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ABSTRACT

In this paper we consider the problem of grouped variable selection in high-dimensional
regression using `1-`q regularization (1 ≤ q ≤ ∞), which can be viewed as a natural
generalization of the `1-`2 regularization (the group Lasso). The key condition is that
the dimensionality pn can increase much faster than the sample size n, i.e. pn À n (in
our case pn is the number of groups), but the number of relevant groups is small. The
main conclusion is that many good properties from `1-regularization (Lasso) naturally
carry on to the `1-`q cases (1 ≤ q ≤ ∞), even if the number of variables within each
group also increases with the sample size. With fixed design, we show that the whole
family of estimators are both estimation consistent and variable selection consistent
under different conditions. We also show the persistency result with random design
under a much weaker condition. These results provide a unified treatment for the whole
family of estimators ranging from q = 1 (Lasso) to q = ∞ (iCAP), with q = 2 (group
Lasso)as a special case. When there is no group structure available, all the analysis
reduces to the current results of the Lasso estimator (q = 1).

Keywords: `1-`q regularization, `1-consistency, variable selection consistency, sparsity ora-

cle inequalities, rates of convergence, Lasso, iCAP, group Lasso, simultaneous Lasso
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I. Introduction

We consider the problem of recovering a high-dimensional vector β∗ ∈ Rmn using a sample

of independent pairs (X1•, Y1), . . . , (Xn•, Yn) from a multiple linear regression model, Y =

Xβ∗ + ε. Here Y is the n× 1 response vector and X represents the observed n×mn design

matrix whose i-th row vector is denoted by Xi•. β∗ is the true unknown coefficient vector that

we want to recover, and ε = (ε1, . . . , εn) is an n× 1 vector of i.i.d. noise with εi ∼ N (0, σ2).

In this paper we are interested in the situation where all the variables are naturally parti-

tioned into pn groups. Grouped variables often appear in real world applications. For ex-

ample, in many data mining problems we encode categorical variables using a set of dummy

variables and as a result they form a group. Another example is additive model, where each

component function can be represented using its basis expansions which can be treated as

a group. Suppose the number of variables in the j-th group is represented by dj, then by

definition we have mn =
∑pn

j=1 dj. We can rewrite the above linear model as

Y = Xβ∗ + ε =

pn∑
j=1

Xjβ
∗
j + ε (1.1)

where Xj is an n × dj matrix corresponding to the j-th group (which could be either cat-

egorical or continuous) and β∗j is the corresponding dj × 1 coefficient subvector. Therefore,

we have X = (X1, . . . , Xpn) and β∗ = (β∗T1 , . . . , β∗Tpn
)T . All predictors and the response

variable are assumed to be centered at zero to simplify notation. Furthermore, we use Xj

to represent the j-th column in the design matrix X and assume that all columns in the

design matrix are standardized, i.e.
1

n
‖Xj‖2

`2
= 1, j = 1, . . . , mn. Similar to the notation of

Xj, we denote β∗j (j = 1, . . . , mn) to be the j-th individual element of the vector β∗. Since

we are mainly interested in the high-dimensional setting, we allow the number of groups pn

to increase as the number of examples n increases and our results mainly focus on the case

where pn À n. Furthermore, we also allow the group size dj to increase with n at a rate

dj = o(n) and define d̄n = maxj dj to be the upper bound of the group size for a fixed n. In

the rest of the paper we will suppress the subscript n when there is no confusion.

In order to obtain a reliable estimation of β∗ when pn À n, the key assumption is that the

true coefficient vector β∗ is sparse. Denote S = {j : ‖β∗j ‖`∞ 6= 0, j = 1, . . . , pn} to be the

set of group indices and let sn = |S| to be the cardinality of the set S, we also denote β∗S to

be the vector concatenating all subvectors β∗j ’s for j ∈ S. The sparsity assumption means

that sn ¿ pn. Therefore, even if β∗ has a very high dimension, the only effective part is β∗S
while the remaining part β∗Sc = 0. Our task is to select and recover the nonzero groups of

variables corresponding to the index set S.

Sparsity has a long history of successes in solving such high-dimensional problems. Without

considering the group structure, there exist many classical methods for variable selection,

such as AIC (Akaike, 1973), BIC (Schwarz, 1978), Mallow’s Cp (Mallows, 1973), etc. Al-

though these methods have been proven to be theoretically sound and have been shown to
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perform well in practice, they are only computationally feasible when the number of vari-

ables is small. Recently, more attention has been focused on the `1-regularized least squares

(Lasso) estimator (Tibshirani, 1996; Chen et al., 1998) which is defined as

β̂λn = argmin
β

{
1

2n
‖Y −Xβ‖2

`2
+ λn‖β‖`1

}
(1.2)

where λn is the regularization parameter for the `1-norm of the coefficients β, while β̂λn means

the Lasso solution when λn is used for regularization. In the following, we will suppress the

superscript if not confusion is caused. Lasso can be formulated as a quadratic programming

problem and the solution can be solved efficiently (Osborne et al., 2000; Efron et al., 2004).

Its asymptotic properties for fixed dimensionality have been studied in (Fu and Knight, 2000).

For high dimensional setting, Greenshtein and Ritov (2004) prove that Lasso estimator is

persistent, in the sense that, when constrained in a class, the predictive risk of the Lasso

estimator converges to the risk obtained by the oracle estimator in probability. However,

recent studies (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2007; Zou, 2006) show that

the Lasso estimator is not in general variable selection consistent, which means that in general

the correct sparse subset of the relevant variables can not be identified even asymptotically.

In particular, in (Zhao and Yu, 2007; Wainwright et al., 2006), it is shown that in order for

Lasso to be variable selection consistent, the so-called irrepresentable condition has to be

satisfied. Zou (2006) propose the adaptive Lasso and show that by using adaptive weights

for different variables, the `1 penalty can lead to variable selection consistency. In terms of

estimation, it has been show in Meinshausen and Yu (2006) that under weaker conditions,

the Lasso estimator is `2-consistent for high-dimensional setting where the total number of

variables can grow almost as fast as exp(n). Under a stronger assumption, Bunea et al.

(2007a) further proves the sparsity oracle inequalities for the Lasso estimator using fixed

design, which bounds the `2-norm of the predictive error in terms of the number of non-zero

components of the oracle vector. Such results can be used applied to nonparametric adaptive

regression estimation and to the problem of aggregation of arbitrary estimators. Parallel to

the fixed design result, a similar result for the random design can be found in (Bunea et al.,

2007b). A more recent result from (Bickel et al., 2007) refine similar oracle inequalities using

weaker assumptions. All these results show that for sparse linear models, Lasso can overcome

the curse of dimensionality even when facing increasing dimensions.

When variables are naturally grouped together, it is more meaningful to select variables at a

group level instead of individual variables, as can be seen from previous examples. A general

strategy for grouped variable selection is to use block `1-norm regularization. For variables

within each block (group), an `q norm is applied, and different blocks are then combined

by an `1 norm (therefore the name `1-`q regularization). One such example is the group

Lasso (Yuan and Lin, 2006), which is an extension of Lasso for grouped variable and can

be viewed an `1-`2 regularized regression. Other works related to grouped variable selection

include the iCAP estimator (Zhao et al., 2008), which can be viewed as an `1-`∞ regularized

regression, and group logistic regression (Meier et al., 2007), etc. Using random design,
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Meier et al. (2007) proved the estimation consistency result for group Lasso with Lipschitz

type loss functions. Also with random design, Bach (2007) derived a similar irrepresentable

condition as in (Zhao and Yu, 2007) and proved the variable selection consistency result for

group Lasso. However, to the best of our knowledge, there isn’t corresponding result for

estimation and variable selection consistency for the group Lasso and iCAP estimators using

fixed design, nor the persistency results using random design. There is also no systematic

theoretical treatment for the whole family of the more general `1-`q regularized regression

with 1 ≤ q ≤ ∞.

Our work tries to bridge this gap and provide a unified treatment of `1-`q regularized re-

gression for the whole range from q = 1 to q = ∞. The main conclusion of our study is

that many good properties from `1-regularization (Lasso) naturally carry on to the `1-`q

cases (1 ≤ q ≤ ∞), even if the number of variables within each group can increase with the

sample size n. Using fixed design, when different conditions are assumed, we show that `1-`q

estimator is both estimation consistent and variable selection consistent, and if the linear

model assumption does not hold, sparsity oracle inequalities for the prediction error could

still be obtained under a weaker condition. Using random design, we show that a constrained

form of the `1-`q regression estimator is persistent. Our results provide simultaneous analysis

to both the iCAP (q = ∞) and the group Lasso estimators (q = 2). When there is no group

structure, all the analysis naturally reduces to the current results of the Lasso estimator

(q = 1). One interesting application of these results is to analyze the simultaneous Lasso

estimator (Turlach et al., 2005), which can be viewed as an `1-`∞ regularized regression using

block designs.

The rest of the paper is organized as follows. In Section 2 we first introduce some pre-

liminaries of the `1-`q regularized regression and then describe some characteristics of its

solution. In Section 3, we study the variable selection consistency result. In Section 4, we

study the estimation consistency and the sparsity oracle inequalities. In Section 5, we study

the persistency property. We conclude with some discussion in Section 6.

II. `1-`q Regularized Regression

Given the design matrix X and the response vector Y , the `1-`q regularized regression esti-

mator is defined as the solution of the following convex optimization problem:

β̂λn = arg min
β

1

2n
‖Y −Xβ‖2

`2
+ λn

pn∑
j=1

(dj)
1/q′‖βj‖`q (2.1)

where λn is a positive number which penalizes complex model and q′ is the conjugate ex-

ponent of q, which satisfies
1

q′
+

1

q
= 1 (assuming 1

∞ = 0). The terms (dj)
1/q′ are used to

adjust the effect of different group sizes. It is easy to see that when q = 1, this reduces to
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the standard Lasso estimator; when q = 2, this reduces to the group Lasso estimator (Yuan

and Lin, 2006); when q = ∞, this reduces to the `1-`∞ regularized regression estimator, or

the iCAP estimator defined in (Zhao et al., 2008).

To characterize the solution to this problem, the following result can be straightforwardly

obtained using the Karush-Kuhn-Tucker (KKT) optimality condition for convex optimiza-

tion.

Proposition 2.1. (KKT conditions) A vector β̂ = (β̂T
1 , . . . , β̂T

p )T ∈ Rmn , mn =
∑pn

j=1 dj,

is an optimum of the objective function in (2.1) if and only if there exists a sequence of

subgradients ĝj ∈ ∂‖β̂j‖`q , such that

1

n
XT

j

(
Xβ̂ − Y

)
+ λn(dj)

1/q′ ĝj = 0. (2.2)

The subdifferentials ∂‖β̂j‖`q is the set of vectors ĝj ∈ Rdj satisfying

If 1 < q < ∞, then

ĝj = ∂‖β̂j‖`q =





Bq′(1) if β̂j = 0{( |β̂j`|q−1sign(β̂j`)

‖β̂j‖q−1
`q

)dj

`=1

}
o.w.

(2.3)

where Bq′(1) denotes the ball of radius 1 in the dual norm, i.e. 1/q + 1/q′ = 1. It’s easy to

see that ‖ĝj‖`q′ ≤ 1 for any j.

If q = ∞ then

ĝj = ∂‖β̂j‖`∞ =

{
B1(1) if β̂j = 0

conv{sign(β̂j`)e` : |β̂j`| = ‖β̂j‖`∞} o.w.
(2.4)

where conv(A) denotes the convex hull of a set A and e` the `-th canonical unit vector in

Rdj . It’s also easy to see that ‖ĝj‖`q′ = ‖ĝj‖`1 ≤ 1 for all j when q = ∞.

If q = 1 then

ĝj = ∂‖β̂j‖`1 = {ξ ∈ Rdj : ξ` ∈ ∂| · |(x`), ` = 1, . . . , dj}. (2.5)

From proposition 2.1, the `1-`q regularized regression estimator can be efficiently solved even

with large n and pn. For example, blockwise coordinate descent algorithms as in (Zhao et al.,

2008) can be easily applied. When q = 1 and q = ∞, due to fact that feasible parameters

are constrained to lie within a polyhedral region with parallel level curves, efficient path

algorithm can be developed (Efron et al., 2004; Zhao et al., 2008). At each iteration of the

blockwise coordinate descent algorithm, βj for j = 1, . . . , pn is updated, with the rest of the

coefficients fixed. Coupled with a threshold operator, these algorithms general converge very
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fast and exact solution can be obtained. Standard optimization methods, such as interior-

point methods (Boyd and Vandenberghe, 2004), can also be directly applied to solve the

`1-`q regularized regression problems.

It is well-known (Osborne et al., 2000) that under some conditions, the Lasso can at most

select n nonzero variables even in the case pn À n. A similar but weaker result can be

obtained for the `1-`q regularized regression.

Proposition 2.2. For the `1-`q regularized regression problem defined in equation (2.1)

with λn > 0, there exists a solution β̂λ such that the number of nonzero groups |S(β̂)| is

upper bounded by n, the number of given data points, where S(β̂) = {j : β̂j 6= 0}

Remark 2.3. Notice that the solution to `1-`q regularized regression problem may not be

unique especially when pn À n (similar to the Lasso case), since the optimization problem

might not be strictly convex. Consequently, there might exist other solutions that contain

more than n active groups. However, a compact solution β̂ with |S(β̂)| ≤ n can always be

obtained by following an easy and mechanical step described in the proof of Proposition 2.2.

Proof: From the KKT condition in proposition 2.1, we know that any solution β̂ should

satisfy the following conditions (j = 1, . . . , pn):

1

n
XT

j (Y −Xβ̂) = λgj

where gj = ∂‖βj‖`q . Now suppose there is a solution β̂ which has s = |S(β̂)| > n number of

active groups, in the following we will show that we can always construct another solution

β̃ with one less active group, i.e. |S(β̃)| = |S(β̂)| − 1.

Without loss of generality assume that the first s groups of variables in β̂ are active, i.e.

β̂j 6= 0 for j = 1, . . . , s. Since

Xβ̂ =
s∑

j=1

Xjβ̂j ∈ Rn×1

and s > n, the set of vectors X1β̂1, . . . , Xsβ̂s are linearly dependent. Without loss of gener-

ality assume

X1β̂1 = α2X2β̂2 + . . . + αsXsβ̂s.

Now define β̃j = 0 for j = 1 and j > s, and β̃j = (1 + αj)β̂j for j = 2, . . . , s, and it is

straightforward to check that β̃ satisfies the KKT condition and thus is also a solution to the

`1-`q regularized regression problem in equation 2.1. The result thus follows by induction.

¤

The main objective of the paper is to investigate several important statistical properties of

the `1-`q estimator β̂. We first give some rough definitions of the properties that we would

like to establish, more details will be shown in their corresponding sections.
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Definition 2.4. (Variable selection consistency) An estimator is said to be variable selec-

tion consistent if it can correctly recover the sparsity pattern with probability goes to 1. For

the case of grouped variable selection, β̂ is said to be variable selection consistent if

P
(
S(β̂) = S(β∗)

)
→ 1. (2.6)

Definition 2.5. (`1-estimation consistency) An estimator is said to be `1-estimation con-

sistent if the `1-norm of the difference between the estimator and the true parameter vector

converges to 0 in probability. i.e.

∀δ > 0 P
(
‖β̂ − β∗‖`1 > δ

)
→ 0. (2.7)

Definition 2.6. (Prediction error consistency) An estimator is said to be prediction error

consistent if the prediction error, defined as
1

n
‖Ŷ −Xβ∗‖2

`2
, of the estimator converges to 0

in probability. i.e.

∀δ > 0 P
(

1

n
‖Ŷ −Xβ∗‖2

`2
> δ

)
→ 0. (2.8)

Definition 2.7. (Risk consistency or Persistency) Assuming the true model f ∗(X) does not

have to be linear, for the regression model with random design, (X ,Y) ∼ Fn ∈ Fn, where

Fn is a collection of distributions of i.i.d. mn + 1 dimensional random vectors. Define the

risk function under the distribution Fn to be RFn(β) (More details in Section 5). Given a

sequence of sets of predictors Bn, the sequence of estimators β̂
bFn ∈ Bn is called persistent if

for every sequence Fn ∈ Fn,

RFn(β̂
bFn)−RFn(βFn

∗ )
P→ 0, (2.9)

where

βFn
∗ = argmin

β∈Bn

RFn(β). (2.10)

For the `1-`q regularized regression, later, we will use Bn = {β :
∑pn

j=1(dj)
1/q′‖βj‖2

`2
≤ Ln},

for some Ln = o((n/(log n))1/4).

The following table gives a high level summary of our main results, ordered from very

stringent assumptions to much weaker assumptions:
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Variable selection consistency: P
(
S(β̂) = S(β∗

)
→ 1 (R1)

`1-estimation convergence rate: ‖β̂ − β∗‖`1 = OP

(
snd̄n

√
log mn

n

)
(R2)

Prediction error convergence rate:
1

n
‖Ŷ −Xβ∗‖2

`2
= OP

(
snd̄n log mn

n

)
(R3)

Prediction (misspecified model):
1

n
‖Ŷ − f ∗‖2

`2
= OP

(
s′d̄n log mn

n

)
(R3∗)

Persistency (misspecified model): RFn(β̂
bFn)−RFn(βFn

∗ )
P→ 0 (R4)

Remark 2.8. (R1) to (R3) assume the true model must be linear, while (R3∗) and (R4)

relax this condition so that the model can be misspecified. Even though (R3) and (R3∗) look

very similar, (R3∗) dropped the linear model assumption at the price of enforcing another

“weak sparsity” condition. Also, (R1), (R2), (R3), and (R3∗) are fixed design results, while

(R4) is a random design result.

In general, the condition for variable selection consistency is the strongest since it involves

not only certain relations among n, λn, pn, sn, d̄n, but also the minimum absolute value of

the parameters, ρ∗n = minj∈S ‖β∗j ‖∞. The `1-estimation consistency and prediction error con-

sistency requires weaker conditions than variable selection consistency. Unlike the previous

properties, when the model is misspecified, the prediction error consistency in (R3∗) follows

from a sparse oracle inequality. Since both the sparsity oracle inequalities and persistency

does not require the existence of a true linear model and thus is more general. Especially, the

persistency is about the consistency of the predictive risk when considering random design

and only need a very weak assumption about the design.

III. Variable Selection Consistency

In this Section we study the conditions under which the `1-`q estimator is variable selection

consistent. Our proof is adapted from (Wainwright, 2006) and (Ravikumar et al., 2007).

The former paper develop the “witness” proof idea which is the main framework used in

our proof. The latter paper mainly treat variable selection consistency when q = 2 in a

nonparametric sparse additive model setting, which makes their conditions more stringent

than ours even when q = 2.

In the following, Let S denote the true set of group indices {j : Xj 6= 0}, with sn = |S|, and

Sc denote its complement. Denote Λmin(C) to be the minimum eigenvalue of the matrix C.
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Then, we have

Theorem 3.1. Let q and q′ are conjugate exponents with each other, that is
1

q
+

1

q′
= 1

and 1 ≤ q, q′ ≤ ∞. Suppose that the following conditions hold on the design matrix X:

Λmin

(
1

n
XT

S XS

)
≥ Cmin > 0

max
j∈Sc

∥∥∥∥(XT
j XS)(XT

S XS)−1

∥∥∥∥
q′,q′

≤ 1− δ, for some 0 < δ ≤ 1. (3.1)

where ‖ · ‖a,b is the matrix norm, defined as ‖A‖a,b = sup
x

‖Ax‖`b

‖x‖`a

, 1 ≤ a, b ≤ ∞. Assume

the maximum number of variables with each group d̄n → ∞ and d̄n = o(n). Furthermore,

suppose the following conditions, which relate the regularization parameter λn to the design

parameters n, pn, the number of relevant groups sn and the maximum group size d̄n:

λ2
nn

log((pn − sn)d̄n)
−→∞. (3.2)

1

ρ∗n





√
log(snd̄n)

n
+ λn(d̄n)1/q′

∥∥∥∥∥
(

1

n
XT

S XS

)−1
∥∥∥∥∥
∞,∞



 −→ 0. (3.3)

where ρ∗n = minj∈S ‖β∗j ‖∞. Then, the `1-`q regularized regression is variable selection con-

sistent.

Remark 3.2. First, notice that the result established in Theorem 3.1 is a direct general-

ization of the variable selection result for Lasso in (Wainwright, 2006) by setting q = 1 and

d̄n = 1 (as then the `1-`q degenerates to Lasso). This gives the sufficient conditions for exact

recovery of sparsity pattern in β∗ for the `1-`q regularized regression. Also notice that when

d̄n is bounded from above, the conditions are almost the same as those of Lasso except the

condition in equation 3.1 which depends on the value of q.

Second, we consider the case when ρn is bounded away from zero. Assuming that q = ∞
and d̄n = n1/5 (such as in the fitting of additive model with basis expansion), we must have

λn = o(n−1/5) and as a result of
λ2

nn

log((pn − sn)d̄n)
→∞, we need to have pn = o(exp(n3/5)).

This means that even when we have increasing group size d̄n, the sparse pattern (in terms

of grouped variables) can still be correctly identified with a large pn.

Finally, when minimum parameter value ρn → 0, to ensure variable selection consistency, it

can at most converge to zero at a rate slower than n−1/2.

Proof: Note, the special case when q = 1 has already been proved in (Wainwright et al.,

2006). Here, we only consider the case that 1 < q ≤ ∞. A vector β̂ ∈ Rmn , mn =
∑pn

j=1 dj,
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is an optimum of the objective function in (2.1) if and only if there exists a sequence of

subgradients ĝj ∈ ∂‖β̂j‖`q , such that

1

n
XT

(∑
j

Xjβ̂j − Y

)
+ λn(dj)

1/q′ ĝj = 0. (3.4)

The subdifferentials ∂‖β̂j‖`q satisfies the KKT conditions in proposition 2.1.

Our argument closely follows the approach of Wainwright et al. (2006) in the linear case. In

particular, we proceed by a “witness” proof technique, to show the existence of a coefficient-

subgradient pair (β̂, ĝ) for which supp(β̂) = supp(β∗). To do so, we first set β̂Sc = 0 and ĝS

to be the vector concatenating all the subvectors ĝj’s, for j ∈ S. We also define ĝSc and β̂S

in a similar way. And we then obtain β̂S and ĝSc from the stationary conditions in (3.4). By

showing that, with high probability,

β̂j 6= 0 for j ∈ S (3.5)

ĝj ∈ Bq′(1) for j ∈ Sc, (3.6)

this demonstrates that with high probability there exists an optimal solution to the opti-

mization problem in (2.1) that has the same sparsity pattern as the true model.

Setting β̂Sc = 0 and

ĝj =





{( |β̂j`|q−1sign(β̂j`)

‖β̂j‖q−1
`q

)dj

`=1

}
1 < q < ∞

conv{sign(β̂j`)e` : |β̂j`| = ‖β̂j‖`∞} q = ∞
(3.7)

for j ∈ S, denote W = diag((d1)
1/q′Id1 , . . . , (dp)

1/q′Idp) where Idj
is a dj × dj identity matrix.

We define WS to be submatrix of W by extracting out the rows and columns corresponding

to the group index set S. The stationary condition for β̂S is

1

n
XT

S

(
XSβ̂S − Y

)
+ λnWS ĝS = 0. (3.8)

Let ε = (ε1, . . . , εn)T , then the stationary condition can be written as

1

n
XT

S XS

(
β̂S − β∗S

)
− 1

n
XT

S ε + λnWS ĝS = 0 (3.9)

or

β̂S − β∗S =

(
1

n
XT

S XS

)−1 (
1

n
XT

S ε− λnWS ĝS

)
(3.10)

assuming that
1

n
XT

S XS is nonsingular. Recalling our definition

ρ∗n = min
j∈S

‖β∗j ‖`∞ > 0. (3.11)
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it suffices to show that

‖β̂S − β∗S‖`∞ <
ρ∗n
2

(3.12)

in order to ensure that supp(β∗S) = supp(β̂S) =
{

j : ‖β̂j‖`∞ 6= 0
}

.

Using ΣSS =
1

n
XT

S XS to simplify notation, we have the `∞ bound

‖β̂S − β∗S‖`∞ ≤
∥∥∥∥Σ−1

SS

(
1

n
XT

S ε

)∥∥∥∥
`∞

+ λn

∥∥Σ−1
SSWS ĝS

∥∥
`∞

. (3.13)

We now proceed to bound the quantities above. First note that for j ∈ S, ‖ĝj‖`q′ = 1.

Therefore, since

‖ĝS‖`∞ = max
j∈S

‖ĝj‖`∞ ≤ max
j∈S

‖ĝj‖`q′ = 1 (3.14)

we have that ∥∥Σ−1
SSWS ĝS

∥∥
`∞
≤ (d̄n)1/q′

∥∥Σ−1
SS

∥∥
∞,∞ . (3.15)

Therefore

‖β̂S − β∗S‖`∞ ≤
∥∥∥∥Σ−1

SS

(
1

n
XT

S ε

)∥∥∥∥
`∞

+ λn(d̄n)1/q′
∥∥Σ−1

SS

∥∥
∞,∞ .

Finally, consider Z = Σ−1
SS

(
1

n
XT

S ε

)
. Note that ε ∼ N(0, σ2I), so that Z is Gaussian as well,

with mean zero. Consider its `-th component, Z` = eT
` Z. Then E[Z`] = 0, and

Var(Z`) =
σ2

n
eT

` Σ−1
SSe` ≤ σ2

nCmin

. (3.16)

By the comparison results on Gaussian maxima (Ledoux and Talagrand, 1991), we have then

that

E [‖Z‖`∞ ] ≤ 3
√

log(sd̄n) max
`

√
Var(Z`) ≤ 3σ

√
log(sd̄n)

nCmin

. (3.17)

An application of Markov’s inequality then gives that

P
(
‖β̂S − β∗S‖`∞ >

ρ∗n
2

)
≤ P

(
‖Z‖`∞ + λn(d̄n)1/q′

∥∥Σ−1
SS

∥∥
∞,∞ >

ρ∗n
2

)

≤ 2

ρ∗n

{
E [‖Z‖`∞ ] + λn(d̄n)1/q′

∥∥Σ−1
SS

∥∥
∞,∞

}
(3.18)

≤ 2

ρ∗n



3σ

√
log(sd̄n)

nCmin

+ λn(d̄n)1/q′
∥∥Σ−1

SS

∥∥
∞,∞



 (3.19)

which converges to zero under the condition that

1

ρ∗n

{√
log(sd̄n)

n
+ λn(d̄n)1/q′

∥∥Σ−1
SS

∥∥
∞,∞

}
−→ 0. (3.20)
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We now analyze ĝSc . Recall that we have set β̂Sc = β∗Sc = 0. The stationary condition for

j ∈ Sc is thus given by

1

n
XT

j

(
XSβ̂S −XSβ∗S − ε

)
+ λn(dj)

1/q′ ĝj = 0. (3.21)

Therefore,

ĝSc =
W−1

Sc

λn

{
1

n
XT

ScXS

(
β∗S − β̂S

)
+

1

n
XT

Scε

}

=
W−1

Sc

λn

{
1

n
XT

ScXS

(
1

n
XT

S XS

)−1 (
λnWS ĝS − 1

n
XT

S ε

)
+

1

n
XT

Scε

}

=
W−1

Sc

λn

{
ΣScSΣ−1

SS

(
λnWS ĝS − 1

n
XT

S ε

)
+

1

n
XT

Scε

}
(3.22)

from equation (3.10).

We want to show that

ĝj ∈ Bq′(1) (3.23)

for all j ∈ Sc. From (3.22), we see that ĝj is Gaussian, with mean

µj = E(ĝj) = (dj)
−1/q′ΣjSΣ−1

SSWS ĝS. (3.24)

We then obtain the bound

‖µj‖`q′ ≤
∥∥ΣjSΣ−1

SS

∥∥
q′,q′ ‖ĝS‖`q′ =

∥∥ΣjSΣ−1
SS

∥∥
q′,q′ ≤ 1− δ for some δ > 0.

It therefore suffices to show that

P
(

max
j∈Sc

(dj)
1/q′‖ĝj − µj‖`∞ >

δ

2

)
−→ 0 (3.25)

since this implies that

‖ĝj‖`q′ ≤ ‖µj‖`q′ + ‖ĝj − µj‖`q′ (3.26)

≤ ‖µj‖`q′ + (dj)
1/q′‖ĝj − µj‖`∞ (3.27)

≤ (1− δ) +
δ

2
+ o(1) (3.28)

with probability approaching one. To show (3.25), we again appeal to comparison results of

Gaussian maxima. Define

Zj = (dj)
1/q′λn(ĝj − µj) = XT

j

(
I −XS(XT

S XS)−1XT
S

) ε

n
(3.29)

for j ∈ Sc. Then Zj are zero mean Gaussian random vector, and we need to show that

P
(

max
j∈Sc

‖Zj‖`∞

λn

≥ δ

2

)
−→∞. (3.30)
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Let Zjk represent the k-th element of Zj for j ∈ Sc. A calculation shows that E(Z2
jk) ≤

σ2

n
.

Therefore, we have by Markov’s inequality and the comparison results of Gaussian maxima

that

P
(

max
j∈Sc

‖Zj‖`∞

λn

≥ δ

2

)
≤ 2

δλn

E
(

max
j∈Sc,k

|Zjk|
)

≤ 2

δλn

(
3
√

log((pn − sn)d̄n) max
j∈Sc,k

√
E

(
Z2

jk

))
(3.31)

≤ 6σ

δλn

√
log((pn − sn)d̄n)

n
(3.32)

which converges to zero under the condition that

λ2
nn

log((pn − sn)d̄n)
−→∞. (3.33)

This is just the condition in the statement of the theorem. ¤

IV. Estimation Consistency

In this section, we prove the estimation consistency results under two types assumptions:

(i) When the model is correctly specified, i.e., the true model is linear, we can achieve both

`1-consistency results and derive the optimal rate of convergence for the prediction error.

(ii) When the model is misspecified, i.e. the true model is not linear, we can still achieve

a sparsity oracle inequality, which provide a bound of the prediction error using the loss

of the prediction oracle with the number of nonzero groups of the prediction loss involved

in. Under the “weak sparsity” condition, we can still obtain a rate of convergence of the

prediction error which is similar to the convergence rate obtained under the linear model

assumption.

We begin with a technical lemma, which is essentially lemma 1 as in (Bunea et al., 2007a)

and (Bickel et al., 2007), but need to be extended to handle the group structures in the more

general `1-`q regularized regression setting.

Lemma 4.1. Let ε1 . . . , εn be independent N (0, σ2) random variables with σ2 > 0 and Let

Ŷ = Xβ̂ be the `1-`q regularized regression estimator with 1 ≤ q ≤ ∞ as in (2.1) with

λn = Aσ

√
log mn

n
(4.1)

for some A > 2
√

2. Then, for all mn ≥ 2, n > 1, with probability of at least 1 −mn
1−A2/8

we have simultaneously for all β ∈ Rmn :

1

n
‖Ŷ −Xβ∗‖2

`2
+ λn

pn∑
j=1

(dj)
1/q′‖β̂j − βj‖`q ≤

1

n
‖Xβ −Xβ∗‖2

`2
+ 4

∑

j∈S(β)

λn(dj)
1/q′‖β̂j − βj‖`q(4.2)
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where S(β) denotes the set of nonzero group indices of β.

Proof: By the definition of Ŷ = Xβ̂, we have

1

2n
‖Y −Xβ̂‖2

`2
+ λn

pn∑
j=1

(dj)
1/q′‖β̂j‖`q ≤

1

2n
‖Y −Xβ‖2

`2
+ λn

pn∑
j=1

(dj)
1/q′‖βj‖`q

for all β ∈ Rmn , mn =
∑pn

j=1 dj, which we may rewritten as

1

n
‖Xβ∗ −Xβ̂‖2

`2
+ 2λn

pn∑
j=1

(dj)
1/q′‖β̂j‖`q

≤ 1

n
‖Xβ∗ −Xβ‖2

`2
+ 2λn

pn∑
j=1

(dj)
1/q′‖βj‖`q +

2

n
εT X(β̂ − β). (4.3)

For each j = 1, . . . , mn, we define the random variables Vj =
1

n
XT

j ε, and the event

A =
mn⋂
j=1

{
2|Vj| ≤ λn

}
.

Under the normality assumption, we have that

√
nVj ∼ N (0, σ2) j = 1, . . . , mn. (4.4)

Using the elementary bound on the tails of Gaussian distribution we find that the probability

of the complementary event Ac satisfies

P{Ac} ≤
mn∑
j=1

P{√n|Vj| >
√

nλn/2} ≤ mnP{|Z| ≥
√

nλn/(2σ))} (4.5)

≤ mn exp

(
−nλ2

n

8σ2

)
= mn exp

(
−A2 log mn

8

)
= m1−A2/8

n (4.6)

where Z ∼ N (0, 1). Then, on the set A, we have

2

n
εT X(β̂ − β) = 2

mn∑
j=1

Vj(β̂j − βj) ≤
mn∑
j=1

λn|β̂j − βj| ≤
pn∑

j=1

λn(dj)
1/q′‖β̂j − βj‖`q

and therefore, still on the set A,

1

n
‖Xβ∗ −Xβ̂‖2

`2
≤ 1

n
‖Xβ∗ −Xβ‖2

`2

+2λn

pn∑
j=1

(dj)
1/q′‖βj‖`q +

pn∑
j=1

λn(dj)
1/q′‖β̂j − βj‖`q − 2λn

pn∑
j=1

(dj)
1/q′‖β̂j‖`q . (4.7)
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Adding the same term

pn∑
j=1

λn(dj)
1/q′‖β̂j − βj‖`q on both sides, we obtain

1

n
‖Xβ∗ −Xβ̂‖2

`2
+ λn

pn∑
j=1

(dj)
1/q′‖β̂j − βj‖`q ≤

1

n
‖Xβ∗ −Xβ‖2

`2

+2λn

pn∑
j=1

(dj)
1/q′‖βj‖`q + 2λn

pn∑
j=1

(dj)
1/q′‖β̂j − βj‖`q − 2λn

pn∑
j=1

(dj)
1/q′‖β̂j‖`q . (4.8)

Recall S(β) to be the set of non-zero group indices of β. Rewriting the right-hand side of

the previous display, then, on set A
1

n
‖Xβ∗ −Xβ̂‖2

`2
+ λn

pn∑
j=1

(dj)
1/q′‖β̂j − βj‖`q

≤ 1

n
‖Xβ∗ −Xβ‖2

`2
+ 2




pn∑
j=1

λn(dj)
1/q′‖β̂j − βj‖`q −

∑

j /∈S(β)

λn(dj)
1/q′‖β̂j‖`q




+2


 ∑

j∈S(β)

λn(dj)
1/q′‖βj‖`q −

∑

j∈S(β)

λn(dj)
1/q′‖β̂j‖`q




≤ 1

n
‖Xβ −Xβ∗‖2

`2
+ 4

∑

j∈S(β)

λn(dj)
1/q′‖β̂j − βj‖`q

by the triangle inequality and the fact that βj = 0 for j /∈ S(β). ¤

A. Estimation Consistency Under the Linear Model Assumption

Assuming the true model is linear, to obtain the `1-consistency result, a key assumption on

the design matrix is needed, which is stated as the following

Assumption 1 Recall that sn = S(β∗), assume for any vector γ ∈ Rmn satisfies

κ ≡ min
S0⊂{1,...,p}:|S0|≤sn

minP
j∈Sc

0
(dj)1/q′‖γj‖`q≤3

P
j∈S0

(dj)1/q′‖γj‖`q

‖Xγ‖`2√
n
√∑

j∈S0
(dj)2/q′−1‖γj‖2

`q

> 0.(4.9)

Remark 4.2. Before proving the following theorem, we pause to make some comments

about this assumption.

First, For q = 1 (thus, q′ = ∞), this assumption is very similar to the restricted eigenvalue

assumption as in (Bickel et al., 2007), which is defined as

κ ≡ min
S0⊂{1,...,p}:|S0|≤sn

minP
j∈Sc

0
‖γj‖`1

≤3
P

j∈S0
‖γj‖`1

‖Xγ‖`2√
n
√∑

j∈S0
‖γj‖2

`2

> 0. (4.10)
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However, our assumption is slightly weaker, due to the fact that, for any γ ∈ Rdj

‖γj‖2
`1
≤ dj‖γj‖2

`2
. (4.11)

Second, the quantity
√∑

j∈S0
(dj)2/q′−1‖γj‖2

`q
in our assumption balances between q = 1 and

q = ∞. For example, when q = 1, ‖γj‖2
`1

is relatively large, but (dj)
2/q′−1 = (dj)

−1 is very

small. While for q = ∞, ‖γj‖2
`q

= ‖γj‖2
`∞ is relatively small, however, (dj)

2/q′−1 = (dj)
1 is

very significant. In this sense, q = 2 seems the most balanced one, due to the fact that
∑
j∈S0

(dj)
−1‖γj‖2

`1
≤

∑
j∈S0

√
dj‖γj‖2

`2
≤

∑
j∈S0

dj‖γj‖2
`∞ (4.12)

Therefore, among q = 1, 2,∞, q = 2 needs the weakest assumption, this provides some

insights about why group Lasso might also be a suitable choice for grouped variable selection.

However, we need to more cautions to say which value of q is the best. Since in real

applications, the choice of q might depends on the true relevant coefficients β∗S. If different

components in the relevant groups are on the same order of magnitude, q = ∞ might be

more suitable, on the contrary, if some relevant coefficients are very small relative to the

others, q = 1 might be better. we plan to investigate this issue in a separate paper.

Theorem 4.3. (Estimation consistency under linear model assumptions) Under assump-

tion 2, let ε1, . . . , εn be independent N (0, σ2) random variables with σ2 > 0. Consider the

`1-`q regularized estimator defined by (2.1) with

λn = Aσ

√
log mn

n
(4.13)

for some A > 2
√

2. then, for all n ≥ 1 with probability at least 1−mn
1−A2/8 we have

1

n
‖Ŷ −Xβ∗‖2

`2
≤ 9A2σ2

κ2

snd̄n log mn

n
(4.14)

‖β̂ − β∗‖`1 ≤
12A2σ2snd̄n

κ2

√
log mn

n
. (4.15)

Remark 4.4. From this theorem, we obtain `1-consistency and the corresponding rate of

convergence. Due to the fact that ‖γ‖`q ≤ ‖γ‖`1 for all 1 < q ≤ ∞, we obtain `q consistency

also if snd̄n

√
log mn

n
→ 0. If we want to the rate of convergence for `2-consistency, a direct

result will be

‖β̂ − β∗‖2
`2
≤ 144A4σ4s2

nd̄
2
n

κ4

log mn

n
. (4.16)

which is suboptimal. Recall that ‖β̂ − β∗‖2
`1
≤ pnd̄n‖β̂ − β∗‖2

`2
, if |S(β̂)| is O(sn) and the

elements in β̂j − β∗j are balanced for j ∈ S, then we can also achieve the optimal rate

of convergence for `2-norm consistency. How to obtain optimal rate of convergence for

`q-consistency for general q would be an interesting future work.
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Proof: From equation 4.2, Using β = β∗, we have that on the event A,

1

n
‖Ŷ −Xβ∗‖2

`2
≤ 3

∑

j∈S(β∗)

λn(dj)
1/q′‖β̂j − β∗j ‖`q ≤ 3λn

√
d̄nsn

√ ∑

j∈S(β∗)

(dj)2/q′−1‖β̂j − β∗j ‖2
`q
(4.17)

∑

j∈S(β∗)c

(dj)
1/q′‖β̂j − β∗j ‖`q ≤ 3

∑

j∈S(β∗)

(dj)
1/q′‖β̂j − β∗j ‖`q .(4.18)

By the last equation, we have that assumption 1 hold on event A, by this assumption, we

have that

1

n
‖Ŷ −Xβ∗‖2

`2
≥ κ2

∑

j∈S(β∗)

(dj)
2/q′−1‖β̂j − β∗j ‖2

`q
. (4.19)

By combining the above inequalities, we get

1

n
‖Ŷ −Xβ∗‖2

`2
≤ 9λ2

nsnd̄n

κ2
(4.20)

and

√ ∑

j∈S(β∗)

(dj)2/q′−1‖β̂j − β∗j ‖2
`q
≤ 3λn

√
d̄nsn

κ2
. (4.21)

Thus, we have

‖β̂ − β∗‖`1 =

pn∑
j=1

‖β̂ − β∗‖`1 ≤
pn∑

j=1

(dj)
1/q′‖β̂j − β∗j ‖`q (4.22)

=
∑

j∈S(β∗)

(dj)
1/q′‖β̂j − β∗j ‖`q +

∑

j∈S(β∗)c

(dj)
1/q′‖β̂j − β∗j ‖`q (4.23)

≤ 4
∑

j∈S(β∗)

(dj)
1/q′‖β̂j − β∗j ‖`q ≤ 4

√
d̄nsn

√ ∑

j∈S(β∗)

(dj)2/q′−1‖β̂j − β∗j ‖2
`q
(4.24)

≤ 12λnd̄nsn

κ2
=

12A2σ2snd̄n

κ2

√
log mn

n
. (4.25)

Note, equation 4.20 is exactly equation 4.17. ¤

B. Oracle Inequalities for Prediction Error Under Misspecified Models

Assuming the true regression function f ∗(X) is not linear, i.e. the model is misspecified. We

can no longer obtain the optimal rate of convergence directly. But we can still obtain a spar-

sity oracle inequality, which can bound the prediction error in terms of nonzero components

of the prediction oracle.
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Assumption 2 Assume s′ is an integer such that 1 ≤ s′ ≤ pn, and δ is some positive

number, then, for any γ 6= 0

κ(s′, δ) ≡ min
S0⊂{1,...,p}:|S0|≤s′

minP
j∈Sc

0
(dj)1/q′‖γj‖`q≤(2+ 3

δ
)
P

j∈S0
(dj)1/q′‖γj‖`q

‖Xγ‖`2√
n
√∑

j∈S0
(dj)2/q′−1‖γj‖2

`q

> 0.

Theorem 4.5. Under assumption (2), let ε1, . . . , εn be independent N (0, σ2) random vari-

ables with σ2 > 0. Consider the `1-`q regularized estimator defined by (2.1) with

λn = Aσ

√
log mn

n
(4.26)

for some A > 2
√

2. then, for all n ≥ 1 with probability at least 1−mn
1−A2/8 we have

1

n
‖f ∗ −Xβ̂‖2

`2

≤ (1 + δ) inf
β∈Rmn :|S(β)|≤s′

{
1

n
‖f ∗ −Xβ‖2

`2
+

C(δ)A2σ2

κ(s′, δ)2

(
d̄n|S(β)| log mn

n

)}
(4.27)

where C(δ) > 0 is a constant depending only on δ. While |S(β)| represents the number of

nonzero elements in the set S(β).

Remark 4.6. From this sparsity oracle inequality, if we add some assumptions, such as

there exists some β′, such that
1

n
‖f ∗ −Xβ′‖2

`2
→ 0, then we can still obtain prediction error

consistency if
d̄n|S(β′)| log mn

n
→ 0. If we also want to obtain a convergence rate similar to

that as in theorem 4.3, more conditions will be needed, as is shown in corollary 4.8.

Proof: Fix an arbitrary β ∈ Rmn with |S(β)| ≤ s′. On the event A, we get from lemma 4.1

that

1

n
‖Ŷ − f ∗‖2

`2
+ λn

pn∑
j=1

(dj)
1/q′‖β̂j − βj‖`q

≤ 1

n
‖Xβ − f ∗‖2

`2
+ 4

∑

j∈S(β)

λn(dj)
1/q′‖β̂j − βj‖`q (4.28)

Further from above, we can get that

1

n
‖Ŷ − f ∗‖2

`2
≤ 1

n
‖Xβ − f ∗‖2

`2
+ 3λn

∑

j∈S(β)

(dj)
1/q′‖β̂j − βj‖`q (4.29)

≤ 1

n
‖Xβ − f ∗‖2

`2
+ 3λn

√
d̄n|S(β)|

√ ∑

j∈S(β)

(dj)2/q′−1‖β̂j − βj‖2
`q

(4.30)
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Consider separately the cases where

3
∑

j∈S(β)

λn(dj)
1/q′‖β̂j − βj‖`q ≤

δ

n
‖Xβ − f ∗‖2

`2
(4.31)

and

3
∑

j∈S(β)

λn(dj)
1/q′‖β̂j − βj‖`q >

δ

n
‖Xβ − f ∗‖2

`2
(4.32)

In case (4.31), the result of the theorem trivially follows from equation (4.28). So ,we will

only consider the case (4.32). All the subsequent inequalities are valid on the event A ∩A1

where A1 is defined by (4.32). On this event, we get from (4.28) that

pn∑
j=1

(dj)
1/q′‖β̂j − βj‖`q ≤ 3

(
1 +

1

δ

) ∑

j∈S(β)

(dj)
1/q′‖β̂j − βj‖`q (4.33)

which further implies that

∑

j∈S(β)c

(dj)
1/q′‖β̂j − βj‖`q ≤

(
2 +

3

δ

) ∑

j∈S(β)

(dj)
1/q′‖β̂j − βj‖`q (4.34)

By assumption 2, we have

κ(s′, δ)
√ ∑

j∈S(β)

(dj)2/q′−1‖β̂j − βj‖2
`q

≤
√

1

n
‖X(β̂ − β)‖2

`2
=

1√
n
‖Ŷ −Xβ‖`2 (4.35)

Combining this with (4.30), we get

1

n
‖Ŷ − f ∗‖2

`2
≤ 1

n
‖Xβ − f ∗‖2

`2
+ 3λnκ

−1(s′, δ)
√

d̄n|S(β)|
(

1√
n
‖Ŷ −Xβ‖`2

)
(4.36)

≤ 1

n
‖Xβ − f ∗‖2

`2
+ 4λnκ

−1(s′, δ)
√

d̄n|S(β)|
(

1√
n
‖Ŷ − f ∗‖`2

+
1√
n
‖Xβ − f ∗‖`2

)
(4.37)

This inequality is of the same form as (A.4) in (Bunea et al., 2007a). A standard decoupling

argument as in (Bunea et al., 2007a) using inequality 2xy ≤ x2

b
+ by2 with b > 1, x =

λnκ
−1(s′, δ)

√
d̄n|S(β)|, and y being either

1√
n
‖Ŷ − f ∗‖`2 or

1√
n
‖Xβ − f ∗‖`2 yields that

1

n
‖Ŷ − f ∗‖2

`2
≤ b + 1

b− 1

1

n
‖Xβ − f ∗‖2

`2
+

8b2

(b− 1)κ2(s′, δ)
λ2

nd̄n|S(β)|, ∀β > 1. (4.38)

Taking b = 1 + 2/δ in the last display finishes the proof of the theorem. ¤
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From the above sparse oracle inequalities, we can show that the `1-`q regression estimator

can achieve the optimal rate of convergence if some “weak sparsity” condition holds (Bunea

et al., 2007b). The main intuition is, even if the true function f ∗ can not be represented

exactly by a linear model Xβ, but for some β̃ ∈ Rmn the squared distance from f ∗ to Xβ can

be controlled, up to logarithmic factors, by |S(β̃)|/n. Then, the optimal rate of convergence

can still be achieved. More formally, we define an oracle set as

Definition 4.7. Let B be a constant depending only for f ∗ and define an oracle set as

B =

{
β : s.t.

1

n
‖f ∗ −Xβ‖2

`2
≤ Bλ2

n|S(β)|
}

(4.39)

Corollary 4.8. Under the same condition as in theorem 4.5, if the oracle set B is nonempty

and there is at least one element β̃ such that |S(β̃)| ≤ s′, we have

1

n
‖f ∗ − Ŷ ‖2

`2
= OP

(
d̄ns

′ log mn

n

)
(4.40)

Therefore, when s′ ≤ sn, the `1-`q regression estimator achieves the optimal rate of conver-

gence.

Remark 4.9. Generally, the conditions for estimation consistency is weaker than those

for variable selection consistency. For q = 1, why assumption 2 and 1 are weaker than the

assumptions in theorem 3.1 can be found in (Meinshausen and Yu, 2006) and (Bickel et al.,

2007). The cases for q > 1 and the group cases should follow in a similar way.

V. Risk Consistency

In this section, we study the risk consistency (or persistency) property with random design,

which holds under a much weaker condition than variable selection consistency and does

not need the true model to be linear. Instead of directly to show the persistency result

for the estimator defined in equation 2.1, we show the persistency result for a constrained

form estimator, which is equivalent to the estimator in 2.1 in the sense of primal and dual

problems.

Due to the fact of random design and increasing dimensions, the same triangular array

statistical paradigm as in (Greenshtein and Ritov, 2004) is adopted. In the following, we

use calligraphic letter, such as Z to represent random variables, while Z to represent its

realization. Consider the triangular array Z(n)
1 , . . . ,Z(n)

n (which is simplified as Z1, . . .Zn),
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our study mainly focus on the case where Z1, . . . ,Zn
iid∼ Fn ∈ Fn, where Fn is a collection

of distributions of mn + 1 dimensional i.i.d. random vectors

Zi = (Yi,Xi,1, . . . ,Xi,mn) i = 1, . . . , n (5.1)

with the corresponding realizations

Zi = (Yi, Xi,1, . . . , Xi,mn) i = 1, . . . , n. (5.2)

Denote

γ = (−1, β1, . . . , βmn) = (β0, β1, . . . , βmn), (5.3)

and define

RFn(β) = E


Y −

mn∑
j=1

Xjβj




2

= γT ΣFnγ (5.4)

where Z = (Y ,X1, . . . ,Xmn) ∼ Fn ∈ Fn and (ΣFn) = EZTZ.

Given n observations Z1, . . . , Zn, denote their empirical distribution by F̂n and define the

empirical risk as

R bFn
(β) = γT Σ bFn

γ (5.5)

where Σ bFn
=

1

n

n∑
i=1

ZiZ
T
i .

Given a sequence of sets of predictors Bn = {∑pn

j=1(dj)
1/q′‖βj‖`q ≤ Ln}, the sequence of

estimators β̂
bFn is called persistent if for every sequence Fn ∈ Fn,

RFn(β̂
bFn)−RFn(βFn

∗ )
P→ 0, (5.6)

where

β̂
bFn = argmin

β∈Bn

R bFn
(β) = argmin

β∈Bn

‖Y −Xβ‖2
`2

(5.7)

βFn
∗ = argmin

β∈Bn

RFn(β). (5.8)

To show the persistency result, a moment condition as in (Zhou et al., 2007) is needed.

Assumption 3 For each j, k ∈ {1, . . . , mn + 1}, denote E = (ZZT − E(ZZT ))j,k, where

Z = (Y ,X1, . . . ,Xmn), suppose that there exists some constants M and s.

E(|E|q) ≤ q!M q−2s/2 (5.9)

for every q ≥ 2 and every Fn ∈ Fn.
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Theorem 5.1. Suppose that mn ≤ enξ

for some ξ < 1. If Ln = o
(
(n/ log n)1/4

)
, then `1-`q

regularized regression is persistent. That is, for every sequence Fn ∈ Fn:

RFn(β̂
bFn)−RFn(βFn

∗ ) = oP (1). (5.10)

Proof: For any j, k ∈ {1, . . . , mn + 1} and any δ > 0, from assumption 3 we can apply the

Bernstein’s inequality and obtain

P
(∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣ > δ
)
≤ e−cnδ2

(5.11)

for some c > 0. Therefore, by Bonferoni bound we have

P
(
max

j,k

∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣ > δ
)
≤ m2

ne
−cnδ2 ≤ e2nξ−cnδ2 ≤ e−cnδ2/2 (5.12)

for large enough n. For a sequence δn =

√
2 log n

cn
, we have

P
(
max

j,k

∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣ > δn

)
≤ 1

n
→ 0 (5.13)

which implies that

max
j,k

∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣ = OP

(√
log n

n

)
. (5.14)

Therefore,

sup
β∈Bn

∣∣RFn(β)−R bFn
(β)

∣∣ = sup
β∈Bn

∣∣γT (ΣFn − Σ bFn
)γ

∣∣ (5.15)

≤ max
j,k

∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣‖γ‖2
`1

(5.16)

≤ max
j,k

∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣
(

1 +

pn∑
j=1

‖βj‖`1

)2

(5.17)

≤ max
j,k

∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣
(

1 +

pn∑
j=1

(dj)
1/q′‖βj‖`q

)2

(5.18)

≤ max
j,k

∣∣(Σ bFn

)
j,k
− (ΣFn)j,k

∣∣(1 + Ln)2 = oP (1)

for Ln = o
(
(n/ log n)1/4

)
.

Further, by definition, we have R bFn
(β̂

bFn) ≤ RFn(βFn∗ ), combining with the following inequal-

ities

RFn(β̂
bFn)−R bFn

(β̂
bFn) ≤ sup

β∈Bn

∣∣RFn(β)−R bFn
(β)

∣∣ (5.19)

R bFn
(β

bFn
∗ )−RFn(β

bFn
∗ ) ≤ sup

β∈Bn

∣∣RFn(β)−R bFn
(β)

∣∣. (5.20)

22



This implies that

RFn(β̂
bFn)−RFn(βFn

∗ ) ≤ 2 sup
β∈Bn

∣∣RFn(β)−R bFn
(β)

∣∣ = oP (1), (5.21)

which completes the proof. ¤

VI. Discussions

The results presented here show that many good properties from `1-regularization (Lasso)

naturally carry on to the `1-`q cases (1 ≤ q ≤ ∞), even if the number of variables within

each group also increase with the sample size n. Using fixed design, we get both variable

selection and estimation consistency under different conditions. Using random design, we

get persistency under a much weaker condition. Our results provide a unified treatment for

both the iCAP estimator (q = ∞) and the group Lasso estimator (q = 2).

Our results can also provide theoretical analysis to the simultaneous Lasso estimator (Turlach

et al., 2005; Tropp et al., 2006) for joint sparsity. Which can find a good approximation of

several response variables at once using different linear combinations of the high dimensional

covariates. At the same time, it tries to balance the error in approximation against the total

number of covariates that participate. Assuming that we have altogether d̄n response, the

i-th signal is represented as Y (i) ∈ Rn, and the design matrix is X = (X1, . . . , Xpn) ∈ Rn×pn .

Denote the model as

Y (i) = Xβ(i) + ε(i), i = 1, . . . , d̄n (6.1)

The simultaneous Lasso estimator can be formulated as

β̂(1), . . . , β̂(d̄n) = argmin
β(1),...,β(d̄n)

1

2n

d̄n∑

k=1

∥∥Y (k) −Xβ(k)
∥∥2

`2
+ λn

pn∑
j=1

max
`∈{1,...,d̄n}

|β(j)
` |, (6.2)

This problem can be formulated as a standard `1-`q regularized regression estimator with

q = ∞. For this, define

Ỹ =




Y (1)

...

Y (d̄n)


 ∈ Rnd̄n X̃ = Id̄n

⊗X =




X
. . .

X


 and β =




β(1)

...

β(d̄n)


 (6.3)

where ⊗ denotes the Kronecker product. Therefore, the simultaneous Lasso estimator can

be rewritten as

β̂(1), . . . , β̂(d̄n) = argmin
β(1),...,β(d̄n)

1

2n

∥∥∥Ỹ − X̃β
∥∥∥

2

`2
+ λ′n

pn∑
j=1

(d̄n) max
`∈{1,...,d̄n}

|β(j)
` | (6.4)
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where λ′n = λn/d̄n. This is just an `1-`∞ regularized regression estimator with block design.

Therefore, all results in this paper can be applied to analyze such type estimators.
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