,h} as none dominates the 
others in pairwise comparisons.  Maximality does not induce a preference ordering over options; however, admissibility 
is given by pairwise comparisons.  As is evident from Example 1, whether an option (e.g., option h) is admissible under 
Maximality depends upon whether the feasible options are closed under mixtures. 
 
Coherent choice.  Since the set of probabilities P is convex in this example, coherent choice reduces to Levi’s rule of. 
E-admissibility – admissible choices have Bayes’ models, i.e., they maximize expected utility  for some probability in 
the (convex) set P.   Subset {f,g} identifies  the Bayes-admissible options  from {f,g,h} under Coherent Choice.   This 
rule does not induce an ordering over options and does not reduce to pairwise comparisons.  
 
Note that h, which is never “Bayes” with respect to P, is uniformly dominated by some mixtures of f and g, e.g.,  the 
mixed option given by .5f  ⊕ .5g, with expected utility 0.5 independent of p, uniformly dominates h.  This is no 
coincidence, as the following result establishes. 
 
Let Ω = {ω1, ω2, …, ωn} be a finite  partition of states.  Let O = {o1, o2, …, om } be a finite set of  options defined on Ω, 
such that for oi ∈ O, u(oi(ωj)) = uij, a cardinal utility of the consequence of oi when state ωj obtains.  Let P be the class 
of all probability distributions over Ω.  Similarly, let Q be the class of all (simple) mixed acts over O, with a mixed act 
denoted q. 
 
Theorem 1 (Pearce, 1984, p.1048).    
Suppose for each p ∈ P, act o* ∈ O fails to maximize expected utility.  Then there is a mixed alternative q* that 
uniformly, strictly dominates o*.  That is,  u(q*(ωj)) > u(o*(ωj)) + ε,  for  j = 1, ..., n, with ε  > 0.   
 
Aside: With this result we are able to apply the strict standard of de Finetti’s “incoherence” (= uniform, strict 
dominance) to a broad class of decisions under uncertainty, analogous to traditional Complete Class Theorems for 
Bayes decisions (Wald, 1950).  The standard of incoherence used here is notably stronger than the mere inadmissibility 
(= weak dominance) of non-Bayes decisions, as is used in those Complete Class theorems. 
 
Let H(O) denote the result of taking the closed, convex hull of the option set O.  That is, H(O) is the set of all (simple) 
mixed acts based on O.  Since O is finite, q* of Theorem 1 may be taken to be an option that also is Bayes for some 
p*∈ P.  That is, in Theorem 1 we may choose q* ∈ H(O) such that q* ∈ C(H(O)) for a coherent choice function using 
the set P of all probability distributions on Ω.  
 



Aside: Theorem 1 generalizes to infinite states spaces Ω and infinite, closed options sets O by using Theorem 2.1 of 
Kindler (1983) to replace Pearce’s use of von Neumann’s Minimax Theorem, which does not generalize to infinite 
games. 
 
In terms of Theorem 1, in Example 1 with o* = h, then qx* = xf ⊕ (1-x)g  for .4 < x < .6 uniformly dominates o*.    But 
each such qx* is Bayes with respect to H(O) for precisely for one probability on Ω: p(ω1) = .5.   We use this fact, next, 
to establish that each set of probabilities has its own unique coherent choice function.    
 
2. Distinguishing sets of probabilities by their coherent choice functions 
Consider a finite state space  Ω = {ω1, …, ωn} with the class of all options given by horse lotteries (Anscombe and 
Aumann, 1963) defined on two consequences 1 and 0.  In general horse-lottery theory there is a denumerable set of 
prizes, {r1, r2, ... }.  A (simple) horse lottery is a function from states to (simple) probability distributions over the set of 
prizes.  In this section we use decision problems involving horse lotteries defined on only two consequences, 0 and 1, 
with a strict preference for the constant act 1 over the constant act 0, as explained below.  And we consider coherent 
choice using a state-independent utility, u where u(1) = 1 and u(0) = 0 in each state, ω.  Our goal is to show that if P 
and P’ are different sets of probabilities, the coherent choice function based on P×{u} is different from the coherent 
choice function based on P’×{u}.   
 
Let P be a set of probabilities.  For a (closed) set O, C(O) is the non-empty set of Bayes-admissible options.  Let R(O) = 
O\C(O) be the associated Bayes-rejection function that identifies the inadmissible options in O.    So, we assume that 
{0} = R{0, 1}. 
 
Let p = (p1, …, pn) be a probability distribution on Ω .  Let p be the smallest nonzero coordinate of p. 
Define the constant horse lottery act a = p1 + (1-p)0. 
For each  j = 1, .., n, define the act hj  by 
hj(ωi)  = 1  if i = j and pj  = 0, 

=   a  if i ≠ j and pj  = 0, 
=  (p/pj)1 + (1- p/pj)0  

if i = j and pj  > 0, 
=  0  if i ≠ j and pj  > 0. 

 
Define the option set Op = {a, h1, …, hn}. 
Theorem 2: p ∈ P  if and only if  R(Op) = ∅. 
 
Proof:  First, note that for all j and every utility u, Ep(u(hj)) = p = Ep(u(a)).  For the “only if” direction, assume that (p; 
u) ∈ S for some utility u. Then by this equality, every element of Op is Bayes with respect to (p; u) and R(Op) = φ.  For 
the “if” direction, assume that R(Op) = φ. Notice that Eq(v(a)) = p for every probability /utility pair (q, v).  Let (q, v ) be 
a probability/utility pair with q ≠ p. First, consider the case with p < 1. Then there exists j with qj > pj .  So,  
                     qj p / pj  >  p  if  pj > 0, 
Eq(v(hj))     =          

qj + (1-qj)p  > p  if  pj = 0. 
 

Hence, for each (q, v) with q ≠ p, Eq(v(hj)) > Eq(v(a)). It follows that a ∈ R(Op) unless (p, u) ∈ S for some utility u. 
Finally, consider the case with p = 1. In this case, Op = {1, hj} where pj = 1. So, Eq(v (hj)) = qj < 1 = Eq(v (a)) for every 
probability/utility pair (q, v) with q ≠ p. It follows that hj ∈ R(Op) unless (p, u) ∈ S for some utility u.◊  
 
Corollary Let P1 and P2 be two distinct (nonempty) sets of probabilities with corresponding Bayes rejection functions 
R1 and R2.  There exists a finite option set Op, as above, such that R1(Op)  ≠ R2(Op). 
 
Thus, each set of probabilities P has its own distinct pattern of Bayes rejection functions with respect to option sets Op 
for p ∈ P. 
 
Aside: This is a generalization of Theorem 1 that appears at the end of our (2004) paper.  That Theorem 1 is the 
restriction of the corollary to pairs of convex sets of probabilities. 
 
3. Axiomatizing coherent choice functions 



We turn, next, to a system of axioms for choice functions that are necessary for coherence, and which are jointly 
sufficient for a representation of choice by a set S of probability/almost-state-independent utility pairs, as explained 
below. We provide sufficient conditions when these pairs have a common state-independent utility.  In such a case the 
coherent choice function corresponds to choice under indeterminate uncertainty with a determinate utility. 

We continue within the framework of the previous section: horse lotteries over a finite state space Ω = {ω1, …, ωn}.  In 
that we are using choice functions over sets of options, the theory presented here extends our (1995) work, which deals 
solely with binary choice problems.  Thus, results that follow from binary choice problems are available also within this 
theory.  For example, it follows from Section II.6 of our (1995) theory that each agreeing cardinal utility for the choice 
function C(•), if one exists, is a bounded utility function.  
 
Aside:  The aspects of the theory given here that compel the use of almost-state-independent utilities parallel the same 
issues that arise in Section IV of our (1995) representation for partially ordered preferences.  In the context of this 
paper, that theory, which addresses binary choice only, can be taken to axiomatize choice under the Maximality rule. 

In this paper, we focus on a representation for choice when utility is determinate, i.e., regarding the two distinguished 
prizes 1 and 0,  the constant act 1 is better than, and the constant act 0 is worse than, all other constant acts.  Also, we 
assume that all cardinal utilities are scaled so that u(1) = 1 and u(0) = 0.   
 
Given a strict preference between these two prizes, the Anscombe-Aumann (1963) theory of  horse-lotteries is given by 
four substantive axioms, which we summarize as follows.  
A-A Axiom 1: Choice over horse lotteries reduces to a pairwise comparison of options since binary preference satisfies 
ordering. 
A-A Axiom 2: Preference satisfies the von Neumann-Morgenstern postulate of Independence. 
A-A Axiom 3: An Archimedean postulate is introduced in order to assure that preference has a real-valued 
representation, thus insuring also a real-valued representation for subjective probability over Ω and a  real-valued 
cardinal utility over prizes. 
A-A Axiom 4: To insure existence of a state-independent utility representation for preference over horse lotteries, a 
final axiom requires that the decision maker’s preference for constant horse lotteries reproduces under each non-null 
state in the form of called-off horse lotteries. 
 
We adapt our presentation here to match these four axioms.   
 
Axiom 1a (Sen’s property alpha):  
If O2 ⊆ R(O1) and O1⊆ O3, then O2 ⊆ R(O3). 
You cannot promote an unacceptable option into an acceptable option by adding to the choice set of options. 
  
Axiom 1b (a variant of Aizerman’s 1985 condition):  
If O2 ⊆ R(O1) and O3 ⊆ O2, then O2\O3 ⊆ R(closure[O1\O3]). 
You cannot promote an unacceptable option into an acceptable option by deleting unacceptable options from the option 
set. (We require closure[O1\O3] since O1\O3 may not be closed, despite closure of O1 and of O3.) 
 
With Axioms 1a and 1b, define a strict partial order  〈  on sets of options as follows.   Let O1 and O2 be two option sets. 

Defn:  O1 〈 O2   if and only if    O1   ⊆   R[O1 ∪ O2]. 
 
Lemma 1 of our (2004) establishes that given Axioms 1a and 1b, the binary relation 〈 is a strict partial order over pairs 
of sets of options: 〈  is  transitive  and  anti-symmetric. 
 
The role of mixtures is captured in the following pair of axioms for  〈.  With  O1 an option set and o an option, the 
notation αO1 ⊕ (1-α)o  denotes the set of pointwise mixtures,  αo1 ⊕ (1-α)o  for o1 ∈ O1.   
 
Axiom 2a Independence is formulated for the relation 〈 over sets of options.  Let o be an option and 0 < α ≤ 1. 
O1 〈  O2   if and only if   αO1 ⊕ (1-α)o   〈  αO2 ⊕ (1-α)o. 
Axiom 2b Mixtures  If o ∈ O and o ∈  R[H(O)], then o ∈ R[O]. 
Axiom 2b asserts that unacceptable options from a mixed set remain so even before mixing. 
 



Aside: Independence (Axiom 2a) fails in Γ-Maximin theory.  Mixing (Axiom 2b) fails for the choice function 
determined by Maximality. 
 
The Archimedean condition requires a technical adjustment, as the canonical form used by, e.g. von Neumann-
Morgenstern theory or Anscombe-Aumann theory is too restrictive in this setting.  (See section II.4 of our 1995.) The 
reformulated version of the Archimedean condition is as a continuity principle compatible with strict preference as a 
strict partial order.   It reads as follows. 
 
Let An and Bn (n = 1, …) be sets of options converging pointwise, respectively, to the option sets A and B.  Let N be an 
option set. 
Axiom 3a: If, for each n, Bn 〈 An and A 〈 N, then B 〈 N. 
Axiom 3b: If, for each n, Bn 〈 An and N 〈 B, then N 〈 A.  
 
State-neutrality / dominance is captured by the following relations.  Consider horse lotteries h1 and h2, with hi(ωj) =  
βij1 ⊕ (1-βij)0;  i = 1,2  j = 1, …, n. 
 
Definition: h2 weakly dominates h1 if β2j  ≥ β1j for j = 1, …, n. 
 
Axiom 4: Assume that o2 weakly dominates o1, and that a is an option different from each of these two. 
4a: If o2 ∈ O and a ∈ R({o1} ∪ O) then a ∈ R(O). 
4b: If o1 ∈ O and a ∈ R(O) then a ∈ R({o2}∪O\o1). 
 
In words, Axiom 4a says that when a weakly dominated option is removed from the set of options, other inadmissible 
options remain inadmissible.  So, by Axiom 1, when an option is replaced in the option set by one that it weakly 
dominates, other admissible options remain admissible. 
 
Axiom 4b says that when an option is replaced by one that weakly dominates it, (other) inadmissible options remain 
inadmissible.  Trivially by Axiom 1, merely adding a weakly dominating option cannot promote an inadmissible option 
into one that is admissible. 
 
Axiom 4 captures key aspects of what Savage’s postulate P3 asserts about state-independent utility of the prizes 1 and 0 
without assuming states are not-null.  That is, the intended representation for the choice function C(•) is by the expected 
utility rule applied with a set of probability distributions P.  However, it may be that for each state ωj there is a 
probability distribution pj ∈ P such that Pj(ωj) = 0.  In the language of our (1995) paper, each state in Ω is potentially 
null under P.  Then Savage’s P3 (or the corresponding axiom of Anscombe-Aumann theory) is vacuous.   Nonetheless, 
Axiom 4 reports two facts about weakly dominated lotteries that obtain even when each state is potentially null. 
 
Theorem 3:  Axioms 1–4 are necessary for a coherent choice function.   
That is, let S be a non-empty set of pairs of probability/state-independent utilities, and let CS(•) be the coherent choice 
function defined by setting the admissible options in feasible set O to be exactly those that are Bayes-admissible with 
respect to S.    Then CS(•) satisfies Axioms 1–4. 
 
Proof:  The argument for the necessity of  Axioms 1–3 is given in our (2004).  That Axiom 4 is necessary as well 
follows immediately by noting  that whenever o2 weakly dominates o1 then for each (p,u) ∈ S, Ep(u(o2)) ≥ Ep(u(o1)). ◊ 
 
The following result is helpful in linking our theory with Theorem 1. 
Definition: h2 strongly dominates h1 if β2j  > β1j for j = 1, …, n. 
Lemma–Inadmissibility of  strongly dominated options:  If h2 strongly dominates h1 then {h1} = R({h1, h2}). 
 
Proof:  The strategy of the proof is as follows: Use the Independence axiom to convert the problem with option set O = 
{h1, h2} into an equivalent problem O` = {h`1, h`2}, where h`1 is a constant horse lottery, and where h`2 strongly 
dominates h`1.  Then we show that h`2

 weakly dominates another constant horse lottery, h``2 which also strongly 
dominates h`1.  Then, by Independence {h`1} = R({h`1, h``2}) and by Axiom 4b, {h`1} = R({h`1, h`2})    Last, by 
Independence, {h1} = R({h1, h2}). 
 
Here are the details.  Let 0 ≤ β* = min{β1j} and 1 > β* = max{β1j}.  Let h3(ωj) = β3j1 ⊕ (1-β3j)0, where β3j = β* + β* - 
β1j.  Then the horse lottery h`1 = .5h1 ⊕ .5h3 is the constant (von Neumann-Morgenstern) lottery with β`1j = (β*+β*)/2.  



Define h`2 = .5h2 ⊕ .5h3.   The Independence axiom asserts that {h1} = R({h1, h2}) if and only if {h1`} = R({h1`, h2`}).  
But h2` strongly dominates h1`, because h2 strongly dominates h1.  In fact, β`2j -β`1j = (β2j -β1j )/2 > 0.  So,  let 0 < δ = 
min{β2j -β1j}, and then δ/2 = min{β`2j -β`1j}.  Let h``2 be the constant (von Neumann-Morgenstern) lottery defined with 
β``2j = β`1j + δ/2 = (β*+β* + δ)/2  > β`1j.  Observe, also, that h`2 weakly dominates h``2. 
 
Then, as announced before, by Independence {h`1} = R({h`1, h``2}) and by Axiom 4b, {h`1} = R({h`1, h`2}), and by 
another application of Independence, {h1} = R({h1, h2}).◊ 

 
Next we introduce two concepts central to our argument for representing coherent choice functions.   
 
Definitions:  The pair (p,u) is a local Bayes model for option o provided that o maximizes (p,u)-expected utility with 
respect to the options in set O. 
 
The pair (p,u) is a global Bayes model for the choice function C(•) provided that, for each option set O, if  o ∈ O 
maximizes (p,u)-expected utility with respect to the options in set O  then o ∈ C(O). 
 
We adapt the concept of a set of almost state-independent utilities, presented  in our (1995, Definition 31), as follows.  
Let {r1, ..., rm} be a set of rewards and assume that  for each constant horse lottery r ∈ {r1, ..., rm} , {0} 〈 {r} 〈 {1}, so 
that the constant acts 0 and 1 strictly bound the value of the other constant acts.    
 
The set of probability/utility pairs S# = {(pj, uj): j = 1, ....} form a set of almost state independent utilities for {r1, ..., rm} 
provided that for each ε > 0, there is a pair (pε, uε) ∈ S# and a set of states Ω(1-ε) ⊆ Ω  with  pε( Ω(1-ε)) ≥ 1-ε such that for 
each r ∈ {r1, ..., rm} 

εωω −Ω∈ 1j,imax | uε,ωi(r) - uε,ωj(r) | ≤ ε. 

 
The remaining theorem we seek is this one.   
 
Theorem 4:  A choice function C(•) defined on the class H of simple Anscombe-Aumann Horse-lotteries using (at 
least) three prizes {0, r, 1}, with {0} 〈 {r} 〈 {1},  satisfies our 4 axioms only if it is represented by a set S of 
probability/almost-state-independent utility pairs. 
 
A sufficient condition is given at the end of Appendix 2 for the global Bayes models of S to be comprised solely of 
probability/state-independent utility pairs. 
 
This theorem follows from three lemmas, described next. 
 
Lemma 1: For each choice set O and admissible option o ∈ C(O), o has at least one local Bayes model. 
Proof:  By Theorem 1, an option lacking a local Bayes model is strongly dominated by a finite mixture of other options 
already available in the same choice problem.  Then, Axiom 3 and the Lemma on inadmissibility of strongly dominated 
acts demonstrates Lemma 1.� 
 
Aside: Let o ∈ C(O).  If (p,u) and (p’,u) both are local Bayes models for o, then so too is each pair (q,u) of the form q = 
xp + (1-x)p’ (0 ≤ x ≤ 1).  Likewise, if each of (pj,u) (j = 1, ... ) is a local Bayes model for o and the sequences of 
distributions {pj} converges to distribution q, then also (q,u) is a local Bayes model for o.  Hence, we have the 
following corollary 
 
Corollary:  The set of local Bayes models for o ∈ C(O) with a common utility u is given by a non-empty, closed, 
convex set of probabilities. 
 
Next, following the ideas presented in Section 2, given a distribution p, we identify a special choice problem O* so that 
precisely when all of its options are admissible, then p is a global Bayes model for the choice function.  Thus, the 
notation for the special choice problem should be ‘O*p’ with the subscript identifying the distribution p.  To make the 
proofs readable, that subscript is suppressed here. 
 
Lemma 2:  Suppose that C(O*) = O*.  Then p is a global Bayes model for the choice function C(•).   
Proof:  See Appendix 1. 



 
Lemma 3: For each admissible option o ∈ C(O) at least one of its local Bayes models is a global Bayes model or else 
there is a set of probability/almost-state-independent utility pairs that represent C. 
Proof: See Appendix 2. 
   
4. An example of coherent choice using a non-convex set P reflecting “expert” opinion 
In this section we illustrate how coherent choices may represent “expert” opinions while preserving independence 
between two events.   
 
Example 2: Consider a decision problem among three options – three treatment plans {T1, T2, T3} defined over 4 states 
Ω = {ω1, ω2, ω3, ω4} with determinate utility outcomes given in the following table.  That is, the numbers in the table 
are the utility outcomes for the options (rows) in the respective states (columns)  
  ω1  ω2  ω3 ω4 
 
T1  0.00 0.00 1.00 1.00 
 
T2  1.00 1.00 0.00 0.00  
 
T3  0.99 -0.01 -0.01 0.99 
 
Let a convex set P of probabilities be generated by two extreme points, distributions p1 and p2, defined by the following 
table.  Distribution p3 is the .50-.50 (convex) mixture of  p1 and p2. 

ω1  ω2  ω3 ω4 
 
p1  0.08 0.32 0.12 0.48 
 
p2  0.48 0.12 0.32 0.08  
 
p3  0.28 0.22 0.22 0.28 
Note that (for i = 1, 2, 3) under probability pi, only option Ti is Bayes-admissible from the option set of {T1, T2, T3}.   
 
Without convexity – that is, using only the set comprised by the two (extreme) distributions {p1, p2} –  option T3 is the 
sole Bayes-inadmissible option from among the three options {T1, T2, T3}.  
 
Now, interpret these states as the cross product of two binary partitions: a medical event A (patient allergic) and its 
complementary event NA (patient not-allergic), with a binary meteorological partition. S (sunny) and NS (cloudy).   
Specifically: ω1 = A&S  ω2 = A&NS  ω3 = NA&S  ω4 = NA&NS.   

 
Under  probability distribution p1, the two partitions are independent events with p1(A) = .4 and p1(S) = .2.  Likewise, 
under probability distribution p2, the two partitions are independent events with p2(A) = .6 and p2(S) = .8.  And under 
distribution p3 the events A and S are positively correlated: .56 = p3(A | S ) >  p3(A) = .5, as happens with each 
distribution q  that is a non-trivial mixture of p1 and p2. 
 
Continuing with the example, we see that the three options have the following interpretations: T1 and T2 are ordinary 
medical options for how to treat the patient, with outcomes that depend solely upon the patient’s allergic state.  T3 is an 
option that makes the allocation of medical treatment a function of the meteorological state, with a “fee” of 0.01 utile 
assessed for that input.  That is, T3 is the option “T1 if cloudy and T2 if sunny, while paying a fee of 0.01.” 
 
Suppose that p1 represents the opinion of medical expert 1, and p2 represents the opinion of medical expert 2.  Without 
convexity of the credal probabilities, T3 is inadmissible.  This captures the shared agreement between the two medical 
experts that T3 is unacceptable from the choice of three {T1, T2, T3}, and it captures the pre-systematic understanding 
that under T3 you pay to use medically irrelevant inputs about the weather in order to determine the medical treatment.  
However, with convexity of the set generated by p1 and p2, then T3 is admissible as well.  Convexity of the set of 
indeterminate probabilities, we note, is required in each of Gilboa and Schmeidler’s (1989) version of Γ-Maximin, in 
Walley’s (1990) version of Maximality, and in Levi’s (1980) account of E-admissibility.. 
 
Aside: This illustration relies on the fact that normal and extensive form decisions are generally not equivalent in 
decision theories with indeterminate probabilities. Example 2 is in the normal form, as are all the choice problems 



considered in this paper.  In the extensive form of this decision problem, the decision maker has the opportunity to 
make a terminal choice between T1 and T2 first, or to take as a third option a sequential alternative: pay a fee of 0.01 
utiles in order to learn the state of the weather before choosing between T1 and T2.  Under decision rules for extensive 
form  problems that we endorse, and which we believe also are endorsed by Levi, then it is E-inadmissible to postpone 
the immediate medical decision between T1 and T2 in order to pay an amount to acquire the irrelevant meteorological 
evidence.  And this holds whether the indeterminate probability set is convex or not. Related results about independence 
with indeterminate probability are presented in Cozman and Walley (2005). 
 
5. Concluding Remarks 
We have discussed coherent choice functions – where the admissible options in a decision problem are exactly those 
which maximize expected utility for some probability/utility pair in fixed set S of probability/utility pairs.  All of the 
decision problems used here to characterize and axiomatize coherent choice functions are normal form decision 
problems. But, as indicated in section 4, normal and extensive form decisions generally are not equivalent when 
probability (or utility) is indeterminate.  One of our future projects is to study coherent choice for extensive form, i.e., 
sequential decision problems 
 
Also, as noted in Lemma 3, in parallel with our findings about coherent strict partial orders (1995) the axioms are 
sufficient for coherence using a set of probability/almost-state-independent utility pairs. Though we give sufficient 
conditions when a choice function satisfying our axioms is represented by a set of probability/state-independent utility 
pairs with a common utility, also we intend to study how to modify the axioms to avoid the use of almost-state-
independent utilities. 
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Appendix 1 – Lemma 2 
Lemma 2:  Suppose that C(O*) = O*.  Then p is a global Bayes model for the choice function C(•).   
Proof.  Let p = (p1, …, pn) be a probability distribution on Ω with p its smallest nonzero coordinate.  O* is comprised 
by a set of acts that span all the elements of H with p-Expected utility p. 

Partition the states in Ω in two sets:  = {ωp
1Ω 1, …, ωk} those that comprise the support of p and,  = {ωp

2Ω k+1, …, ωn} 

those states null under p.  Clearly,  = φ if and only if p has full support.  We define O* by two cases, depending 

whether  = φ or not. 

p
2Ω

p
2Ω

Case 1:  = φ and p has full support.  O* is comprised by n-many acts, { : j = 1, …, n}  For each  j = 1, …, n, 

define the act   by 

p
2Ω ja

ja

ja (ωi)   =    
jp

p
1  ⊕  (1-

jp
p

)0   if i = j 

=  0     if i ≠ j. 

Case 2: ≠ φ. O* is defined by k(n+2-k)-many acts which can be understood to be the product of acts defined on p
2Ω

p
1Ω  × .  With respect to , O* contains k-many acts that span horse lotteries defined on  that have p-

Expected utility 

p
2Ω p

1Ω p
1Ω

p, similarly to Case 1. With respect to , O* contains (n+2-k)-many acts that span all horse lotteries 

defined on , including the two constants 0 and 1. 

p
2Ω

p
2Ω

For each  j = 1, …, k,  and m = k+1, …, n+2 define the act   by m
ja

m
ja (ωi)   =   

jp
p

1  ⊕  (1-
jp

p
)0   if i = j 

    =      1 if i = m  or (m= n+2 and i > k) 
    =      0     otherwise 



 

Note that (ω1+n
ja i)  ≠  0 if and only if i = j.  In particular, it equals 0 on . And note that (ωp

2Ω 2+n
ja i)  ≠  0 if and only 

if, either i = j or i > k.  It equals 1 on . p
2Ω

 
Let O* be the choice problem formed by taking the convex hull of these options: 
In Case 1  O* = H{ : j = 1, …, n}, the convex hull of n-many options.  In Case 2 O* = H{ : j = 1, …, k; m = k+1, 

..., n+2}, the convex hull of  k(n+2-k)-many options. 
ja m

ja

 
Let ap denote the constant horse lottery that awards the identical von Neumann-Morgenstern lottery in each state, with 
ap = p1 ⊕ (1- p)0. 
 
Claim 1: ap ∈ O*. 
Proof: In Case 1, when p has full support,  p1a1 ⊕ p2a2 ⊕ … ⊕ pnan

 is the horse lottery ap.   In Case 2, when p-null 
states exist, for each  j = 1, …, k, define the horse lottery 

bj = (1-p)  ⊕  1+n
ja p 2+n

ja  with  payoffs: 

jb (ωi)   =     ap    if i > k 

jb (ωi)   =   
jp

p
1  ⊕  (1-

jp
p

)0   if i = j 

jb (ωi)   = 0     if i ≠ j and  i ≤.k. 

 
Then  p1b1 ⊕ p2b2 ⊕ … ⊕ pkbk

  is the horse lottery ap. ◊−claim 1. 
 
Note that (p,u) is a local Bayes model for each element of O* as the p-Expected utility for each element of O* is the 
same value, namely p. 
 
Claim 2: If p < 1 then (p,u) is the only local Bayes model for ap

Proof:  Note that regardless the distribution q on Ω,  ap has q-Expected utility p.  We argue by cases that when p < 1, q 
is not a local model for ap with respect to O*. 

If p has full support (  = φ), the q-Expected utility of  =  qp
2Ω ja j

jp
p

> p.  And if  j = m > k, so that pj = 0 and q( ) > 

0, then the q-Expected utility of 

p
2Ω

p1
2

1
+na  ⊕ p2

2
2

+na ⊕ … ⊕ pk
2+n

ka   

=   q(Ω1) p + q(Ω2)    >  p. 
Hence, (q,u) is not a local Bayes model for ap . ◊-claim 2
 

Note also that for the case p1  = p = 1, ap = 1 and then O* = H{1 , , … }.  In which case if q ≠ p, q is not a local 

Bayes model for , which has a q-expected value of q

2
1a 2

1
+na

1
1

+na 1 < 1.  Thus, we have  
Proposition:  

p is the sole local Bayes model for all of O*. 
 
Claim 3: O* contains all the horse lotteries in H with p-expected utility equal to p. 
Proof: Let o be a horse lottery with p-Expected utility p.  Write o(ωj) = αj1 ⊕ (1- αj)0,  j = 1, …, n.     

Case 1 (p has full support.): For ωi ∈ Ω =  we have that ∑p
1Ω i piαi = p and 0 ≤ αi ≤ 1.  The set of α-vectors satisfying 

these two equations is closed and convex, with extreme points given by the acts {aj}.  That is, if α* = <α∗1, …., α∗n> is 
an extreme point of this set of α-vectors, then α* = aj for some 1 ≤  j ≤  n.   Since a closed, convex set is identified by 
its extreme points, this establishes that o ∈ O*. 



Case 2 (There are null states under p.):  The reasoning is similar to Case 1, noting that O* spans all horse lotteries 

defined over .p
2Ω ◊−Claim 3. 

We complete the proof of Lemma 2, as follows. Let O be a choice set and let φ ≠ Op ⊆ O be those options for which p is 
a local Bayes model.   So, each a ∈ Op maximizes the p-Expected utility of options in O at common value r.   There are 
two cases, depending upon whether r  ≥ p or  r  < p. 

In the former case, mix 0 into each act in O to form the choice set O` =  
r
p

O  ⊕  (1-
r
p

)0, with the  isomorphism 

between O and O` that associates each o ∈ O with o’ ∈ O, where o` = 
r
p

o  ⊕  (1-
r
p

 )0. 

In case r  < p mix 1 into each act in O to form the choice set O` =  
r
p

−
−

1
1

O  ⊕  (
r
rp

−
−

1
)1, with the  isomorphism 

between O and O` that associates each o ∈ O with o’ ∈ O,  where o` = 
r
p

−
−

1
1

o  ⊕  (
r
rp

−
−

1
 )1. 

The argument continues in parallel between the two cases.  By the Axiom 2, a ∈ C(O) if and only if a` ∈ C(O`).  Also 
evident is the fact that for each a` ∈ O`p the p-Expected utility of a` equals p.  Thus, by Claim 3, for each a` ∈ O`p, a`∈ 
C(O*). 
 
Claim 4: Let o`∈ O`  and o`∉ O`p .  Then each local Bayes model q for o` with respect to O* ∪ {o`} is singular with 

respect to p, i.e., ∩ = φ. q
1Ω p

1Ω

Proof: Because o`∉ O`p  then Ep(o`) < p and, trivially,  p is not a local Bayes model for o`.  Fix a distribution q ≠ p 

where ∩ ≠ φ.  We argue indirectly that q is not a local Bayes model for o’ with respect to O* ∪ {o`}. q
1Ω p

1Ω

First consider the case where  ⊆ , that is where q is absolutely continuous with respect to p.  Within the n-1 

dimensional simplex of distributions on Ω, let L

q
1Ω p

1Ω

pq be the line determined by the two points p and q, having endpoints 
denoted q* and q*.  Identify these endpoints by placing q in the closed line segment [q*, p], and thus p lies in the closed 
line segment [q, q*], from which we know that p ≠ q*, though it is possible that q = q*. 

Moreover, since  ⊇  we have that p ≠ qq
2Ω p

2Ω *, since each endpoint of Lpq has some null-state not shared as a null 
state with any other point on that line.   So, p is internal to the line Lpq.  Because q* is an endpoint of Lpq, as just argued, 

∩ ≠ φ. Assume that ω*q
2Ω p

1Ω k ∈ ∩ .  Since p lies on the line [q*q
2Ω p

1Ω *, q*], ωk ∈ . *q
1Ω

Consider the act  (or the act  if p has full support).  Since E1+n
ka ka q(o`)  ≥  Eq( ) and  E1+n

ka p(o`) < Ep( ) = 1+n
ka p, 

there exists a unique distribution rk situated on the line Lpq and between p and q (possibly with rk = q), such that 
(o`) = ( ).  Because expected utility is linear in probability, for each distribution t in the half open interval   

(r
krE krE 1+n

ka

k, q*],  Et(o`) < Et( ).  But [ ] = 0 > [o`], which is a contradiction as no act has a negative expected 
value. 

1+n
ka *qE 1+n

ka *qE

This completes the argument when q is absolutely continuous with respect to p. 

Next, assume that ∩ ≠ φ and write q
1Ω p

1Ω

q(•) = q(• | )q( )  +  q(• | )q( ), p
1Ω p

1Ω p
2Ω p

2Ω

where  q( ) > 0.  So, q(•| ) is absolutely continuous with respect to p. p
1Ω p

1Ω

Eq(•) = Eq(• | )q( )  +  Ep
1Ω p

1Ω q(• | )q( ).  Since ∈ O* and Ep
2Ω p

2Ω 2+n
ka q(o`)  ≥  Eq( ), it follows that  E2+n

ka q(o`| 

) ≥  Ep
1Ω q(  | )  =  E2+n

ka p
1Ω q(  | ).  However, as q(• | ) is absolutely continuous with respect to p, we 

have the same situation involving q(• | ) and p as when q is absolutely continuous with respect to p, completing the 

proof.

1+n
ka p

1Ω p
1Ω

p
1Ω

  ◊-Claim 4
 



Next, we show that if there is a local Bayes model for o’ with respect to O* ∪ {o`}, then no element of O* becomes 
inadmissible by adding option o`. 
 
Claim 5:  Assume that a ∈ C(O* ), o`∈ O`  but o`∉ O`p, and let  o` have a local Bayes model q with respect to O* ∪ 
{o`}.  Then a ∈ C(O* ∪ {o`}). 
Proof: Assume the premise.  In the light of Axiom 4 we are done proving Claim 5 if we identify an act a* ∈ O* such 
that a* weakly dominates o’.   This we do as follows. 
 

By Claim 4, q is singular with respect to p.  Consider an act  for ω2+n
ka k ∈ . p

1Ω

Definition: For W ⊆ Ω and act o, define the act  o|W  by: 
o(ω)|W = o(ω),  for ω ∈ W, 

and  o(ω)|W  = 0,  otherwise. 
 

Write o` as an sum of three acts o` = o`| + o`|( ∩ ) + o`| , and likewise for  = |   +  

|( ∩ ) +  | .  Because (ω) = 1 for ω ∈ , then |  weakly dominates o`| , and 

likewise |( ∩ ) weakly dominates o`|( ∩ ).  By Claim 4,  o`|  fails to have a local Bayes model 

with respect to O* ∪ {o`| }.  So, by Lemma 1, there exists an option b ∈ H(O*) that uniformly dominates o`| .  

Let  a* = |  + |( ∩ ) + b| .  Then a* weakly dominates o` and, as E

q
1Ω p

2Ω q
2Ω p

1Ω 2+n
ka 2+n

ka q
1Ω

2+n
ka p

2Ω q
2Ω 2+n

ka p
1Ω 2+n

ka p
2Ω 2+n

ka q
1Ω q

1Ω

2+n
ka p

2Ω q
2Ω p

2Ω q
2Ω p

1Ω

p
1Ω p

1Ω

2+n
ka q

1Ω 2+n
ka p

2Ω q
2Ω q

1Ω p[a*] = Ep[b| ] = q
1Ω p, we 

have a*∈ O*.◊-Claim 5
 
Assume that a` ∈ C(O*).  Let N` ={o`: o` ∈ O` and o`∉ O`p but o` has no local Bayes model with respect to O* ∪ 
{o`}}.  Then by Lemma 1, o`∈ R(O* ∪ N`).  By Axiom 1, as a` ∈ C(O*) then a` ∈ C (O* ∪ N`) .   If  o` ∈ O` \N` , 
then using Claim 5, a` ∈ C(O* ∪ N` ∪ o`). 
By a simple induction on an arbitrary well-ordering of O`\N`, then a` ∈ C(O* ∪ N` ∪ O`\N`)  =  C(O* ∪ O`). 
By Axiom 1, if a`∈ O` then a`∈ C(O`).  Finally, by Axiom 2, a ∈ C(O).  ◊-Lemma 2

 
Appendix 2 – Lemma 3 

Lemma 3: For each admissible option o ∈ C(O) at least one of its local Bayes models is a global Bayes model or else 
there is a set of probability/almost-state-independent utility pairs that serve as a global Bayes-model. 
Proof:  The next claim, which we use to establish Lemma 3, extends the idea of Axiom 4 to the strict partial order 〈. 
Claim 6: Suppose that for option sets A, B and D, B 〈 A and B ∩ C(D) ≠ φ.  Then A ∩ C(closure{D\B ∪ A}) ≠ φ.   
Proof (indirect): Suppose that A ⊆ R(closure{D\B ∪ A}).  By Axiom 1 applied twice, A ⊆ R(D ∪ A) and A ⊆ R(D ∪ A 
∪ B).  Since B 〈 A, likewise B ⊆ R(D ∪ A ∪ B).  Thus, A ∪ B 〈 D.  By transitivity, B 〈 D and so B ∩ C(D) = φ. ◊-Claim 6 
 
Given o ∈ C(O) and following the ideas we used in (1995, Definition 19), we introduce the notion of a target set T(o,O) 
of probability distributions for o with respect to choice problem O.  The target set for o is a subset of the local Bayes 
models for o which, we show, contains all of its global Bayes models.  We demonstrate that whenever the target set 
includes a boundary point, that boundary point is a global Bayes model.   
 

Given a probability distribution p, recall the decision problem Op = {ap, , …, } defined in Section 2.  We state 
without proof that whenever C(O

ph1
ph1

p) = Op then C(O*) = O* for O* defined with respect to p as in Lemma 2, and so p is a 
global Bayes model. 
 

Definition:  T(o,O)   = {p: p is local Bayes model for o in choice problem O and  { , …, } ⊆ C(Oph1
p
nh p)} 

 
Claim 7: T(o,O) is a non-empty, convex set. 
Proof: Without loss of generality, and to simplify the presentation, we give  the proof for a binary state space Ω = {ω1, 

ω2} .  Convexity is shown as follows. Note that for p defined by p(ω2) = 0, ∈ C(Oph2 p), and for p defined by p(ω2) = 1, 



ph1 ∈ C(Op).  And by Claim 6, if ∈ C(Oph2 p), then for all distributions q with q(ω2) ≤ p(ω2) we have ∈ C(Oqh2 q); and 

if ∈ C(Oph1 p), then for all distributions q with q(ω2) ≥ p(ω2) we have ∈ C(Oqh1 q).  In the general case, with more than 
2 states, the same result follows by noting that T(o,O) is an intersection of half-planes.  We show that T(o,O) is non-

empty by an indirect argument using the Archimedean axiom.  So, assume that for each p, C{ , } is a unit set, and 

by the observation above, let q be the lub {p(ω

ph1
ph2

2): ∈ C{ , }.  There are two cases. ph2
ph1

ph2

Case 1: { } = C{ , }  So q(ωqh2
qh1

qh2 2) < 1 and then 〈 and for all p(ωqh1
qh2 2) > q(ω2),  〈 .  But as p approaches 

q,  converges to  for i = 1, 2.  Then by Axiom 3, 〈 . 

ph2
ph1

p
ih q

ih qh1
qh1

Case 2: { } = C{ , } .  So q(ωqh1
qh1

qh2 2) > 0 and then 〈 and for all p(ωqh2
qh1 2) < q(ω2),  〈 .   But as p 

approaches q,  converges to  for i = 1, 2.  Then by Axiom 3, 〈 .

ph1
ph2

p
ih q

ih qh2
qh2 ◊-Claim 7 

To complete the proof of Lemma 3 there are two cases to consider. 

Case 1: T(o,O) contains at least one of its boundary points.  Suppose, e.g., that q is the lub {p(ω2): ∈ C{ , } 

and  that R{ , } = φ.  Then for each 0 ≤  x ≤ 1, R{ , , x ⊕ (1-x) } = φ, as the following reasoning 
establishes.   

ph2
ph1

ph2
qh1

qh2
qh1

qh2
qh1

qh2

 

Assume that q(ω2) < 1, or we are done.  Then for all p(ω2) > q(ω2),  〈 as before.  For 0 < x ≤ 1, by Axiom 2, 

〈  x ⊕ (1-x) .  As p approaches q, by Axiom 3, then x ⊕ (1-x) ∈ C{ , , x ⊕ (1-x) }, on pain 

of contradiction otherwise  that 〈 .  The reasoning is similar if the target set T(o,O) is closed at the other end.  

Then, at each point p of closure for T(o,O), R(O

ph2
ph1

ph2
ph1

ph2
qh1

qh2
qh1

qh2
qh1

qh2
qh2

qh2
p) = φ and p is global Bayes model. 

 
Case 2: If the target set is entirely open and there is no p ∈ T(o,O) such that R(Op) = φ, we arrive at the parallel 
situation studied in Section IV.2 of our (1995).  That situation is one where, first, a coherent choice function C is 
induced by a finite set P of linearly independent probabilities on Ω.  The convex target sets for C include subsets of P as 
extreme points, i.e., R(Op) = φ for each p ∈ P. Hence, C is represented by the set P of global Bayes models.  Then, this 
choice function C is changed into another C+ which is formed by adding the strict preferences associated with finitely 
many conditions  of the form T(o,O)∩R(Op) ≠ φ.  The results established in Section IV.2 of our (1995) show that then 
C+ satisfies the axioms.  Also, those results show that in a neighborhood of the extreme points of the target sets for C 
there are sets of probability/almost-state-independent utility pairs that are local Bayes models for C, and which then 
represent the choice function C+.  These almost-state-independent utilities result by adding at least one new prize {r} to 
the two {0, 1} used to create the horse lotteries studied here. ◊-Lemma 3 

 

Corollary: If for each choice problem O and o ∈ C(O) and the target set T(o,O) includes at least one of its boundary 
points, then C is represented by a set of probability/state-independent utility pairs. 
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