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Abstract

We consider estimating an unknown signal, which is both blocky and sparse, corrupted by additive
noise. We study three interrelated least squares procedures and their asymptotic properties. The first
procedure is the fused lasso, put forward by Friedman et al. (2007), which we modify into a different
estimator, called the fused adaptive lasso, with better properties. The other two estimators we discuss
solve least squares problems on sieves, one constraining the maximal `1 norm and the maximal total
variation seminorm, the other restricting the number of blocks and the number of of nonzero coordinates
of the signal. We derive conditions for the recovery of the true block partition and the true sparsity
patterns by the fused lasso and the fused adaptive lasso, and convergence rates for the sieve estimators,
explicitly in terms of the constraining parameters.

1 Introduction

We consider the non-parametric regression model

yi = µ0
i + εi, i = 1, . . . , n,

where µ0 ∈ Rn is the unknown vector of mean values to be estimated using the of observations y, and the
errors εi are assumed to be independent with either Gaussian or sub-Gaussian distributions and bounded
variances. We are concerned with the more specialized settings where µ0 can be both sparse, with a possibly
very large number of zero entries, and blocky, namely the number of coordinates where µ0 changes its values
can be much smaller than n. Figure 1 shows an instance of data generated by corrupting with additive noise
a blocky and sparse signal (see Section 2.4 for details about this example). Formally, we assume that there
exists a partition {B0

1, . . . ,B0
J0
} of {1, . . . , n} into sets of consecutive indexes, from now on a block partition,

and a vector ν0 ∈ RJ0 , which may be sparse, such that the true mean vector can be written as

µ0 =
J0∑
j=1

ν0
j 1B0

j
, (1)

where 1B is the indicator function of the set B ⊆ {1, . . . , n}, i.e. the n-dimensional vector whose i-th
coordinate is 1 if i ∈ B and 0 otherwise. The partition {B0

1, . . . ,B0
J0
}, its size J0, the vector ν0 of block

values and its zero coordinates are all unknown, and our goal is to produce estimates of those or related
quantities that are accurate when n is large enough.

In particular, we investigate the asymptotic properties of three different but interrelated methods for to
the recovery of the unknown mean vector µ0 under the assumption (1).

∗supported in part by NSF grant DMS-0631589 and a grant from the Pennsylvania Department of Health through the
Commonwealth Universal Research Enhancement Program.
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Signal plus noise

Figure 1: Signal (solid line) plus noise for the example described in Section 2.4.

The first methodology we study, which is the central focus of this work, is the fused lasso procedure of
Friedman et al. (2007). The fused lasso is the penalized least squares estimator

µ̂FL = argminµ∈Rn

{
n∑
i=1

(yi − µi)2 + 2λ1,n‖µ‖1 + 2λ2,n‖µ‖TV

}
, (2)

where ‖µ‖1 ≡
∑n
i=1 |µi| is the `n1 norm and ‖µ‖TV ≡

∑n
i=2 |µi − µi−1| the total variation seminorm of µ,

respectively, and (λ1,n, λ2,n) are positive tuning parameters to be chosen appropriately. The solution to the
convex program (2) can be computed in a fast and efficient way using the algorithm developed in Friedman
et al. (2007), where the properties of the fused lasso solution are considered from the optimization theory
standpoint. Our analysis will lead us to develop a modified version of the fused lasso, which we call the fused
adaptive lasso, that has improved properties. Figure 2 shows an example of an fused adaptive lasso fit to
the the data displayed in Figure 1.

In our second approach, we turn to a different convex optimization program, namely

argminµ∈Rn

∑n
i=1(yi − µi)2

s.t. ‖µ‖1 ≤ Ln, ‖µ‖TV ≤ Tn,
(3)

for some nonnegative constants Ln and Tn. Notice that, in this alternative formulation, which is akin to the
least squares method on sieves, a solution different from y is obtained provided ‖y‖1 > Ln or ‖y‖TV > Tn.
The link with the fused lasso estimator is clear: the objective function in the fused lasso problem (2) is the
Lagrangian function of (3), and, in fact, the two problems are equivalent from the point of view convexity
theory.

Our third and final method for the recovery a sparse and blocky signal is also related to sieve least square
procedures, and is more naturally tailored to the model assumption (1). Specifically, we study the solution
to the highly non-convex optimization problem

argminµ∈Rn

∑n
i=1(yi − µi)2

s.t. |{i : µi 6= 0}| ≤ Sn, 1 + |{i : µi − µi−1 6= 0, 2 ≤ i ≤ n}| ≤ Jn,
(4)

where Sn and Jn are nonnegative constants. Although lack of convexity makes this problem computationally
difficult when n is large, the theoretical relevance of this third formulation stems from the fact that (3) is,
effectively, a convex relaxation of (4).
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Figure 2: A fusion adaptive lasso estimate for the example from Section 2.4, using the most biased fusion
estimator shown in Figure 3 the oracle threshold for the lasso penalty, as described in Section 2.3.

Our approach to the study of the estimators defined by (2), (3) and (4) is asymptotic, as we allow the
block representation for the unobserved signal µ0 to change with n in such a way that the problem of the
recovery of a noisy signal under the model (1) may become increasingly difficult. Despite being quite closely
related as optimization problems, from an inferential perspective the three procedures under investigation
each sheds some light on different and, in some way, complementary aspects of this problem. In essence,
our results provide conditions for the (sequences) of regularization parameters λ1,n, λ2,n, Ln, Jn and Sn to
guarantee various degrees of recovery of µ0.

The idea of using the total variation seminorm in penalized least squares problem has been exploited and
studied in many applications, for example in signal processing, parametric and nonparametric regression,
image denoising. From the algorithmic viewpoint, this idea was originally brought up vy Rudin et al. (1992);
for more recent developments, see e.g., Dobson and Vogel (1997) and Caselles et al. (2007). See also DeVore
(1998). The original motivation for this article was the recent work by Friedman et al. (2007), who devise
efficient coordinate-wise descent algorithms for a variety of convex problems. In particular, they propose
a novel approach based on penalized least squares problem using simultaneously the total variation and
the `1 penalties, which favors solutions that are both blocky and sparse. In the classical nonparametric
framework of statistical functional estimation, two important contributions in the development and analysis
of total variation-based methods come from Mammen and van de Geer (1997) and Davies and Kovac (2001).
Specifically, Mammen and van de Geer (1997) consider least squares splines with adaptively chosen knots and
derive, among other things, consistency rates for both one and two-dimensional problems. Using a different
approach, Davies and Kovac (2001) propose a very simple and effective procedure, the taut-string algorithm,
to consistently estimate at an almost optimal rate the number and location of local maxima for an unknown
function. Both methods impose virtually no assumptions on the degree of smoothness of the true underlying
function. More recently, Boysen et al. (2008) study jump-penalized least square regression problems, where
the underlying function is assumed to be a linear combination of a finite number of indicator functions of
intervals in [0, 1], and derive consistency rates under different metrics on functional spaces.

Our work differs from the contributions based on a nonparametric function estimation framework in
various aspects, some of which are closely related to the methodology and scope of Friedman et al. (2007).
First, we are only interested to the recovery of mean vectors under the model assumption (1), and do not
necessarily view them as n values of function on [0, 1]. Nonetheless, we remark there is a simple reformulation
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of our problem as nonparametric functional estimation one. In fact, suppose we observe n datapoints of the
form

yi =
1
n

∫ i
n

i−1
n

µ0(t)dt+ εi, i = 1, . . . , n,

from an unknown function µ0 : [0, 1] → R. Setting µ0
i = 1

n

∫ i
n

i−1
n

µ0(t)dt would return our original model

(see also Boysen et al., 2008, for a similar model). Furthermore, we are concerned with the simultaneous
recovery of both the block partition and of the sparsity patter of µ0. Overall, our analysis yields conditions
for consistency of the block partition and block sparsity estimates by model (2) and its variant described in
Section 2.3, and explicit rates of consistency of both sieve solutions (3) and (4).

The article is organized as follows. In Section 2 we study the fused lasso estimator. After deriving in
Section 2.1 an explicit formula for the fused lasso solution, we establish conditions under which both the
fused lasso procedure are sparsistent, in the sense of a being weakly consistent estimator of the true partitions
and of the set of nonzero coordinates of µ0. In Section 2.3 we propose a simple modification of the fused
lasso, which we call the fused adaptive lasso, that achieves sparsistence under milder conditions and also
allows to derive an oracle inequality for the empirical risk. Finally, in Section 3 we derive consistency rates
for the estimators defined in (3) and (4), which depends explicitly on the parameters Ln and Tn, and of S
and J , respectively. The proofs are relegated to the Appendix.

We conclude this introductory section by fixing the notation that we will be using throughout the article.
For a vector µ ∈ Rn, we let S(µ) = {i : µi 6= 0} denote its support and J (µ) = {i : µi = µi−1 6= 0, i ≥ 2} the
set of coordinates where µ changes its value. Furthermore, notice that we can always write

µ =
J∑
j=1

νj1Bj ,

from some (possibly trivial) block partition {B1, . . . ,BJ}, with 1 ≤ J ≤ n, and some vector ν ∈ RJ . Then,
we will write JS(µ) = {j : νj 6= 0} for the sets of non-zero blocks of µ. On a final note, although all the
quantities defined so far may change with n, for ease of readability, we do not always make this dependence
explicit in our notation.

2 Properties and refinements of the fused lasso estimator

The crucial feature of the fused lasso solution 2 that makes it ideal for the present problem is of being
simultaneously blocky, because of the total variation penalty ‖ · ‖TV, and sparse, because of the `1 penalty
‖ · ‖2. The central goal of this section is to characterize the asymptotic behavior of the regularization
parameters λ1,n and λ2,n so that, as n → ∞, the blockiness and sparsity pattern of the the fused lasso
estimates match the ones of the unknown signal µ0, with overwhelming probability. We first consider the
fused lasso estimator as originally proposed in Friedman et al. (2007) and then a simple variant, the fused
adaptive lasso, which has better asymptotic properties. For this modified version, we also derive an oracle
inequality. We will make a simplifying assumption on the errors:

(E) The errors εi, 1 ≤ i ≤ n are identically distributed centered Gaussian variables with variance σ2
n such

that σn → 0.

In the typical scenario we have in mind, σn = σ√
n

. Assumption (E) is by no means necessary and it can be
easily relaxed to the case of sub-Gaussian centered, as we point out later.

2.1 The fused lasso solution

Below, we provide a explicit formula for the fused lasso solution that offers some insight on its properties and
suggests possible improvements. By inspecting (2), as both penalty functions ‖ · ‖1 and ‖ · ‖TV are convex
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and the objective function is strictly convex, µ̂FL is uniquely determined as the solution to the subgradient
equation

µ̂FL = y − λ1,ns1 − λ2,ns2, (5)

where s1 ∈ ∂‖µ̂FL‖1 and s2 ∈ ∂‖µ̂FL‖TV. For a vector x ∈ Rn, the subgradient ∂‖x‖1 is a subset of Rn
consisting of vectors s such that si = sgn(xi), where, with some abuse of notation, we will denote with sgn(·)
the (possibly set-valued) function on R given by

sgn(x) =

 1 if x > 0
−1 if x < 0
z if x = 0,

where z is any number in [−1, 1]. The subgradient ∂‖x‖TV has slightly more elaborated form, which is given
in Lemma 6.1 in the Appendix.

An explicit expression for µ̂FL can be obtained in terms of the fusion estimator

µ̂F = argminµ∈Rn

{
n∑
i=1

(yi − µi)2 + 2λ2‖µ‖TV

}
. (6)

(Notice that, by the same arguments above, µ̂F is unique.) This fusion estimator solves a regularized least
squares problem with a penalty on the total variation of the signal and works by fusing together adjacent
coordinates that have a similar values to produce a blocky estimate of the form (1). As remarked in the
introduction, Mammen and van de Geer (1997) and Davies and Kovac (2001) establish asymptotic proper-
ties of fusion-type estimators of slightly different nature than in this paper in a nonparametric functional
estimation framework.

For a given solution µ̂F to (6), there exists a block partition {B̂1, . . . , B̂ bJ} and a unique vector ν̂ ∈ R bJ
such that

µ̂F =
bJ∑

j=1

ν̂j1 bBj
. (7)

We take note that both the number Ĵ and the elements of the partition {B̂1, . . . , B̂ bJ} are random quantities,
and that, by construction, no two consecutive entries of ν̂ are identical. Using (7), the individual entries of
the vector ν̂ can be obtained explicitly, as shown next.

Lemma 2.1. Let ν̂ ∈ R bJ satisfy (7) and b̂j = |B̂j |, for 1 ≤ j ≤ Ĵ . Then,

ν̂j =
1

b̂j

∑
i∈ bBj

yi + ĉj ,

where

ĉ1 =

 −
λ2,nbbj

if ν̂2 − ν̂1 > 0
λ2,nbbj

if ν̂2 − ν̂1 < 0,
(8)

ĉ bJ =


λ2,nbbj

if ν̂J − ν̂J−1 > 0

−λ2,nbbj
if ν̂J − ν̂J−1 < 0.

(9)

and, for 1 < j < Ĵ ,

ĉj =


2λ2,nbbj

if ν̂j+1 − ν̂j > 0, ν̂j − ν̂j−1 < 0

− 2λ2,nbbj
if ν̂j+1 − ν̂j < 0, ν̂j − ν̂j−1 > 0

0 if (ν̂j − ν̂j−1)(ν̂j+1 − ν̂j) = 1.

(10)
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By Proposition 1 in Friedman et al. (2007), the fused lasso estimator is obtained by soft-thresholding of
the individual coordinates of µ̂F , so that we immediately obtain the next result.

Corollary 2.2. The fused lasso estimator µ̂FL is

µ̂FLi =

 µ̂Fi − λ1,n µ̂Fi ≥ λ1

0 |µ̂Fi | < λ1,n

µ̂Fi + λ1,n µ̂Fi ≤ −λ1,
i = 1, . . . , n, (11)

where µ̂F is the fusion estimator.

Remarks

1. As is apparent from Lemma 2.1, the individual blocks found by the fusion solution µ̂F are each biased
by a term whose magnitude depends directly on the regularization parameter λ2,n and, inversely, on
the size of the estimated block itself. That is, the larger the estimated blocks the smaller the effect of
the bias. This term is simply a vertical shift which is positive if the block is a local local maximum,
negative if it is a local minimum, and is absent otherwise. See Figure 3. It is worth pointing out that
we observed the same type of behavior for the solution obtained using the taut-string algorithm of
Davies and Kovac (2001), where the magnitude of the vertical shift is controlled by the size of the tube
around the integrated process.

2. The regularization parameter λ1,n, which modulates the size of the sparsity penalty, also causes some
bias effect due to the soft-thresholding. However, unlike the bias determined by the total variation
penalty, this second type of bias is of the same magnitude for all the non-zero coordinates, as can be
seen directly from (11). An easy fix, which is considered in Section 2.3, would be to adaptively penalize
the estimated blocks differently, depending on their sizes, with larger blocks penalized less.

2.2 Sparsistency for the fused lasso

In this section we provide conditions under which the block partition {B0
1, . . . ,B0

J0
} and the block sparsity

pattern JS(µ0) of µ0 can be estimated consistently (see equation 1). We break down our analysis into two
parts, dealing separately with the fusion estimator µ̂F first, which can be used to recover {B0

1, . . . ,B0
J0
}, and

then with the fused lasso solution µ̂FL, from which the set JS(µ0) can be estimated. In Section 2.3, we
show how this second task can be accomplished more effectively by a modified version of the fused lasso
estimator.

2.2.1 Recovery of true blocks by fusion only

We first derive sufficient conditions for the fusion estimator to recover correctly the block partition of µ0.
Let J0 = J (µ0) be the set of jumps of µ0 and J0 = |J0|+ 1 the cardinality of the associated block partition.
Similarly, let Ĵ = J (µ̂F ) be the set of jumps for the fusion estimate, given in (7).

Theorem 2.3. Assume (E) and (1). If, for some δ > 0,

1. λ2,n

σn
→∞ and λ2,n

σn

√
log(n−J0)

> 1
2
√

2
(1 + δ),

2. αn

σn
→∞, αn

σn

√
log J0

>
√

16(1 + δ) and λ2,n <
αn

8 ,

where αn = mini∈J0 |µ0
i − µ0

i−1|, then

lim
n

P
(
{Ĵ = J0} ∩ {sgn(µ̂Fi − µ̂Fi−1) = sgn(µ0

i − µ0
i−1),∀i ∈ J0}

)
= 1 (12)

Remark.
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1. In the proof of Theorem 2.3, instead of Slepian’s inequality, one could use Markov’s inequality and
well-known bounds on the supremum of centered subgaussian vectors (see, e.g., Lemma 2.3 in Massart,
2007) to derive slightly stronger sufficient conditions for (12), which however hold for the larger class
of subgaussian errors. We give these conditions without a proof:

(a) limn
σn

√
2 log |J (µ0)|+2λ2,n

αn
= 0,

(b) limn
λ2,n

σn

√
log |J c

0 |
=∞.

Furthermore, the errors need not be identically distributed. In fact, the proof of the Theorem holds
almost unchanged if, for example, one only assumes that the individual variances are of order O(1/

√
n).

2. Equation (12) actually implies not only that J0 can be consistently estimated, but also that the true
signs of the jumps can be recovered with overwhelming probability, a feature known in the lasso
literature as sign consistency (see, e.g. Wainwright, 2006; Zhao and Yu, 2006). In the present settings,
sign consistency of the fusion estimate implies the following, nice feature of µ̂F :

Corollary 2.4. The fusion estimator µ̂F can consistently recover the local maxima and local minima
of µ0.

3. The magnitude αn of the smallest jumps of µ0 is a fundamental quantity, whose asymptotic behavior
determines whether recovery of the true blocks obtains. In particular, if αn vanishes at a rate faster than
1/σn, then no recovery is possible. In a way, this guarantees some form of asymptotic distinguishibility
that prevents adjacent blocks from looking too similar.

2.2.2 Recovery of true blocks and true non-zero coordinates by the fused lasso

Let JS0 = JS(µ0) be set of non-zero blocks of µ0 and K0 = |J S0| its cardinality. Let Ĵ S = JS(µ̂FL) be
the equivalent quantity defined using the fused lasso estimate µ̂FL. Consider the event

R1,n =
{
JS0 = Ĵ S

}
∩ {sgn(ν̂j) = sgn(ν0

j ),∀j ∈ JS0}

that soft-thresholind µ̂F with penalty λ1,n will return the nonzero blocks of µ0.

Theorem 2.5. If the conditions of Theorem 2.3 are satisfied and, for some δ > 0,

1. λ1,n

√
b0min

σn
→∞ and λ1,n

√
b0min

σn

√
log(J0−K0)

> 2
√

2(1 + δ);

2. 2λ2,n

b0min
<

λ1,n

2 , for all n large enough;

3. ρn

√
b0min

σn
→∞, ρn

√
b0min

σn

√
logK0

>
√

18(1 + δ) and λ1,n <
ρn

3 for all n large enough;

4. 2λ2,n

b0min
< ρn

3 , for all n large enough,

where ρn = minj∈K0 |ν0
j | and b0min = min1≤j≤J0{b0j}, then,

lim
n

P(R1,n) = 1.

Remarks.

1. As it was the case for Theorem 2.3, the assumption of Gaussian errors is not essential and can be
relaxed, and, in fact, Remark 1. above still applies.
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2. The previous result implies that the fused lasso is not only consistent, but, in fact, sign consistent, so
that the signs of the non-zero blocks are estimated correctly.

3. The magnitude ρn of the smallest non-zero block value cannot decrease to zero too fast, otherwise the
sparsity pattern cannot be fully recovered, just as we pointed out in Remark 3. above for the fusion
solution.

4. The conditions of Theorem 2.5 appear to be quite cumbersome, mainly for two reasons. First, the
regularization parameters λ1,n and λ2,n interact with each other. As a result, it appears necessary to
impose assumption 2. in order to guarantee that the two different bias terms they each determine will
not disrupt the recovery process. Secondly, it seems necessary to keep track of the size b0min of the
minimal block. This additional bookkeeping is due to the fact that the sparsity penalty is enforced
globally, in the sense that all coordinates are penalized in equal amount, thus ignoring the fact that
longer blocks require less regularization (see Remark 1. after Lemma 2.1).

2.3 The fused adaptive lasso: sparsistency and an oracle inequality

Motivated by the stringent nature of the conditions of Theorem 2.5, below we propose a refinement of the
fused lasso estimator, which we call the fused adaptive lasso. Overall, this slightly different estimator enjoys
better asymptotic properties than the fused lasso, at no additional complexity cost.

The fused adaptive lasso is obtained with the following two-step procedure:

1. Fusion step: compute the fusion solution µ̂F using the fusion regularization parameter λ2,n, as in (6),
and the corresponding block-partition (B̂1, . . . , B̂ bJ) (see equation 7). Obtain

µ̂AF =
bJ∑

j=1

ȳj1 bBj
, (13)

where
ȳj =

1

b̂j

∑
i∈ bBj

yi, 1 ≤ j ≤ Ĵ .

2. Adaptive lasso step: compute the fused adaptive lasso solution

µ̂FAL = argminµ∈Rn‖µ̂AF − µ‖22 +
n∑
i=1

λ̃i|µi|, (14)

where the n-dimensional random vector λ̃ of penalties is

λ = λ1

bJ∑
j=1

1√
b̂j

1 bBj
, (15)

with λ1,n as the `1 regularization parameter.

Remarks

1. The fused adaptive lasso differs from the fused lasso in two fundamental aspects. First, as easily seen
from Equation (13), the bias term in the fusion solution due to the terms cj , which depends on the
regularization parameter λ2,n, is absent (see Lemma 2.1). Equivalently, the fusion estimator is only
used to estimate the block partition of µ0, and, provided this estimated block partition is correct, the
block values are estimated unbiasedly with the sample averages. Using the fusion procedure as an
estimator of the block partition rather than µ0 has the other advantage of decoupling the estimation
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from the model selection problem, thus freeing, to some extent, the user from the task of carefully
choosing an optimal penalty λ2,n. In fact, recovery of the true partition can be obtained even if the
problem is overpenalize and, therefore, the resulting estimator µ̂F is highly biased.

Secondly, the penalty terms used for thresholding individual blocks are rescaled by the squared root
of the length of the estimated blocks. The rationale for using this rescaling is very simple. In fact,
suppose that, for some j1, j2, b̂j1 >> b̂j2 . Since the variance of the j-th block average ȳj is σ2

nbbj
, ȳj1

has a much smaller standard error than ȳj2 and, therefore, should be penalized less heavily. The
adequate reduction in the sparsity penalty of ȳj1 versus ȳj2 is precisely the difference in their standard
errors, hence the choice of rescaling by square root of the block lengths. The advantage of adaptively
thresholding the block values in this manner is that the procedure will be more effective at identifying
longer non-zero blocks whose values are quite close to 0.

In Section 2.4 we explain both these improvements concretely with a numerical example.

2. In step 2. the vector µ̂ is straightforward to compute via soft-thresholding of the individual coordinates
of µ̂AF with coordinate-dependent thresholds:

µ̂FALi =

 µ̂AFi − λi µ̂AFi ≥ λi
0 |µ̂AFi | < λi
µ̂AFi + λi µ̂AFi ≤ −λi,

1 ≤ i ≤ n.

3. Instead of the soft-thresholded block estimate of step 2., whose coordinates are biased by the threshold
penalties, one may consider instead the correspnding estimate µ̃ based on the hard-threshold, where

µ̃i = µ̂AFi 1{|µ̂AFi | ≥ λi}, 1 ≤ i ≤ n.

One of the asymptotic advantages of the fused adaptive lasso versus the ordinary fused lasso is that block
recovery obtains under milder conditions than Theorem 2.5, without the need to consider the fusion penalty
parameter λ2,n and the length of the minimal block. In some sense, the fused adaptive lasso can adapt more
flexibly to the block sparsity than the fused lasso.

Proposition 2.6. Assume that the conditions of Theorem 2.3 are satisfied. Then

lim
n

P{R1,n} = 1

if, for some δ > 0,

1. λ1,n

σn
→∞ and λ1,n

σn

√
log(J0−K0)

>
√

2(1 + δ);

2. ρn

σn
→∞, ρn

σn

√
logK0

> 2
√

2(1 + δ) and λ1,n <
ρn

2 for all n large enough,

where ρn = minj∈K0 |ν0
j |.

A second advantage of the fused adaptive lasso stems from the oracle property derived below. Consider
the ideal situation where we have available an oracle letting us known the K0 sets B0

jk
, k = 1, . . . ,K0, of the

true block partition of µ0 for which |ν0
jk
| > σn/

√
b0jk . Notice that, from this information, one can recover

the true partition. The oracle estimate µ̂O is the vector with coordinates

µ̂Oi =

{
1
b0jk

∑
z∈B0

jk

yz if i ∈ Bjk
0 otherwise.

9



This procedure amounts to setting to 0 the estimates for the coordinates belonging to blocks whose true
mean value is smaller than σn/

√
b0j . The corresponding ideal risk is

E‖µ̂O − µ0‖22 =
∑
i

∑
jk

1{i ∈ B0
jk
}min

{
σ2
n

b0jk
, (ν0

j )2
}

= K0σ
2
n +

∑
j 6∈JS0

b0j (ν
0
j )2. (16)

Note, in particular, that
E‖µ̂O − µ0‖22 ≤

∑
i

min
{
σ2
n, µ

2
i

}
,

with equality if and only if b0j = 1 for all j, where the expression on the right hand side is the ideal risk for
the oracle estimator based on thresholding of individual coordinates, rather than of blocks. Therefore, if µ0

has a block structure, as is assumed here, this different oracle will be able to achieve a smaller ideal risk.
Before stating our oracle result, we need some additional notation. Recall that any µ ∈ Rn can always

be written as

µ =
J∑
j=1

νj1Bj , (17)

for some (possibly trivial) block partition (B1, . . . ,BJ) of {1, . . . , n}, with J ≤ n. Let µ1 and µ2 be vectors in
Rn with block partitions {B1

1, . . . ,B1
J1
} and {B2

1, . . . ,B2
J2
}, respectively, where J1, J2 ≤ n. Then, they satisfy

(17), for some vectors ν1 ∈ RJ1 and ν2 ∈ RJ2 , respectively. Let {L1, . . . ,Lm} be the partition of {1, . . . , n}
obtained as the refinement of the block partitions of µ1 and µ2, i.e. for every l = 1, . . . ,m, Ll = B1

j1
∩ B2

j2
,

for some j1 and j2. We define the quantity

JS(µ1;µ2) = {l : Ll = B1
j1 ∩ B

2
j2 , ν

1
j1 6= 0}.

Theorem 2.7. Assume that µ0 satisfies (1) and that

αn = o

(√
log n
n

)
. (18)

Let σ2
n = σ2

n , λ2,n =
√
σ2
n log n and λ1,n = 2

√
σ2
n log Ĵ , where Ĵ is obtained by solving the fusion problem

(6) in the first step of the adaptive fused-lasso procedure. For any vector µ ∈ Rn, set

V (µ) = 32|J S(µ;µ0)|σ2
n log J0.

Then, for any δ ∈ [0, 1),

lim
n

P
{
‖µ̂FAL − µ0‖22 ≤

2 + δ

2− δ
inf
µ∈Rn

{
V (µ) + ‖µ− µ0‖22

}}
= 1. (19)

Remarks

1. The assumption in equation (18) is crucial in our proof, as it guarantees that recovery of the true block
partition of µ0 by fusion, which is necessary for mimicking the oracle solution µ̂O, is feasible.

2. The proof of theorem 2.7 shows that V (µ) is minimized by vectors such that

|J S(µ;µ0)| = |J S(µ0)| = K0,

i.e. vectors whose block partition matches the the true block partition. Therefore equation (19) shows
that the adaptive fused-lasso achieves the same oracle rates granted by ideal risk (16), up a term that
is logarithmic in J0.

3. If it is further assumed that ‖µ0‖∞ < C uniformly in n, for some constant C, the result (19) can be
strengthened to

E‖µ̂− µ0‖22 ≤
2 + δ

2− δ
inf
µ∈Rn

{
V (µ) + ‖µ− µ0‖22

}
+ o(1).

10



2.4 An illustrative Example

We discuss a stylized numerical example for the purpose of clearly illustrating the two crucial advantages of
the fused adaptive lasso, namely the use of the fusion penalty only for recovering the true block partition,
and the block-dependent rescaling of the lasso penalty. See Remark 1. before Proposition 2.6 for details.
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Fusion Estimates

Figure 3: Different fusion estimates for the data described in section 2.4. The dashed line correspond to
the true mean vector, while the three lines correspond to the fusion estimates with different regularization
parameters.

We simulate one sample according to the model

yi = µ0
i + εi,

where

µ0
i =



0 1 ≤ i ≤ 100,
2 101 ≤ i ≤ 110,

−0.1 111 ≤ i ≤ 210,
−2 211 ≤ i ≤ 220,

0 221 ≤ i ≤ 320,
2 321 ≤ i ≤ 330,

0.1 331 ≤ i ≤ 430,

and the errors are independent Gaussian variables with mean zero and standard deviation σ = 0.2. Figure
1 shows the data along with the true signal. Notice that some of the coordinates of µ0 are in absolute value
less than σ, a fact that, as we will see, if µ0 were not blocky, would make the recovery of those coordinates
infeasible. Figure 3 portrays the simulated data and three fusion estimates µ̂F , each of them solving (6) for
different values of λ2,n. The dashed line corresponds to the true mean vector µ0. The excessive amount of
penalization is apparent from the large bias in all these estimates. Nonetheless, the block partition each of
these estimates produce match, in fact, very closely the true block partition.

Figure 4 shows the modified fusion estimate µ̂AF given in (13) using the fusion estimate from Figure 3
with the largest amount of bias, along with the true mean vector µ0, displayed as a dashed line. Because the
block partition was estimated correctly, the estimate µ̂AF is almost indistinguishable from the true vector
µ0. For this particular dataset, the adaptive lasso step would set to zero correctly the first and fifth block,
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Modified Fusion Estimate

Signal
Modified Fusion Estimate

Figure 4: The modified fusion estimate µ̂AF of equation (13), using the fusion estimate from Figure 3 with
the lowest total variation. The dashed gray line, which is almost indistinguishable from the estimate is the
true signal µ0. The vertical lines enclose the third and seventh blocks, whose value is in magnitude half the
standard deviation of the errors.

but not the third and seventh blocks, which in Figure 4 are enclosed by black vertical lines. In fact, although
the true value of those blocks is in magnitude half the standard deviation of the errors, σ, the standard error
for both the block estimates is roughly σ/10. This is taken into account in the adaptive lasso step, but not
in the lasso step, where even the ideal soft threshold, i.e. σ, would be too high, thus incorrectly setting to
zero both these blocks.

Finally, we simulated 1000 datasets according to the model described here and compute the empirical
mean squared errors for the fused adaptive lasso estimates, using for the penalty terms the values indicated
in Theorem 2.7. Figure 5 shows the histogram of the empirical mean squared errors, with the vertical line
representing the true mean squared error 1

nE‖y − µ0‖2, namely σ2. Notice how the empirical mean squared
errors are larger then the true value, the usual price paid for adaptivity. We remark that there are other
ways of choosing the penalty parameters, for example using cross validation.

3 Sieve Methods

In this section we study the rates of convergence for the sieve least squares solutions (3) and (4). For
convenience, consistency is measured with respect to the normalized Euclidian norm ‖x‖n = 1√

n

√∑n
i=1 x

2
i .

Accordingly, we change our assumption on the errors as follows:

(E’) The errors (ε1, . . . , εn) are independent sub-gaussian variables with variances bounded by σ2, uniformly
in n.

Notice that the results and settings of previous sections can be adapted in a straightforward way to the
present framework.

We first study the estimator given in (3). To that end, consider the class of vectors

CTV(Tn) = {µ ∈ Rn : ‖µ‖TV ≤ Tn, ‖µ‖∞ ≤ C},

12
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Figure 5: Distributions of the empirical mean squared errors from 1000 simulations from the model described
on Section 2.4 using the fused adaptive lasso with penalty parameters chosen according to Theorem 2.7. The
vertical line represents σ2.

where C is a finite constant that does not depend on n, and the `1 ball of radius Ln

C`1(Ln) = {µ ∈ Rn : ‖µ‖1 ≤ Ln},

with both numbers Tn and Ln being allowed to grow unboundedly with n. Then, we can rewrite (3) as

µ̂TL = argminµ∈CTV(Tn)∩C`1 (Ln)‖y − µ‖22.

Below we derive the consistency rate for µ̂TL in terms of the sequences Tn and Ln by dealing separately with
the two sieves.

Theorem 3.1. Assume (E’) and µ0
n ∈ C`1(Ln) ∩ CTV(Tn). Let

µ̂T = infµ∈CTV(Tn)‖y − µ‖22. (20)

and
µ̂L = argminµ∈C`1 (Ln)‖y − µ‖2.

Then,
‖µ̂F − µ0‖n = OP

(
T 1/3
n n−1/3

)
,

so that µ̂F is consistent provided that Tn = o(n), and

‖µ̂L − µ0‖n = OP

(√
Ln(log n)3/2

n

)
, (21)

so that µ̂L is consistent provided that

Ln = o

(
n

(log n)3/2

)
.

As a result,

‖µ̂TL − µ0‖n = OP

(
Ln(log n)3/2

n
∧
(
Tn
n

)1/3
)
. (22)

Remarks.
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1. It appears that the requirement for the vectors in CTV(Tn) to be uniformly bounded cannot be relaxed
without affecting negatively the rate of consistency or without introducing additional assumptions. See
for example Theorem 9.2 in van de Geer (2000).

2. The rate of consistency for µ̂F should be compared with the analogous rate derived in Theorem 9 of
Mammen and van de Geer (1997) for the penalized version of the least squares problem (20).

3. The rate given in (21) is not the sharpest possible. In fact, an application of Theorem 5 of Donoho
and Johnstone (1994) yields for µ̂L the improved minimax rate√

Ln
n

(log n)1/4

for the case of iid Gaussian errors, from which we can infer a maximal rate of growth Ln = o
(

n√
logn

)
.

4. We make no claims that the rate given (22), which is just the minimum of the rates for two separate
sieve least squares problems, is sharp. Better rates may be obtained from sharper estimate of the
metric entropy of the set C`1(Ln) ∩ CTV(Tn).

5. On the relationship between Ln ad Tn.
The total variation and `1 constraints are not independent of each other. One can esily verify that

Tmax
n ≡ max

x∈C`1 (Ln)
‖x‖TV = 2Ln.

On the other hand, every vector x ∈ Rn such that ‖x‖TV = Tn can be written as

x = m+ t,

where ‖t‖TV = Tn, m = 1nx̄n, with x̄n = 1
n

∑
i xi, and 1

n

∑
imiti = 0. Notice that m can be estimated

at the rate 1√
n

so the convergence rates for µ̂T depends on how well t can be estimated. Next, notice
that

Lmax
n ≡ max

x∈CTV(Tn),x=m+t
‖t‖1 =

Tn
2

n

n− 1
,

where m+ t is the decomposition of x discussed above. Therefore, over the set CTV(Tn) ∩ C`1(Ln), we
obtain the relationship

Tmax
n ∼ 2Lmax

n . (23)

Our final result concerns the estimator resulting from the non-convex sieve least squares problem (4).
Define the set

C(Sn, Jn) = {µ ∈ Rn : |Sn(µ)| ≤ Sn} ∩ {µ ∈ Rn : |Jn(µ)|+ 1 ≤ Jn},

consisting of vectors in Rn that have at most Sn non-zero coordinates and take on at most Jn different
values. We further impose the following, fairly weak assumption, which does not preclude the coordinates
of µ0 from becoming increasingly large in magnitude:

(R) The set C(Sn, Jn) is contained in a Sn-dimensional cube centered at the origin with volume Rn such
that

logRn = o(n).

Theorem 3.2. Assume (E’) and (R) and let µ̂SJ = argminµ∈C(Sn,Jn)‖y − µ‖22.

1. If Sn = o
(

n
logn

)
, then

‖µ̂SJ − µ0‖n = OP

(√
Jn
n

)
. (24)
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2. When Sn = n, (24) still holds, provided Jn = o
(

n
logn

)
.

Remarks.

1. Assumption (R) was introduced for convenience to simplify the proof and it is possible that it may be
relaxed.

2. The rate on Sn is in accordance with the persistence rate derived in Greenshtein (2006, Theorem 1)
for related least squares regression problems on sieves.

3. If J0 is bounded, uniformly in n, the consistency rate we obtain is parametric. See Boysen et al. (2008)
for a similar result.

4 Discussion and future directions

In this work we tackle the task of estimating a blocky and sparse signal using three different methodologies,
whose asymptotic properties we investigate. We first study the fused lasso estimator proposed in Friedman
et al. (2007) and derive conditions under which it recovers with overwhelming probability and for n large
enough the block partition and thdifferent one, with better asymptotic guarantees. We also study consistency
rates of sieve least square problems under two types of constraints, one on the maximal radiuses of the `1
and ‖ · ‖TV balls, and the other on the maximal number of blocks and non-zero coordinates. Overall, these
results complement each other in providing different types of asymptotic information for the for the task at
hand and complement other analyses already existing in the statistical literature.

There are a number of generalizations of the results derived in this work. We mention only the ones
that seem the most natural to us. The first extension involves considering a corrupted version of a signal
µ0 ∈ Rn×Rn, corresponding to the denoising problem of n×n images, for which total variation methods have
proved quite effective. Another interesting direction would be to assume a known slowly-varying variance
function, for example with given Liptschitz constant, and incorporate this information directly into the
penalty functions for the fused adaptive lasso. We conjecture that it is possible to generalize our techniques
and results to characterize these more complex settings. Finally, we believe it would be of value to investigate
the possibility of building confidence balls and, in particular, confidence bands for the entire signal or for
some of its local maxima or minima based on the estimators we consider here.
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6 Appendix

Lemma 6.1. Let ‖ · ‖TV : Rk → R be the fused penalty ‖x‖TV =
∑k
i=2 |xi − xi−1|. Then ‖ · ‖TV is convex

and, for any x ∈ Rk, the subdifferential ∂‖x‖TV is the set of all vectors s ∈ Rk such that

si =

 −w2 if i = 1
wi − wi+1 if 1 < i < k
wk if i = k

(25)

where wi = sgn(xi − xi−1), for 2 ≤ i ≤ k.

Proof of Lemma 6.1. Let L be a (k−1)×k matrix with entries Li,i = −1 and Li,i+1 = 1 for 1 ≤ i ≤ (k−1)
and 0 otherwise. Then, for any x ∈ Rk, ‖x‖TV = ‖Lx‖1. Convexity of ‖ · ‖TV follows from the fact that
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it is the composition of a linear functional by the `1 norm, which is convex. Next, by the definition of the
subdifferential of the `1 norm, for any y ∈ Rk

‖Ly‖1 ≥ ‖Lx‖1 + 〈L(y − x), w〉 (26)

holds if and only if w ∈ Wx ⊂ Rk−1, where Wx is the set of all vectors w such that wi = sgn ((Lx)i).
Equation (26) is equivalent to

‖y‖TV ≥ ‖x‖TV + 〈y − x, s〉,

for each k-dimensional vector s such that s = L>w for some w ∈ Wx. This set is described by equation (25)
and is, therefore, ∂‖x‖TV. �

Proof of Lemma 2.1. From the subgradient condition (5) with λ1,n = 0, we obtain

ν̂j =
1

b̂j

∑
i∈ bBj

yi =
1

b̂j

∑
i∈ bBj

yi −
λ2,n

b̂j

∑
i∈ bBj

si.

Using (25), a simple telescoping argument leads to

∑
i∈Bj

si = wij − wij+1 =

 2 if (ν̂j+1 − ν̂j) > 0, (ν̂j − ν̂j−1) < 0
−2 if (ν̂j+1 − ν̂j) < 0, (ν̂j − ν̂j−1) > 0

0 if (ν̂j − ν̂j−1)(ν̂j+1 − ν̂j) = 1,

where ij = min{i : i ∈ B̂j}. This gives (10). It remains to consider the cases j = 1 and j = Ĵ . If j = 1,∑
i∈B1

si = −wi2 , and if j = Ĵ ,
∑
i∈BJ

si = wiJ , form which (8) and (9) follow, respectively. �

Proof of Theorem 2.3. Let

Rλ2,n
= {Ĵ = J0} ∩ {sgn(µ̂Fi − µ̂Fi−1) = sgn(µ0

i − µ0
i−1),∀i ∈ J0} (27)

and, for 2 ≤ i ≤ n, let d0
i = µ0

i − µ0
i−1, d̂i = µ̂Fi − µ̂Fi−1 and dεi = εi − εi−1. Using the subgradient conditions

(25), the event Rλ2,n
occurs if and only if, for all i 6∈ J0,

dεi = λ2,n

(
2sgn(d0

i )− sgn(d̂i−1)− sgn(d̂i+1)
)
,

and, for all i ∈ J0,
d̂i = d0

i + dεi − λ2,n

(
2sgn(d0

i )− sgn(d̂i−1)− sgn(d̂i+1)
)
,

where in both equations for x = 0, sgn(x) is the set [−1, 1]. As a result, the event Rλ2,n
occurs in probability

if both
max
i 6∈J0
|dεi | < λ2,n|2sgn(d0

i )− sgn(d̂i−1)− sgn(d̂i+1)| < 4λ2,n, (28)

and
min
i∈J0

∣∣∣d0
i + dεi − λ2,n

(
2sgn(d0

i )− sgn(d̂i−1)− sgn(d̂i+1)
)∣∣∣ > 0, (29)

hold with probability tending to 1 and n→∞.
We first consider Equation (28). Notice that, for each 2 ≤ i 6= j ≤ n, Edεi = 0, Vardεi = 2σ2

n and

Cov(dεi , d
ε
j) =

{
−σ2

n if |i− j| = 1
0 otherwise .

For 2 ≤ i ≤ n, let d∗i ∼ N(0, 2σ2
n) be independent, so that{

E
(
dεid

ε
j

)
≤ E

(
d∗i d
∗
j

)
for all 2 ≤ i 6= j ≤ n

E(dεi)
2 = E(d∗i )

2 for all 2 ≤ i ≤ n.
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Then, by Slepian’s inequality (see, e.g. Ledoux and Talagrand, 1991),

P
{

max
i∈J c

0

|dεi | ≥ 4λ2,n

}
≤ P

{
max
i∈J c

0

|d∗i | ≥ 4λ2,n

}
.

By the Chernoff’s bound for standard Gaussian variables, followed by the union bound,

P
{

max
i∈J c

0

|d∗i | ≥ 4λ2,n

}
≤ 2 exp

{
−8

λ2
2,n

σ2
n

+ log |J c0 |

}
,

which vanishes if condition 1. is satisifed. In order to verify (29), it is sufficient to show that, with probability
tending to 1 as n→∞,

max
i∈J0

∣∣∣dεi − λ2,n

(
2sgn(d0

i )− sgn(d̂i−1)− sgn(d̂i+1)
)∣∣∣ ≤ αn,

where αn = mini∈J0 |d0
i |. Using the triangle inequality and the fact

max
i

∣∣∣2sgn(d0
i )− sgn(d̂i−1)− sgn(d̂i+1)

∣∣∣ ≤ 4,

equation (29) is, in turn, implied by
max
i∈J0
|dεi |+ 4λ2,n ≤ αn.

Using Slepian inequality again and standard Gaussian tail bounds,

P
{

max
i∈J0
|dεi | ≥

αn
2

}
≤ 2 exp

{
− α2

n

16σ2
n

+ log |J0|
}
,

so that (29) holds in probability if condition 2. holds.
�

Proof of Theorem 2.5. It is enough to show that the event

Rλ1,n ∩Rλ2,n

occurs in probability for n → ∞. Because the conditions of Theorem 2.3 are assumed, limn P
{
Rλ2,n

}
= 1

which implies that we can restrict our analysis to the set Rλ2,n , where Ĵ = J0 and B̂j = B0
j , for 1 ≤ j ≤ J0.

Next, from Corollary 2.2, it is immediate to verify that the fused-lasso solution is

µ̂FL =
bJ∑

j=1

1 bBj
ν̂Tj

where ν̂Tj = sgn(ν̂j)(ν̂j = λ1,n)+ is the soft-thresholded version of ν̂j . Therefore, in order to verify the claim,
one needs to consider the simpler lasso problem applied to the vector ν̂. Inspecting the sub-gradient condition
for this problem, and by arguments similar to the ones used above, it follows that limn P(Rλ1,n

) = 1 obtains
provided both

max
j∈Kc

0

∣∣∣∣∣∣ 1
b0j

∑
i∈B0

j

εi + cj

∣∣∣∣∣∣ < λ1,n (30)

and

max
j∈K0

∣∣∣∣∣∣ 1
b0j

∑
i∈B0

j

εi + cj − λ1,n

∣∣∣∣∣∣ < ρn (31)
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hold with probability tending to 1 as n → ∞, where the quantities cj are given in Lemma 2.1. Letting
Xj = 1

b0j

∑
i∈B0

j
εi, notice that Xj ∼ N(0, σ

2
n

b0j
) and that (X1, . . . , XJ0) are independent. Then, a combination

of the Chernoff’s and the union bounds yields

P

 max
j∈JSc

0

∣∣∣∣∣∣ 1
b0j

∑
i∈B0

j

εi

∣∣∣∣∣∣ ≥ λ1,n

2

 ≤ ∑
j∈JSc

0

exp

{
−
λ2

1,nb
0
j

8σ2
n

}
≤ exp

{
−
λ2

1,nb
0
min

8σ2
n

+ log |J Sc0|

}
,

and

P

 max
j∈JS0

∣∣∣∣∣∣ 1
b0j

∑
i∈B0

j

εi

∣∣∣∣∣∣ ≥ ρn
3

 ≤ ∑
j∈JS0

exp

{
−
ρ2
nb

0
j

18σ2
n

}
≤ exp

{
−ρ

2
nb

0
min

18σ2
n

+ log |J S0|
}
,

which give large deviations bounds for the error sums in (30) and (31). Conditions 1. and 3. guarantees that
the above probabilities vanish for n → ∞. Thus, with the additional conditions 2. and 4., the inequalities
(30) and (31) are verified in probability. �

Proof of Proposition 2.6. The proof is virtually identical to the proof of Theorem 2.5, the main differences
stemming from the facts that the bias terms cj = 0 for all 1 ≤ j ≤ J0, and

1√
b0j

∑
i∈B0

j

εi ∼ N(0, σ2
n).

We omit the details. �

Proof of Theorem 2.7. Let µ̂F be the fusion estimate using the penalty λ2,n. Then, because of assumption
(18), and with the specific choice of λ2,n and σ2

n given in the statement, it can be verified that the conditions
of Theorem 2.3 are met. Thus, the event

F = {Ĵ = J0} ∩ {B̂j = B0
j , 1 ≤ j ≤ J0}

has probability arbitrarily close to 1, for all n large enough. On this event F , we next investigate the adaptive
fused-lasso µ̂. Because µ̂ is the minimizer of (14), for any µ ∈ Rn,

‖µ̂AF − µ̂‖22 + 2
∑
i

λi|µ̂i| ≤ ‖µ̂AF − µ‖22 + 2
∑
i

λi|µi|,

where µ̂AF and λ are given in (13) and (15) respectively. Adding and subtracting µ0 inside both terms
‖µ̂AF − µ̂‖22 and ‖µ̂AF − µ‖22 yields

‖µ̂− µ0‖22 ≤ ‖µ− µ0‖22 + 2
∑
i

λi(|µi| − |µ̂i|) + 2〈ε∗, µ̂− µ〉, (32)

where, on F , ε∗ = µ̂AF − µ0 =
∑J0
j=1Xj1B0

j
, with Xj ∼ N(0, σ

2
n

b0j
) and (X1, . . . , XJ0) independent. Next,

consider the sub-event A ⊆ F given by

A = {|ε∗i | ≤ λi, for each i = 1, . . . , n} =
{
|Xj | ≤ λ1,n/

√
b0j , for each j = 1, . . . , J0

}
.

Then,

P(A) = P
{

max
j
|ζj | ≤ λ1,n

}
,

where (ζ, . . . , ζJ0) are i.i.d N(0, σ2
n). Notice that because of the choice of λ1,n, limn PA = 1 by standard

large deviation bounds for Gaussians (see also the proof of Theorem 2.3). Next, on A, we have

2〈ε∗, µ̂− µ〉 ≤ 2
∑
i∈S(µ)

λi|µ̂i − µi|+ 2
∑
i 6∈S(µ)

λi|µ̂i|. (33)
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The decomposition

2
∑
i

λi(|µi| − |µ̂i|) = 2
∑
i∈S(µ)

λi|µi| − 2
∑
i∈S(µ)

λi|µ̂i| − 2
∑
i6∈S(µ)

λi|µ̂i|,

along with equation (33) and the triangle inequality yields, on A,

2
∑
i

λi(|µi| − |µ̂i|) + 2〈ε∗, µ̂− µ〉 ≤ 4
∑
i∈S(µ)

λi|µ̂i − µi|.

The previous display and equation (32) lead to the inequality

‖µ̂− µ0‖22 ≤ ‖µ− µ0‖22 + 4
∑
i∈S(µ)

λi|µ̂i − µi|, (34)

valid on A. Next, it is easy to see that∑
i∈S(µ)

λ2
i =

∑
j∈JS(µ)

bjλ
2
i ≤ λ2

1,n

∑
l∈JS(µ;µ0)

1 = λ2
1,n|J S(µ;µ0)|,

and, in particular, ∑
i∈S(µ)

λ2
i = λ2

1|J S(µ0)|

if and only if JS(µ) = JS(µ0).
Therefore, by the Cauchy-Swartz inequality, the second term on the right hand side of (34) can be

bounded on A as follows:

4
∑
i∈S(µ)

λi|µ̂i − µi| ≤ 4λ1,n

√
|J S(µ;µ0)|‖µ̂− µ‖2.

Then, using the triangle inequality, (34) becomes

‖µ̂− µ0‖22 ≤ ‖µ− µ0‖22 + 4λ1,n

√
|J S(µ;µ0)|

(
‖µ̂− µ0‖2 + ‖µ0 − µ‖2

)
.

On A, the same arguments used in the second part of the proof of Lemma 3.7 in van de Geer (2007) establish
the inequality in the claim. Since limn P(A) = 1, the first result follows. �

Proof of Theorem 3.1. Let N(δ, Fn, ‖·‖n) denote the δ-covering number of the set Fn ⊂ Rn with respect
to the norm ‖ · ‖n and notice that, for any C > 0,

N(δ, CFn, ‖ · ‖n) = N(
δ

C
,Fn, ‖ · ‖n).

Furthermore, observe that CTV(Tn) = TnC(1). By a theorem of Birman and Solomjak (1967) (see, e.g.,
Lorentz et al., 1996, Theorem 6.1), the δ-metric entropy of CTV(Tn) with respect to the L2(Pn) norm is

C
Tn
δ
,

for some constant C independent of n. Letting Ψ(δ) =
∫ δ
0

√
C Tn

δ =
√
TnCδ, the solution to

√
nδ2n & Ψ(δn)

gives

δn &
T

1/3
n

n1/3
,
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where the symbol . indicates inequality up to a universal constant. The result now follows from Theorem
3.4.1 of van der Vaart and Wellner (1996) (see also the discussion on pages 331-332 of the same reference). In
order to establish (21), we use Lemma 4.3 in Loubes and van de Geer (2002) to get that the metric entropy
of C`1(Ln) is

H(δ, C`1(Ln), ‖ · ‖n) ≤ C L2
n

nδ2

(
log n+ log

Ln√
nδ

)
,

for some constant C independent of n. Notice that the entropy integral of
√
H(δ, C`1(Ln), ‖ · ‖n) diverges

on any neighborhood of 0. By Theorem 9.1 in van de Geer (2000), the rate of consistency δn for µ̂L with
respect to the norm ‖ · ‖n is given by the solution to

√
nδ2n & Ψ(δn) (35)

where

Ψ(δn) ≥
∫ δn

Aδ2n

√
H(x, C`1(Ln)dx,

with A a constant independent of n. Equation (35) is satisfied for a sequence δn satisfying

√
nδ2n &

Ln
√

log n√
n

log 1/δn,

which gives the rate (21). �

Proof of Theorem 3.2. Let H(δn, C(Sn, Jn), ‖ · ‖n) denote the metric entropy of C(Sn, Jn) with respect to
the norm ‖ · ‖n. By Lemma 6.2 and assumption (C2), for δn < 1, the equation

√
nδ2n &

∫ δn

0

√
logH(x, C(Sn, Jn), ‖ · ‖n)dx

leads to

δn &

√
Sn
n

log
√

1
δn

+ o(1),

because Sn = o
(

n
logn

)
and jn ≤ sn. The sequence δn =

√
Jn

n satisfies the conditions of Theorem 3.4.1 of
van der Vaart and Wellner (1996), thus proving (24). The second claim in the theorem is proved similarly,
where now the left hand side of (36) in Lemma 6.2 is bounded by C1,n only.

�

Lemma 6.2. For the distance induced by the norm ‖x‖n = 1√
n

√∑n
i=1 x

2
i , the metric entropy of C(Sn, Jn)

satisfies
H(δ, C(Sn, Jn), ‖ · ‖n) ≤ C1,n + C2,n, (36)

where

C1,n =
Jn
Sn

logRn + Jn

(
log
√
n

δ
+

1
2

logSn

)
+ Sn log(Sn + Jn − 1),

and
C2,n = logSn + Sn log n.

Proof of Lemma 6.2. For fixed δ > 0, we will construct an δ-grid of C(Sn, Jn) based on the Euclidian
distance. For every choice of Sn non-zero entries of µ, we regard µ as a vector in RSn which is block-wise
constant with Jn blocks. Then, there exist Jn positive integer numbers d1, . . . , dJn

such that
∑
l dl = Sn

and one can think of µ as the concatenation of Jn vectors µ1, . . . , µJn
each having constant entries, where

µl ∈ Rdl , l = 1, . . . , Jn. Each µl can be any point along the main diagonal of the dl-dimensional cube
center at 0 with edge length R

1/Sn
n and volume Rdl/Sn

n . The length of the main diagonal of each such cube
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is R1/Sn
n

√
dl. Therefore, for any specific choice of Sn non-zero coordinates, the slice in the corresponding

Sn-dimensional cube centered at 0 and with edge length R
1

Sn
n consisting of the set of vectors in Bn with

discontinuity profile (d1, . . . , dJn) is the set

Rn =
Jn∏
l=1

`

(
R

1
Sn
n , dl

)
,

where `(R, dl) denotes the closed line segment in RSn between the points πdl
(1R) and πdl

(−1R), where 1
is the Sn-dimensional vector with coordinates all equal to 1 and πdl

the function from RSn onto RSn given
by πdl

(x) = y with yi = 0 for i ≤
∑l
j=1 dl − 1 or i ≥

∑l+1
j=1 dl and yi = xi otherwise. Notice that the length

of each `

(
R

1
Sn
n , dl

)
is precisely R

1
Sn
n

√
dl. If Jn = Sn, Rn is the Sn-dimensional cube centered at 0 with

volume Rn, while if Jn < kn the set Rn is a hyper-rectangle (not fully dimensional) which can be embedded

as a hyper-rectangle in RJn centered at 0 and with edge lengths equal to the lengths of `
(
R

1
kn
n , dl

)
, for

l = 1, . . . , Jn. As a result, it is immediate to see that the volume of Rn can be calculated as∏
l

R
1

Sn
n

√
dl = R

Jn
Sn
n

∏
l

√
dl.

Next, partition each of the Jn perpendicular sides of Rn into intervals of length δ
√

dl

Sn
, l = 1, . . . , Jn.

This gives a partition of Rn into smaller hyper-rectangle of edge lengths δ
√

dl

Sn
, for l = 1, . . . , Jn. Every

point in Rn is within Euclidian distance δ from the center of one of the small hyper-rectangles, so that the
centers of those smaller hyper-rectangles form an δ-grid for Rn. By a volume comparison, the cardinality of
such a grid is

R
Jn
Sn
n
∏
l

√
dl∏

l δ
√

dl

Sn

=
(
R

1
Sn
n

√
Sn
δ

)Jn

.

For fixed Sn, the number of distinct block patterns with cardinality at most Jn is equal to the the number
of non-negative solutions to d1 + d2 + . . .+ dJn

= Sn, which is(
Sn + Jn − 1

Jn

)
≤ (Sn + Jn − 1)Jn ,

(see, e.g. Stanley, 2000). Thus, the logarithm of cardinality of this δ-grid is

Jn
Sn

logRn + Jn

(
log

1
δ

+
1
2

logSn

)
+ Jn log(Sn + Jn − 1). (37)

Next, the number of subsets of {1, . . . , n} of size at most Sn is

Sn∑
i=1

(
n

i

)
≤ SnnSn .

Thus, the logarithm of the cardinality for an δ grid over Bn is bounded by (37) plus the quantity

logSn + Jn log n.

The result for the ‖ · ‖n norms now follows by replacing δ with δ/
√
n in equation (37). �
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