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Abstract

The Lasso is a popular model selection and estimation procedure for linear models that enjoys nice
theoretical properties. In this paper, we study the Lasso estimator for fitting autoregressive time series
models. We adopt a double asymptotic framework where the maximal lag may increase with the sample
size. We derive theoretical results establishing various types of consistency. In particular, we derive
conditions under which the Lasso estimator for the autoregressive coefficients is model selection consistent,
estimation consistent and prediction consistent. Simulation study results are reported.

1 Introduction

Classical stationary time series modeling assumes that data are a realization of a mix of autoregressive
processes and moving average processes, or an ARMA model (see, e.g. Davis and Brockwell, 1991). Typically,
both estimation and model fitting rely on the assumption of fixed and low dimensional parameters and
include (i) the estimation of the appropriate coefficients under the somewhat unrealistic assumption that the
orders of the AR and of the MA processes are known in advance, or (ii) some model selection procedures
that sequentially fit models of increasing dimensions. In practice, however, it is very difficult to verify
the assumption that the realized series does come from an ARMA process. Instead, it is usually assumed
that the given data are a realization of a linear time series, which may be represented by an infinite-order
autoregressive process. Some study has been done on the accuracy of an AR approximation for these
processes: see Shibata (1980), Goldenshluger and Zeevi (2001) and Ing and Wei (2005). In particular,
Goldenshluger and Zeevi (2001) propose a nonparametric minimax approach and assess the accuracy of a
finite order AR process in terms of both estimation and prediction.

This paper is concerned with fitting autoregressive time series models with the Lasso. The Lasso pro-
cedure, proposed originally by Tibshirani (1996), is one of the most popular approach for model selection
in linear and generalized linear models, and has been studied in much of the recent literature; see, e.g., Fan
and Peng (2004), Zhao and Bin (2006), Zou (2006), Wainwright (2006), Lafferty et al (2007), and Nardi and
Rinaldo (2008), to mention just a few. The Lasso procedure has the advantage of simultaneously performing
model selection and estimation, and has been shown to be effective even in high dimensional settings where
the dimension of the parameter space grows with the sample size n. In the context of an autoregressive
modeling, the Lasso features become especially advantageous, as both the AR order, and the corresponding
AR coefficients can be estimated simultaneously. Wang et al. (2007) study linear regression with autoregres-
sive errors. They adapt the Lasso procedure to shrink both the regression coefficients and the autoregressive
coefficients, under the assumption that the autoregressive order is fixed.

For the autoregressive models we consider in this work, the number of parameters, or equivalently, the
maximal possible lag, grows with the sample size. We refer to this scheme as a double asymptotic framework.
The double asymptotic framework enables us to treat the autoregressive order as virtually infinite. The
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autoregressive time series with an increasing number of parameters lies between a fixed order AR time series
and an infinite-order AR time series. This limiting process belongs to a family which is known to contain
many ARMA processes (see Goldenshluger and Zeevi, 2001). In this paper we show that the Lasso procedure
is particularly adequate for this double asymptotic scheme.

The rest of the paper is organized as follows. The next section formulates the autoregressive modeling
scheme and defines the Lasso estimator associated with it. Asymptotic properties of the Lasso estimator
are presented in Section 3. These include model selection consistency (Theorem 3.1), estimation consistency
(Theorem 3.2), and prediction consistency (Corollary 3.4). Proofs are deferred to Section 6. A simulation
study, given in Section 4, accompany the theoretical results. Discussion and concluding remarks appear in
Section 5.

2 Penalized autoregressive modeling

In this section we describe our settings and set up the notation.
We assume that X1, . . . , Xn are n observations from an AR(p) process:

Xt = φ1Xt−1 + . . .+ φpXt−p + Zt , t = 1, . . . , n , (1)

where {Zt} is a random sequence of independent Gaussian variables with EZt = 0, E|Zt|2 = σ2 and
cov(Zt, Xs) = 0 for all s < t. The last requirement is standard, and rely on a reasoning under which
the process {Xt} does not depend on future values of the driving Gaussian noise. The assumption about
Gaussianity of {Zt} is by no means necessary, and can be relaxed. It does, however, facilitate our theoretical
investigation and the presentation of various results, and therefore, it is in effect throughout the article. In
Section 5 we comment on how to modify our assumptions and proofs to allow for non-Gaussian innovations
{Zt}.

We further assume that {Xt} is causal, meaning that there exists a sequence of constants {ψj}, j =
0, 1, . . ., with absolutely convergent series,

∑∞
j=0 |ψj | <∞, such that {Xt} has a MA(∞) representation:

Xt =
∞∑
j=0

ψjZt−j , (2)

the series being absolutely convergent with probability one. Equivalently, we could stipulate that {Xt}
is purely non-deterministic, and then obtain representation (2), with ψ0 = 1 and

∑∞
j=0 ψ

2
j < ∞, directly

from the Wold decomposition (see, e.g. Davis and Brockwell, 1991). A necessary and sufficient condition
for causality is that 1 − φ1z − . . . − φpzp 6= 0 for all complex z within the unit disc, |z| ≤ 1. Notice that
causality of {Xt}, and Gaussianity of {Zt}, together imply Gaussianity of {Xt}. This follows from the fact
that mean square limits of Gaussian random variables are again Gaussian. The mean and variance of Xt

are given, respectively, by EXt = 0, E|Xt|2 = σ2
∑∞
j=0 ψ

2
j . We assume, for simplicity, and without any loss

of generality, that E|Xt|2 = 1, so that
∑∞
j=0 ψ

2
j = σ−2. Let γ(·) be the autocovariance function given by

γ(k) = EXtXt+k, and let Γp =
(
γ(i− j)

)
i,j=1,...,p

, the p× p autocovariance matrix, of lags smaller or equal
to p− 1.

We now describe the penalized `1 least squares estimator of the AR coefficients. Let y = (X1, . . . , Xn)′,
φ = (φ1, . . . , φp)′, and Z = (Z1, . . . , Zn)′, where apostrophe denotes transpose. Define the n × p matrix X
with entry Xt−j in the tth row and jth column, for t = 1, . . . , n and j = 1, . . . , p. The Lasso-type estimator
φ̂n ≡ φ̂n(Λn) is defined to be the minimizer of:

1
2n
‖y −Xφ‖2 + λn

p∑
j=1

λn,j |φj | , (3)

where Λn = {λn, {λn,j , j = 1, . . . , p}} are tuning parameters, and ‖ · ‖ denotes the l2-norm. Here, λn
is a grand tuning parameter, while the {λn,j , j = 1, . . . , p} are specific tuning parameters associated with
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predictors Xt−j . The Lasso solution (3) will be sparse, as some of the autoregressive coefficients will be to
set to (exactly) zero, depending on the choice tuning parameters Λn. Naturally, one may want to further
impose that λn,j < λn,k for lags values satisfying j < k, to encourage even sparser solutions, although this is
not assumed throughout. The idea of using `1 regularization to penalize differently the model parameters,
as we do in (3), was originally proposed by Zou (2006) under the name of adaptive Lasso. As shown in
Zou (2006), from an algorithmic point of view, the solution to our adaptive Lasso (3) can be obtained by a
slightly modified version of the LARS algorithm of Efron et al. (2004). A possible choice for λn,j would be
to use the inverse least squares estimates, as in Zou (2006), but this is not pursued here.

As mentioned before, we consider a double asymptotic framework, in which the number of parameters
p ≡ pn grows with n at a certain rate. Clearly, the “large p small n” (p� n) scenario, which is an important
subject of many of nowadays articles, is not adequate here. Indeed, one might be suspicious about the
statistical properties of the proposed estimator even when p is comparable with n (p < n, but is close to n).
Accounting for the mechanism of the autoregressive progress, one is led to think that p should grow with
n at a much slower rate. This article shows that the choice of p = O (log n) will lead to nice asymptotic
properties of the proposed procedure (3). Such a choice of the AR order arises also in Goldenshluger and
Zeevi (2001), who prove minimax optimality for a different regularized least squares estimator. Moreover, as
pointed out in Goldenshluger and Zeevi (2001), the same order of p arises also in spectral density estimation
(see Efromovich (1998)). Finally, similar rate appears also, in a different context, in Rothman et al. (2007).

In classical linear time series modeling, one usually attempts to fit sequentially an AR(p) with increasing
orders of the maximal lag p (or by fixing p and then estimating the coefficients). The Lasso-type estimator of
scheme (3) will shrink down to zero irrelevant predictors. Thus, not only that model selection and estimation
will occur simultaneously, but the fitted (selected) model will be chosen among all relevant AR(p) processes,
with p = O (log n).

3 Asymptotic Properties of the Lasso

In this section we derive the asymptotic properties of the Lasso estimator φ̂n. These include model selection
consistency, estimation consistency and prediction consistency. We briefly describe each type of consistency,
develop the needed notation, and present the results, with proofs relegated to Section 6.

3.1 Model Selection Consistency

We assume that the AR(p) process (1) is generated according to a true, unknown parameter φ∗ = (φ∗1, . . . , φ
∗
p).

When p is large, it is not unreasonable to believe that this vector is sparse, meaning that only a subset of
potential predictors are relevant. Model selection consistency is about recovering the sparsity structure of
the true, underlying parameter φ∗.

For any vector φ ∈ Rp, let sgn(φ) = (sgn(φ1), . . . , sgn(φp)), where sgn(φj) is the sign function taking
values −1, 0 or 1, according to as φj < 0, φj = 0 or φj > 0, respectively. A given estimator φ̂n is said to be
sign consistent if sgn(φ̂n) = sgn(φ∗), with probability tending to one, as n tends to infinity, i.e.,

P(sgn(φ̂n) = sgn(φ∗)) −→ 1 , n→∞ . (4)

Let S = {j : φ∗j 6= 0} = supp(φ∗) ⊂ {1, 2, . . . , p}. A weaker form of model selection consistency, implied by
the sign consistency, only requires that, with probability tending to 1, φ∗ and φ̂n have the same support.

We shall need a few more definitions. Let s = |S| denote the cardinality of the set of true nonzero
coefficients, and let ν = p − s = |Sc|, with Sc = {1, . . . , p} \ S. For a set of indexes I, we will write
xI = {xi, i ∈ I} to denote the subvector of x whose elements are indexed by the coordinates in I. Similarly,
xIyI is a vector with elements xiyi. For a n×p design matrix X, we let XI , for any subset I of {1, 2, . . . , p},
denote the sub-matrix of X with columns as indicated by I. Sub-matrices of the autocovariance matrix
Γp (and of any other matrix), are denoted similarly. For example, ΓIIc is (γ(i − j))i∈I,j /∈I . Finally, let
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αn = minj∈S |φ∗j | denote the magnitude of the smallest nonzero coefficient. Finally, although virtually all
quantities related to (3) depend on n, we do not always make this dependence explicit in our notation.

We are now ready to present our first result:

Theorem 3.1. Consider the settings of the AR(p) process describe above. Assume that

(i) there exists a finite, positive constant Cmax such that ‖Γ−1
SS‖ ≤ Cmax;

(ii) there exists an ε ∈ (0, 1] such that ‖ΓScSΓ−1
SS‖∞ ≤ 1− ε.

Further, assume that the following conditions hold:

lim sup
n→∞

maxi∈S λn,i
minj∈Sc λn,j

≤ 1 , (5)

1
αn

[√
s/n+ λn‖λn,S‖∞

]
−→ 0 , as n→∞ , (6)

nλ2
n(mini∈Sc λn,i)2

max{s, ν}
−→ ∞ , as n→∞ . (7)

Let p = O (log n). Then, the Lasso estimator φ̂n is sign consistent (cf. (4)).

Condition (ii) in Theorem 3.1 is assumed in various guises elsewhere in the Lasso literature (see, e.g.,
Wainwright (2006), Zhao and Bin (2006) and Zou (2006)). It is an incoherence condition, which controls the
amount of correlation between relevant variables and irrelevant variables. Condition (5) is intuitively clear
and it appears under similar form in Nardi and Rinaldo (2008). It captures the rationale , recalling that
one may have λj < λk for j < k, that (even) the largest penalty coefficient of the relevant lags should be
kept asymptotically smaller than the smallest penalty coefficient of the irrelevant lags. Conditions (6) and
(7) are similar to conditions appearing in Wainwright (2006), Nardi and Rinaldo (2008), and Lafferty et al
(2007), to name but a few. The fraction

√
s/n in (6) is in line with similar works, mentioned above. For

example, under the linear sparsity scheme, i.e., s = αp, with α ∈ (0, 1) (see Wainwright (2006)), and with
p comparable to n, the Gaussian ensemble leads to a fraction of order O (log n/n), which is similar to the
fraction under the current setting, for which we have p = O (log n).

3.2 Estimation and Prediction Consistency

Our next result is about estimation consistency. An estimator φ̂n is said to be estimation consistent, or
l2-consistent if ‖φ̂n − φ∗‖ converges to zero, as n tends to infinity. We have the following:

Theorem 3.2. Recall the settings of the AR(p) process set forth below (1). Let p = O (log n), and αn =
p1/2(n−1/2 + λn‖λn,S‖). Assume that λn‖λn,S‖ = O

(
n−1/2

)
. Then, the Lasso estimator φ̂n is estimation

consistent with a rate of order O (αn).

Prediction consistency is about a similar convergence statement, but for the prediction of future values
using the fitted model. Formally, prediction consistency holds if ‖Xφ̂n−Xφ∗‖ converges to zero, as n tends
to infinity. We show below a similar result when the sample autocovariance matrix X ′X is replaced by the
(theoretical) autocovariance matrix Γp. The autoregressive settings assumed here are, in some sense, much
more challenging than in linear (parametric or non-parametric) regression models, for two reasons. Firstly,
the design matrix is not fixed as is usually assumed, and secondly, the entries of the X are not independent
across rows, as is usually assumed for random designs.

The family of AR processes considered here are, in fact, a subset of a larger family of time series. In
order to establish the prediction consistency result, we make an explicit use of the structure of this larger
family, to which we now describe.
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Following Goldenshluger and Zeevi (2001), we denote by Hρ(l, L), for some ρ > 1, 0 < l < 1, and L > 1,
a family consisting of all stationary Gaussian time series with EXt = 0, E|Xt|2 = 1, and with

0 < l ≤ |ψ(z)| ≤ L ,

for every complex z with |z| ≤ ρ, where ψ(z) is the MA(∞) transfer function related to the AR polynomial
by ψ(z) = 1/φ(z).

We shall need the notion of a strong mixing (or α-mixing) condition. Let {Xt} be a time series defined
on a probability space (Ω,F,P). For any two (sub) σ-fields A and B, define

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)| .

Denote by Fts, the σ-field generated by (Xs, . . . , Xt), for −∞ ≤ s ≤ t ≤ ∞. Then, {Xt} is said to be strongly
mixing if αX(m)→ 0, as m→∞, where

αX(m) = sup
j∈{0,±1,±2,...}

α(Fj−∞,F
∞
j+m) .

Attractiveness of Hρ(l, L) comes from the fact that processes in Hρ(l, L) are strong mixing with an
exponential decay, i.e.

αX(m) ≤ 2
(

Lρ

l(ρ− 1)

)2

ρ−m . (8)

This follows since processes in Hρ(l, L) have exponentially decaying AR coefficients as well as exponentially
decaying autocovariances (see (Goldenshluger and Zeevi, 2001, Lemma 1, and in particular, expression (39))).

For every p-dimensional vector a and p × p symmetric matrix A, we denote with ‖a‖2A = a′Aa, the
(squared) l2-norm associated with A. Let C1, C2 be two universal constants (their explicit values are given
within the proof of the following theorem). Define

β1 = 1 +
1

log ρ
, β2 = 1 +

Lρ

l(ρ− 1)
, and D = (C3

1C2β
2
1β

3
2)1/5 . (9)

Let λmin = minj=1,...,p λn,j , and λmax = maxj=1,...,p λn,j . We have:

Theorem 3.3. Recall the settings of the AR(p) process set forth below (1). Let p = O (log n). Assume:

(i) There exists a finite, positive constant M such that λn,j ≤M , for every j = 1, . . . , p.

(ii) For every p ≥ 2, there exists a positive constant κp, such that

Γp − κpdiag(Γp)

is a positive semi-definite matrix.

If λn(s/p)1/2 ≤ Dn−2/5, then there exist a constant C (depending only on M), and constants F1 and F2

(depending only on C1, C2, β1, β2), such that for all 0 < c <∞, and all y > σ2(n+Dn3/5),

‖φ̂n − φ∗‖2Γp ≤ Cλ
2
n

s

κp

holds true with probability at least 1− πn, where

πn ≤ 6p exp
{
−F1 min

{
(σ−2y − n)1/3, c2σ−2,

n2λ2
nλ

2
min

y + cnλnλmax/2

}}
+ p2 exp

{
−F2nλ

2
n(s/p2)

}
. (10)
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Condition (ii) has been used in the context of aggregation procedures for nonparametric regression with
fixed design (Bunea et al. (2007a)), and also for nonparametric regression with random design (Bunea et al.
(2007b)).

Theorem 3.3 may be utilized to show that the Lasso estimator φ̂n is prediction consistent. One only
needs to make sure that the decay of the bound (10) on πn. The theorem actually gives a whole range of
possible rates of decay, by picking c and y. One possible choice is given below.

Corollary 3.4. Let λn = n−α, with α ∈ (2/5, 1/2). Let c = D1y/(nλnλmax), and y = D2n, for positive
constants D1, D2. If (s/p)1/2 ≤ Dnα−2/5, then there exists an appropriate constant F , such that the bound
(10) on πn is smaller than

p2 exp
{
− F min

{
n1/3, n2α/λ2

max, n
1−2αλ2

min, n
1−2αs/p2

}}
,

which tends to zero as n goes to infinity.

4 Illustrative Simulations

We consider a sparse autoregressive time series of length 1000 obeying the model

Xt = 0.2Xt−1 + 0.1Xt−3 + 0.2Xt−5 + 0.3Xt−10 + 0.1Xt−15 + Zt, (11)

with nonzero coefficients at lags 1, 3, 5, 10 and 15, where the innovations Zt are i.i.d. Gaussians with mean
zero and standard deviation 0.1. The coefficients were chosen to satisfy the characteristic equation for a
stationary AR process.

Figure 1 shows one time series simulated according to the model (11), along with its autocorrelation and
partial autocorrelation plots. For this time series, Figure 2 shows the solution paths computed using the R
algorithm lars and for a value of p = 50. Notice that we only use one penalty parameter, i.e. we penalize
equally all the autoregressive coefficients. The vertical line marks the optimal `1 threshold found by cross
validation. In our simulations, we declared significant the variables whose coefficients have nonzero solution
paths meeting the vertical line corresponding to the cross validation value.

Notice that, in the exemplary instance displayed in Figure 2, all the nonzero autoregressive coefficients
are correctly included in the model. Furthermore, a more careful inspection of the solution paths reveals that
the order at which the significant variables enter the set of active solutions match very closely the magnitude
of the coefficients used in our model, with φ10 and φ5, the more significant coefficients, entering almost
immediately, and φ3 and φ15 entering last. In contrast, Figure 3 displays the fitted values for the first 30
autoregressive coefficients computed using the Yule-Walker method implemented using R by the routine ar
(note that the Yule-Walker estimator has the same asymptotic distribution as the MLE’s). Notice that the
solution is non-sparse. The dashed vertical gray lies indicate the true nonzero coefficients. The autoregressive
order of the model was correctly estimated to be 15 using the AIC criterion.

We simulated 1000 time series from the model (11) and we selected the significant variables according
to the cross-validation rule described above. Figure 4 a) displays the histogram of the number of selected
variables. The mean and standard deviations of these numbers are 6.42 and 2.44, respectively, while the
minimum, median and maximum numbers are 3, 6 and 22, respectively. In comparison, Figure 4 b) shows the
histogram of the autoregressive orders determined by AIC in ar. Table 1 displays some summary statistics
of our simulations. In particular, the second row shows the number of times, out 1000 simulated time
series, that each of the nonzero autoregressive coefficients was correctly selected. The second row indicates
the number of times the variable corresponding to each nonzero coefficient in (11) was among the first five
selected variables. Notice that φ10 and φ5 are always included among the selected variables, while φ3 and
φ15 have a significantly smaller, but nonetheless quite high, chance of being selected.

We also investigated the order at which the autoregressive coefficients entered the solution paths, the
rationale being that more significant nonzero variables enter sooner, in accordance with the way the lars
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Figure 1: A time series simulated from the sparse autoregressive model (11) along with its autocorrelation
and partial autocorrelation coefficients.

algorithm works (see Efron et al. (2004)). Figure 5 summarizes our findings. In each of the barplots, the x-
axis indexes the steps at which the variable corresponding to the autoregressive coefficient enters the solution
path, while the y-axis displays the frequency. Interestingly enough, in most cases, φ10 and φ5 are selected as
the first and second nonzero variables, while φ15 and, in particular, φ3 enter the set of active variables later
and are not even among the first five variables selected in 1.9% the and 20.2% of cases, respectively.
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Figure 2: Solution paths of the lars algorithm when applied to the time series displayed in Figure 1. The
vertical bar represents the optimal `1 penalty for this time series selected using cross validation.

Table 1: Number of times the nonzero autoregressive coefficients are correctly identified and number of times
they are correctly selected among the first 5 variables entering the solution paths.

φ φ1 φ3 φ5 φ10 φ15

Value 0.2 0.1 0.2 0.3 0.1
Number of times correctly selected 992 754 1000 1000 913

Number times selected among first 5 992 602 1000 1000 895

0 5 10 15 20 25 30

0.0
0.1

0.2
0.3

Es
tim

ate
 A

R 
Co

eff
cie

nts

AR Estimates

Figure 3: Autoregressive coefficients for the time series of Figure 1 obtained using the routine ar. The
dashed vertical line mark the lags for true nonzero coefficients.

5 Discussion

We defined the Lasso procedure for fitting an autoregressive model, where the maximal lag may increase with
the sample size. Under this double asymptotic framework, the Lasso estimator was shown to possess several
consistency properties. In particular, when p = O (log n), the Lasso estimator is model selection consistent,
estimation consistent, and prediction consistency. The advantage of using the Lasso procedure in conjunction
with a growing p is that the fitted model will be chosen among all possible AR models whose maximal lag
is between 1 and O (log n). Letting n go to infinity, we may virtually obtain a good approximation for a
general linear time series.

As mentioned in Section 2, the assumption about Gaussianity of the underlying noise {Zt} is not neces-
sary. The proof of the model selection consistency result (Theorem 3.1) avoids making use of Gaussianity by
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Figure 4: Distribution for the number of variables selected by a) the lars algorithm using cross validation
and b) the ar algorithm using AIC over 1000 simulations of the time series described in (11).

using Burkholder’s inequality in conjunction with a maximal moment inequality. The proof of the estima-
tion consistency result (Theorem 3.2) requires Lemma 6.2, which does make use of the assumed Gaussianity.
However, this is not crucial. In fact, we can relax the Gaussianity assumption and require only the Zt are
IID(0, σ2), with bounded fourth moment (see (Davis and Brockwell, 1991, p. 226-227)). In this case, instead
of using Wick’s formula we may apply the moving average representation Xt =

∑∞
j=0 ψjZt−j , along with

the absolute summability of the ψj ’s. Finally, the prediction consistency result (Theorem 3.3 and Corollary
3.4) may also be obtained by relaxing the Gaussianity assumption. One only needs to impose appropriate
moment conditions of the driving noise.

The autoregressive modeling via the Lasso procedure stimulates other interesting future directions. In
many cases, non-linearity is evident from the data. In order to capture deviation from linearity, one may try
to fit a non-linear (autoregressive) time series model to the data in the form

Xt = φ1Xt−1 + · · ·+ φpXt−p +
p∑
ν=2

{φi1,...,iν
ν∏
j=1

Xt−ij}+ Zt ,

where we used the Einstein notation for the term in the curly brackets, to indicate summation over all
i1 < i2 < . . . < iν . Notice that for even mild values of p, the number of possible interaction terms may be
very large. This is a very challenging problem as one needs to obtain a solid understanding of the properties
of the non-linear autoregressive process before applying the Lasso (or any other) procedure.

6 Proofs

Here we prove Theorems 3.1, Theorem 3.2, and Theorem 3.3. Recall scheme (3). This is a convex minimiza-
tion problem. Denote by MΛn(·), for Λn = {λn, {λn,j , j = 1, . . . p}}, the objective function, i.e.,

MΛn(φ) =
1

2n
‖y −Xφ‖2 + λn

p∑
j=1

λn,j |φj | . (12)

The Lasso estimator is an optimal solution to the problem min{MΛn(φ) , φ ∈ Rp}. Gradient and Hessian of
the least-squares part in MΛn(·) are given, respectively, by n−1Xφ − n−1

∑n
t=1XtXt, and n−1X, where X

(the gram matrix associated with the design matrix X), and Xt is a notation that we use throughout this
section:

X = X ′X , Xt = (Xt−1, . . . , Xt−p)′ .

9
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Figure 5: Frequencies of the order at which the 5 autoregressive coefficients entered the solutions paths for
the lars algorithm over 1000 simulations of the time series described in (11).

6.1 Model Selection Consistency

Proof of Theorem 3.1. We adapt a Gaussian ensemble argument, given in Wainwright (2006), to the present
setting. Standard optimality conditions for convex optimization problems imply that φ̂n ∈ Rp is an optimal
solution to the problem min{MΛn(φ) , φ ∈ Rp}, if, and only if,

1
n

Xφ̂n −
1
n

n∑
t=1

XtXt + λnξ̂n = 0 , (13)

where ξ̂n ∈ Rp is a sub-gradient vector with elements ξ̂n,j = sgn(φ̂n,j)λn,j if φ̂n,j 6= 0, and |ξ̂n,j | ≤ λn,j
otherwise. Plugging the model structure, y = Xφ∗+Z, into (13), one can see that the optimality conditions

10



become
1
n

X(φ̂n − φ∗)−
1
n

n∑
t=1

ZtXt + λnξ̂n = 0 . (14)

Recall the sparsity set, S = {j : φ∗j 6= 0} = supp(φ∗), the sparsity cardinality s = |S|, and ν = p − s =
|Sc|. Decomposing the design matrix X to relevant and non-relevant variables, X = (XS , XSc), we may
write the gram matrix X as a block matrix of the form

X =
(

XSS XSSc

XScS XScSc

)
=
(

X ′SXS X ′SXSc

X ′ScXS X ′ScXSc

)
.

Notice, for example, that XSS = (
∑n
t=1Xt−iXt−j)i,j∈S . Incorporating this into the optimality conditions

(14) we obtain the following two relations,

1
n

XSS [φ̂n,S − φ∗S ]− 1
n

n∑
t=1

ZtXS
t = −λnλn,S sgn(φ∗S) ,

1
n

XScS [φ̂n,S − φ∗S ]− 1
n

n∑
t=1

ZtXSc

t = −λnξ̂n,Sc ,

where XS
t , and XSc

t are vectors with elements {Xt−i , i ∈ S}, and {Xt−i , i ∈ Sc}, respectively. If n− s ≥ s
then XSS is non-singular with probability one, and we can solve for φ̂n,S and ξ̂n,S ,

φ̂n,S = φ∗S +
( 1
n

XSS

)−1
[

1
n

n∑
t=1

ZtXS
t − λnλn,S sgn(φ∗S)

]

λnξ̂n,Sc = XScSX−1
SS

[
1
n

n∑
t=1

ZtXS
t − λnλn,S sgn(φ∗S)

]
− 1
n

n∑
t=1

ZtXSc

t .

Now, sign consistency is equivalent (see Lemma 1 in Wainwright (2006)) to showing that∣∣∣∣∣φ∗S +
( 1
n

XSS
)−1
[ 1
n

n∑
t=1

ZtXS
t − λnλn,S sgn(φ∗S)

]∣∣∣∣∣ > 0 (15)∣∣∣∣∣XScSX−1
SS

[ 1
n

n∑
t=1

ZtXS
t − λnλn,S sgn(φ∗S)

]
− 1
n

n∑
t=1

ZtXSc

t

∣∣∣∣∣ ≤ λnλn,Sc
]

(16)

hold, elementwise, with probability tending to 1. Denote the events in (15), and in (16) by A and B,
respectively. The rest of the proof is devoted to showing that P(A)→ 1, and P(B)→ 1, as n→∞.

We commence with A. Let αn = minj∈S |φ∗j |. Recall the notation ‖xI‖∞ for the l∞ norm on a set of
indices I, i.e., maxi∈I |xi| (and similarly for matrices). It is enough to show that P(‖AS‖∞ > αn)→ 0, as n
tends to infinity, where

AS =
( 1
n

XSS

)−1[ 1
n

n∑
t=1

ZtXS
t − λnλn,S sgn(φ∗S)

]
. (17)

Confine attention to the matrix XSS . The entry at row i ∈ S and column j ∈ S is given by
∑n
t=1Xt−iXt−j .

Notice that, equivalently, we can write this as
∑n−i
t=1−iXtXt+i−j . Following Davis and Brockwell (1991), one

can show that n−1XSS → ΓSS in probability, as n → ∞, where ΓSS =
(
γ(i − j)

)
i∈S,j∈S , and γ(·) is the

autocovariance function, γ(h) = EXtXt+h. Therefore, by assumption (i) in Theorem 3.1, there exists a finite
constant Cmax, such that ‖(n−1XSS)−1‖∞ ≤ oP (1) + Cmax. We continue by investigating the probability
associated with the term inside the square brackets in (17).
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Notice that ‖
∑n
t=1 ZtX

S
t ‖∞ is given by maxi∈S |

∑n
t=1 ZtXt−i|, where Zt and Xt−i are independent

random variables for each t = 1, . . . , n, and i ∈ S. Fix an i ∈ S, and define

Tn ≡ Tn,i =
n∑
t=1

ZtXt−i . (18)

Let Fn = σ(. . . , Zn−1, Zn) be the sigma-field generated by {. . . , Zn−1, Zn}. Simple calculation shows that
{Tn,Fn}n is a martingale. Finally, Let Yn = Tn−Tn−1 denote the martingale difference sequence associated
with Tn. We quote below a result concerning martingales moment inequalities, which we shall make use of.

Theorem 6.1 (Burkholder’s Inequality). Let {Xn,Fn}∞n=1 be a martingale, and X̃n = Xn − Xn−1 be the
associated martingale difference sequence. Let q > 1. For any finite and positive constants c = c(q), and
C = C(q) (depending only on q), we have

c
[
E
( n∑
i=1

X̃2
i

)q/2]1/q ≥ [E|Xn|q
]1/q ≤ C[E( n∑

i=1

X̃2
i

)q/2]1/q
. (19)

Applying Cauchy-Schwartz inequality followed by Burkholder’s inequality, we obtain

E|Tn| ≤
[
E
∣∣ n∑
t=1

ZtXt−i
∣∣2]1/2 ≤ C[ n∑

t=1

E|Z2
tX

2
t−i|
]1/2

≤ Cσ
√
n , (20)

where C is a finite and positive constant (from Burkholder’s inequality). The last inequality follows by the
independence between Zt and Xt−i, and since E|Xt−i|2 = 1. Fix an arbitrary, positive ξ <∞. By a trivial
bound we get

E max
i∈S
|Tn,i| ≤ ξ +

∑
i∈S

∫ ∞
ξ

P[|Tn,i| > y] dy

≤ ξ +
1
ξ

∑
i∈S

E|Tn,i|2

≤ ξ + C2σ2 1
ξ
sn ,

recalling (20). Now, picking ξ =
√
sn, which is optimal, in the sense of obtaining an (asymptotically) smallest

fraction, we have,
1
n

E max
i∈S
|Tn,i| ≤

√
s/n+ C2σ2

√
s/n = O

(√
s/n
)
. (21)

This, in turn, implies, utilizing (17) and Markov’s inequality, that P(A)→ 1, by imposing the condition:

1
αn

[√
s/n+ λn‖λn,S‖∞

]
−→ 0 , as n→∞ ,

which is condition (6).
We turn to the event B. Repeating the argument below (17), it is enough to show similar assertion about

the event B, with the modification of replacing XScSX−1
SS , by ΓScSΓ−1

SS . A sufficient condition for this to hold
is that {‖BSc‖∞ ≤ λn mini∈Sc λn,i} happens with probability tending to one, where

BSc = ΓScSΓ−1
SS

[ 1
n

n∑
t=1

ZtXS
t − λnλn,S sgn(φ∗S)

]
− 1
n

n∑
t=1

ZtXSc

t . (22)

Under the incoherence condition (condition (ii) in the statement of the theorem), we have the following
upper bound:

‖BSc‖∞ ≤ (1− ε) 1
n
‖

n∑
t=1

ZtXS
t ‖∞ + (1− ε)λn‖λn,S‖∞ +

1
n
‖

n∑
t=1

ZtXSc

t ‖∞ ,
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which leads to: P(‖BSc‖∞ > λn mini∈Sc λn,i) ≤

P
( 2(1− ε)
nλn mini∈Sc λn,i

‖
n∑
t=1

ZtXS
t ‖∞ > b

)
+ P

( 2
nλn mini∈Sc λn,i

‖
n∑
t=1

ZtXSc

t ‖∞ > b
)
, (23)

with b = 1− (1− ε)‖λn,S‖∞/mini∈Sc λn,i. Note that inequality (23) follows by the inclusion {U +V > z} ⊂
{U > z/2} ∪ {V > z/2}. Under condition (5), it would be enough to consider the right hand side of (23),
replacing (the two instances of) b by ε. For the first term in (23) we have

P
( 2(1− ε)
nλn mini∈Sc λn,i

‖
n∑
t=1

ZtXS
t ‖∞ > ε

)
≤ 1− ε

ε

2
λn mini∈Sc λn,i

1
n

E max
i∈Sc
|Tn,i| , (24)

which tends by (21) to zero once

nλ2
n(mini∈Sc λn,i)2

s
−→∞ , as n→∞ . (25)

The same argument may be adapted for maxi∈Sc |Tn,i|. We only need to replace S by Sc. In this case we
find that the condition

nλ2
n(mini∈Sc λn,i)2

ν
−→∞ , as n→∞ , (26)

is sufficient for showing that the second term in (23) converges to zero. Condition (7) in the statement of
the theorem guarantees both (25) and (26). The proof is now complete.

6.2 Estimation and Prediction Consistency

Proof of Theorem 3.2. We follow Fan and Peng (2004). In particular, denoting αn = p1/2(n−1/2+λn‖λn,S‖),
we will show that for every ε > 0 there exists a constant C, large enough, such that

P
[

inf
‖u‖=C

MΛn(φ∗ + αnu) > MΛn(φ∗)
]
> 1− ε ,

where MΛn(·) is the objective function and is given in (12). This implies that ‖φ̂n − φ∗‖ = OP (αn).
Multiplying both sides by n clearly does not change the probability. We will show that −n(MΛn(φ∗ +

αnu)−Mλn(φ∗)) < 0 holds uniformly over ‖u‖ = C. Write

MΛn(φ) = h(φ) + λn

p∑
j=1

λn,j |φj | ,

for h(φ) = ‖y −Xφ‖2/2n. We have

−n(MΛn(φ∗ + αnu)−MΛn(φ∗)) ≤ −n[h(φ∗ + αnu)− h(φ∗)]− nλn
∑
j∈S

λn,j [|φ∗j + αnuj | − |φ∗j |] .

Consider separately the least squares term, and the term associated with the l1-penalty. We have, exploiting
the fact that

∑n
t=1XtXt = Xφ∗ +

∑n
t=1 ZtXt,

−n[h(φ∗ + αnu)− h(φ∗)] = αnu
′
n∑
t=1

ZtXt − α2
nu
′Xu/2 ≡ I1 − I2 .

Recalling the definition of Tn,i =
∑n
t=1 ZtXt−i (see (18)), and utilizing the result in (20) we obtain

|I1| ≤ αn‖u‖‖
n∑
t=1

ZtXt‖ = ‖u‖OP (αn
√
pn) .
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Moving on to I2, we write

I2 = α2
nu
′Xu/2 = nα2

nu
′(n−1X− Γp)u/2 + nα2

nu
′Γpu/2 . (27)

We know that n−1Xij tends in probability to γ(i − j), where Xij =
∑n
t=1Xt−iXt−j , the (i, j) entry of X.

This clearly implies ‖n−1X − Γp‖ = oP (1), in the fixed p scenario. Lemma 6.2 below shows that this may
also hold true in the growing p scenario which we consider here.

Lemma 6.2. Assume
∑∞
j=0 |ψj | <∞, as before. Then,

‖n−1X− Γp‖ = oP (1) . (28)

Proof. We adopt arguments given in (Davis and Brockwell, 1991, p. 226-227). Let ε > 0 be given. Using
the fact that ‖A‖ ≤ ‖A‖F , where ‖ · ‖F is the Frobenius matrix norm,

∑
i,j |Aij |2, we have

P(‖n−1X− Γp‖ > ε) ≤ 1
ε2

p∑
i,j=1

dij , (29)

where dij = E(n−1Xij−γ(i− j))2. We shall make use of Wick’s formula. This formula gives the expectation
of a product of several centered (joint) Gaussian variables G1, . . . , GN , in terms of the elements of their
covariance matrix C = (cij):

E
k∏
i=1

Gi =
∑

ci1i2 · · · cik−1ik ,

for k = 2m, and zero otherwise. The sum extends over all different partitions of {G1, . . . , G2m} into m pairs.
Applying the formula, we obtain:

EX2
ij =

n−i∑
s,t=1−i

EXtXt+i−jXsXs+i−j

=
n−i∑

s,t=1−i

(
γ2(i− j) + γ2(s− t) + γ(s− t+ i− j)γ(−(s− t) + i− j)

)
,

where we have used the equivalent representation Xij =
∑n−i
t=1−iXtXt+i−j .

A change of variables k = s− t shows that

n−i∑
s,t=1−i

(
γ2(s− t) + γ(s− t+ i− j)γ(−(s− t) + i− j)

)
=

n[γ2(0) + γ2(i− j)] + 2
n−1∑
k=1

(n− k)[γ2(k) + γ(k + i− j)γ(−k + i− j)] .

Therefore,

dij =
p2

n2
γ2(i− j) +

1
n

[γ2(0) + γ2(i− j)]

+
2
n2

n−1∑
k=1

(n− k)[γ2(k) + γ(k + i− j)γ(−k + i− j)] . (30)

Notice that
∑∞
k=1 |γ2(k) + γ(k + i − j)γ(−k + i − j)| < ∞. This may be seen by using the expression

for the autocovariance function, γ(h) = σ2
∑∞
j=0 ψjψj+|h|, and by utilizing the summability of the ψj ’s,∑∞

j=0 |ψj | < ∞. The expression (30) is therefore bounded by an O(1/n) order term. This, in turn, shows
that dij = O(1/n), uniformly for every i, j. The proof is completed by recalling the RHS of (29), which is of
the order of magnitude of O(p2/n).
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Using Lemma 6.2 we obtain

|nα2
nu
′(n−1X− Γp)u/2| ≤ oP (1)nα2

n‖u‖2 . (31)

We complete the argument with a bound on the term associated with the penalties, −nλn
∑
j∈S λn,j [|φ∗j+

αnuj | − |φ∗j |]. Applying the Cauchy-Schwarz inequality, along with the fact that ‖a‖1 ≤
√
p‖a‖2 for every

a ∈ Rp, it is clear that the above term is absolutely bounded by λn‖λn,S‖∞
√
snαn‖u‖. Now, since the

second term in I2 (see (27)) dominates the other terms, the proof of the theorem is completed.

Proof of Theorem 3.3. We begin as in Bunea et al. (2007b). Recall that ‖a‖2A stands for a′Aa, for every
p-dimensional vector a, and p× p symmetric matrix A. We proceed by stating and proving two lemmas.

Lemma 6.3. Let assumptions (i), and (ii) of Theorem 3.3 be in effect. Then,

‖φ̂n − φ∗‖2X/n ≤ 4λnM(sκ−1
p )1/2‖φ̂n − φ∗‖Γp (32)

holds true on

I1 =
{
| 2
n

n∑
t=1

Xt−jZt| ≤ λnλn,j , for all j = 1, . . . , p
}
. (33)

Proof. By definition, the Lasso estimator φ̂n satisfies (see (12)),

n−1‖y −Xφ̂n‖2 + 2λn
p∑
j=1

λn,j |φ̂n,j | ≤ n−1‖y −Xφ∗‖2 + 2λn
p∑
j=1

λn,j |φ∗j | .

Recalling the model y = Xφ∗ + Z, we obtain, by re-arrangeing the above terms,

‖φ̂n − φ∗‖2X/n + 2λn
p∑
j=1

λn,j |φ̂n,j | ≤ 2(φ̂n − φ∗)′
1
n
X ′Z + 2λn

p∑
j=1

λn,j |φ∗j | .

Now, since (φ̂n − φ∗)′ 1nX
′Z =

∑p
j=1(φ̂n,j − φ∗j ) 1

n

∑n
t=1Xt−jZt, we have, on I1,

‖φ̂n − φ∗‖2X/n ≤ λn

p∑
j=1

λn,j |φ̂n,j − φ∗j |+ 2λn
p∑
j=1

λn,j(|φ∗j | − |φ̂n,j |)

≤ 4λn
∑
j∈S

λn,j |φ̂n,j − φ∗j | , (34)

where the second inequality is obtained by decomposing the summation
∑p
j=1 into

∑
j∈S +

∑
j /∈S , and using

Cauchy-Schwarz inequality.
By assumption (ii), and the fact that γ(0) = E|Xt|2 = 1, we have

∑
j∈S
|φ̂n,j − φ∗j |2 ≤

p∑
j=1

(φ̂n,j − φ∗j )2 = ‖φ̂n − φ∗‖2diag(Γp)

≤ 1
κp
‖φ̂n − φ∗‖2Γp . (35)

The proof is completed by applying the Cauchy-Schwarz inequality on (34), and by using assumption (i).

We turn to the second lemma.
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Lemma 6.4. Let assumptions (i), (ii) of Theorem 3.3 be in effect. Let C be a constant (given explicitly in
the proof) depending on M only. Put ε = λn(sp−1)1/2. Then,

‖φ̂n − φ∗‖2Γp ≤ Cλ
2
nsκ
−1
p , (36)

holds true on I1 ∩ I2, where I1 is given by (33), and

I2 = {Mp ≤ ε} , (37)

with

Mp = max
1≤i,j≤p

∣∣∣∣Xijn − γ(i− j)
∣∣∣∣ . (38)

Proof. Note that ∣∣∣‖φ̂n − φ∗‖2X/n − ‖φ̂n − φ∗‖2Γp ∣∣∣ ≤Mp‖φ̂n − φ∗‖21 .

Therefore,

‖φ̂n − φ∗‖2X/n ≥ ‖φ̂n − φ∗‖2Γp −Mpp
1/2‖φ̂n − φ∗‖

≥ ‖φ̂n − φ∗‖2Γp −Mp(pκ−1
p )1/2‖φ̂n − φ∗‖Γp .

The first inequality follows since ‖a‖1 ≤ n‖a‖2, and the second inequality is satisfied under assumption (ii)
(see (35)). Referring back to (32), we obtain, on I1 ∩ I2,

‖φ̂n − φ∗‖2Γp ≤ 2(1/2 + 2M)λn(sκ−1
p )1/2‖φ̂n − φ∗‖Γp .

Applying the inequality 2xy ≤ 2x2 + y2/2 on the right-hand side of the expression above (with x = (1/2 +
2M)λn(sκ−1

p )1/2, and y = ‖φ̂n−φ∗‖Γp), we establish the statement of the Lemma, with C = 4(1/2 + 2M)2.

The rest of the proof of Theorem 3.3 is devoted to showing that indeed ‖φ̂n − φ∗‖2Γp ≤ Cλ2
nsk
−1
p holds

on a negligible event, i.e., that the probability of the complement of I1 ∩ I2 is negligible. We shall commence
with I2.

We recall here the family of time series {Xt}, denoted by Hρ(l, L), for some ρ > 1, 0 < l < 1, and L > 1
(Section 3.2). The family consists of all stationary Gaussian time series with EXt = 0, E|Xt|2 = 1, and
enjoys an exponential decay of the strongly mixing coefficients (see (8)).

Lemma 6.5. Assume that ε = λn(s/p)1/2 ≤ Dn−2/5, where D = (C3
1C2β

2
1β

3
2)1/5, with C1 and C2 two

constants explicitly specified in the proof. Then,

P(Ic2) ≤ p2 exp
{
− nλ2

n(s/p2)/(4C1β1β2)
}
.

Proof. We begin with

P(|
n−i∑
t=1−i

Yt| > ε) ,

where
Yt ≡ Yt,i,j =

1
n

(XtXt+i−j − γ(i− j)) . (39)

The proof is based on an application of the pair of lemmas 6.6 and 6.7, after noticing that

P(Ic2) = P(Mp > ε) ≤
p∑

i,j=1

P

(∣∣ n−i∑
t=1−i

Yt
∣∣ > ε

)
.
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Define k = i − j. It is enough to consider only k ≥ 0 (i ≥ j), since Xij and γ(i − j) are symmetric. By
the same argument below expression (39) in Goldenshluger and Zeevi (2001), one may notice that {Yt} is
strongly mixing with the rate αY (m) ≤ αX(m− k) for m > k, and αY (m) ≤ 1/4 (see Bradley (2005)), but
for our purposes in would be enough to bound αY (m), for m > k, by simply 1.

We shall make use of the following two lemmas, adapted from Goldenshluger and Zeevi (2001).

Lemma 6.6. Suppose {Xt} is a strongly mixing time series, Sn =
∑n
t=1, and cumr(Sn) is the rth order

cumulant of Sn. For ν > 0 define the function

Λn(αX , ν) = max
{

1 ,
n∑

m=1

(αX(m))1/ν
}
.

If, for some µ ≥ 0, H > 0

E|Xt|r ≤ (r!)µ+1Hr , t = 1, . . . , n, r = 2, 3, . . . ,

then |cumr(Sn)| ≤ 2r(1+µ)+112r−1(r!)2+µHr[Λn(αX , 2(r − 1))]r−1n.

Lemma 6.7. Let Y be a random variable with EY = 0. If there exist µ1 ≥ 0, H1 > 0 and ∆ > 0 such that

|cumr(Y )| ≤
(
r!
2

)1+µ1 H1

∆r−2
, r = 2, 3, . . . ,

then

P(|Y | > y) ≤
{

exp{−y2/(4H1)} 0 ≤ y ≤ (H1+µ1
1 ∆)1/(2µ1+1)

exp{−(y∆)1/(1+µ1)/4} y ≥ (H1+µ1
1 ∆)1/(2µ1+1) .

Back to the proof of Lemma 6.5. Absolute moment of Yt are bounded as follows:

E|Yt|r ≤ n−r2r−1
[
E|XtXt+k|r + |γ(k)|r

]
≤ n−r2r−1

[(
E|Xt|2rE|Xt+k|2r

)1/2 + γ(0)
]

≤ r!(4/n)r .

The second inequality follows by the Cauchy-Schwarz inequality together with the inequality (a + b)j ≤
2j−1(aj+bj), and the last inequality follows by the assumed Gaussianity of Xt, and the inequality

(
2r
r

)
≤ 22r.

We have

n∑
m=1

(αX(m))1/2(r−1) ≤ k +
(

2Ll
l(ρ− 1)

)1/(r−1) n−k∑
m=1

ρ−m/2(r−1)

≤ k +
(

2Ll
l(ρ− 1)

)1/(r−1)(
1 +

2(r − 1)
log ρ

)
,

The first inequality utilizes the relationship between αY (m) and αX(m), and inequality (8). The second
inequality uses geometric series expression together with the inequality ρx − 1 ≥ x log ρ, for all x ≥ 0.

Therefore, defining k̂ = k if k > 0, and k̂ = 1, if k = 0, we obtain, after some manipulations, similar to
those in Goldenshluger and Zeevi (2001),

[Λn(αX , 2(r − 1))]r−1 ≤ 12r−1r!(k̂β1)r−1β2 ,

for two constants β1 and β2, given, respectively, by 1 + 1/ log ρ and 1 + Lρ/l(ρ − 1) (see (9)). The bound
results from the inequalities (a+ b)j ≤ 2j−1(aj + bj), nn ≤ n!en, and other trivial inequalities.
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Applying Lemma 6.6 (with µ = 0 and H = 4/n) we have |cumr(
∑n−i
t=1−i)Yt| ≤ RHS, where RHS can be

put in the form (r!/2)3H∆2−r, with H1 = C1β2(k̂β1/n), ∆ = C2(k̂β1/n)−1, and C1 = 210122, C2 = 2−312−2.
Now, applying Lemma 6.7 (with µ1 = 2, and H1 and ∆ as above) we obtain:

P

(∣∣ n−i∑
t=1−i

Yt
∣∣ > y

)
≤

 exp
{
−y2n/(4C1k̂β1β2)

}
0 ≤ y ≤ Dk̂2/5n−2/5

exp
{
− 1

4

(
C2

k̂β1

)1/4(yn)1/3
}

y ≥ Dk̂2/5n−2/5 ,
(40)

where D = (C3
1C2β

2
1β

3
2)1/5. The proof is completed by applying the moderate deviation part in (40) with

y = ε, and by noticing that 1 ≤ k̂ ≤ p.

We turn to evaluate the probability of the complement of the event I1.

Lemma 6.8. For all 0 < c <∞ and y > σ2(n+Dn3/5) (where D is given by (9)),

P(Ic1) ≤ 6p exp
{
−F1 min

{
(σ−2y − n)1/3, c2σ−2,

n2λ2
nλ

2
min

y + cnλnλmax/2

}}
,

where F1 = min
{

(C2/β1)1/4/4, 2−9, 8−1
}

.

Proof. Let V 2
n = σ2

∑n
t=1X

2
t−i = σ2

∑n−i
t=1−iX

2
t . Fix a y > σ2(n+Dn3/5) and a 0 < c < ∞. Denote by Ĩ1

the event I1 (see (33)) with the absolute value removed. We begin by writing:

P(Ĩc1) ≤
p∑
j=1

P
( 2
n

n∑
t=1

Xt−jZt > λnλn,j
)

≤
p∑
j=1

P
( ∞⋃
n=1

{ 2
n

n∑
t=1

Xt−jZt > λnλn,j , V
2
n ≤ y

})
+ pP(V 2

n > y)

=: I1 + I2 .

Clearly, I1 satisfies I1 ≤ I11 + I12, with

I11 =
p∑
j=1

P
( ∞⋃
n=1

{ 2
n

n∑
t=1

Xt−jZt > λnλn,j , V
2
n ≤ y

}
,

∞⋂
r=3

{
|Xt−j |r−2E|Zt|r ≤

r!
2
σ2cr−2

})
,

I12 =
p∑
j=1

P
( ∞⋃
r=3

{
|Xt−j |r−2E|Zt|r >

r!
2
σ2cr−2

})
.

We analyze P(Ĩc1) by investigating I11, I12 and I2 separately.
For I2, we recall that Yt ≡ Yt,i,i = (X2

t − γ(0))/n (see (39) and the remark below) is strongly mixing
with exponential decay rate. Therefore, by the large deviation part in (40) (with k̂ = 1),

P(V 2
n > y) ≤ P(|V 2

n − nσ2| > y − nσ2)

= P(|
n−i∑
t=1−i

Yt| > σ−2n−1y − 1)

≤ exp
{
−1

4
(C2

β1

)1/4(σ−2y − n)1/3

}
.

For I12, we use the bound E|Zt|2r ≤ σ2rr!22r (and the Cauchy-Schwarz inequality) to obtain{
|Xt−j |r−2E|Zt|r >

r!
2
σ2cr−2

}
⊂
{
|Xt−j | > 2−(1+r)/(r−2)σ−1c

}
.
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Therefore, noticing that {2−(1+r)/(r−2)}∞r=3 is an increasing sequence, we have

I12 ≤
p∑
j=1

P
(
|Xt−j | > 2−4σ−1c

)
≤ (2/π)1/2p exp{−2−8c2/2σ2} .

For I11, we use the following theorem which is a Bernstein’s type of an inequality for martingales.

Theorem 6.9 (De La Peña (1999)). Let {Mn,Fn} be a martingale, with difference ∆n = Mn −Mn−1.
Define V 2

n =
∑n
i=1 σ

2
i =

∑n
i=1 E(∆2

i |Fi−1). Assume that E(|∆i|r |Fi−1) ≤ (r!/2)σ2
i c
r−2 a.e. for r ≥ 3,

0 < c <∞. Then, for all x, y > 0,

P
( ∞⋃
n=1

{Mn > x , V 2
n ≤ y}

)
≤ exp

{
− x2

2(y + cx)

}
. (41)

Recall that
∑n
t=1Xt−jZt is a martingale (see (18)). Then, simple application of the above theorem, with

x = nλnλn,j/2, leads to

I11 ≤ p exp
{
− n2λ2

nλ
2
min

8(y + cnλnλmax/2)

}
.

Lemma 6.8 now follows by collecting the bounds of I11, I12, and I2, and by symmetry.

The proof of theorem 3.3 is now complete by virtue of Lemma 6.3, Lemma 6.4, Lemma 6.5, and Lemma
6.8.
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