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De Finetti introduced the concept of coherent previsions and con-
ditional previsions through a gambling argument and through a par-
allel argument based on a quadratic scoring rule. He shows that the
two arguments lead to the same concept of coherence. When dealing
with events only, there is a rich class of scoring rules which might be
used in place of the quadratic scoring rule. We give conditions under
which a general strictly proper scoring rule can replace the quadratic
scoring rule while preserving the equivalence of de Finetti’s two argu-
ments. In proving our results, we present a strengthening of the usual
minimax theorem. We also present generalizations of de Finetti’s fun-
damental theorem of prevision to deal with conditional previsions.

1. Introduction. Chapter 3 of Theory of Probability [3, vol. 1] provides
two criteria of coherence for previsions (or probabilistic forecasts) over a set
of events. The first criterion is formulated under the assumption that pre-
visions serve as fair prices for buying and/or selling contracts of the form
c(IA−P (A)). Here, IA is the indicator of an event A and P (A) is the previ-
sion of the event. Each event is a subset of the set Ω whose generic element
is denoted ω. With c positive, the decision maker will pay the price cP (A)
and receive c units if ω ∈ A and 0 if ω 6∈ A. With c negative, the decision
maker sells this gamble on A and receives a payment of cP (A) units. With
c = 0, the decision maker remains at his status-quo fortune. Furthermore,
conditional previsions are also defined as fair prices for buying and/or selling
contracts of the form cIB[IA − P (A|B)]. Here, B is the conditioning event.
The contract has 0 value if B does not occur. It is easy to see that, if B = Ω,
P (A|B) has the same operational meaning as P (A). In this way, previsions
are special cases of conditional previsions. We refer to conditional previsions
for which B = Ω as marginal previsions when the need arises. When we refer
to previsions unqualified, we mean both marginal and conditional previsions.

In order to be able to deal with marginal and conditional previsions si-
multaneously, we introduce some notation. Let ℵ be an index set, and let
X = {(Aα, Bα) : α ∈ ℵ} be a set of pairs of events. For each α ∈ ℵ, Aα is
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2 SCHERVISH, SEIDENFELD AND KADANE

a subset of Ω, and Bα is a non-empty subset of Ω. For each (A,B) ∈ X the
decision maker is required to provide a real-valued (conditional) prevision
P (A|B).

Definition 1 (Coherence1). A set of previsions is incoherent1 if there ex-
ists a finite subset {α1, . . . , αk} of ℵ and corresponding values {cα1 , . . . , cαk}
so that the net payoff to the decision maker is uniformly negative in all states
ω ∈ Ω. That is, there exists ε > 0 such that, for all ω ∈ Ω,

(1)
k∑
i=1

cαiIBαi [IAαi (ω)− P (Aαi |Bαi)] < −ε.

The set of previsions is called coherent1 otherwise. If (1) occurs, we say
that book has been made against the decision maker.

Thus, coherence1 is the requirement that the decision maker’s previsions
cannot be (uniformly) dominated by the status-quo, corresponding to the
state of neither buying nor selling such gambles.

De Finetti had some misgivings about one aspect of this criterion of coher-
ence. As he explained in [4], he was concerned that, even as an idealization,
it failed to satisfy operational requirements for eliciting the decision maker’s
uncertainties over the pairs in X . The problem he recognized is that the
decision makers selection of announced previsions might reflect her or his
anticipation of the opinions of the “opponent,” whose role in the game is to
select the sign and magnitude of the coefficients, the cs, in the gambles. In
this regard, he disliked the strategic aspects that entered into the prevision-
game under the first criterion for coherence.

De Finetti proposed a second criterion of coherence, which he demon-
strated is equivalent to the first for classifying sets of previsions as coherent
and, since it does not appeal to decisions of an opponent, avoids the concerns
with strategic play that affect the first criterion. The second criterion uses
a squared-error loss function to score previsions: L = IB(IA−P (A))2. That
is, the decision maker suffers a loss L, depending upon the events A and B.
The loss given to a finite set of previsions {P (Aα1 |Bα1), . . . , P (Aαk |Bαk)} is
the sum of the losses for the individual previsions.

Definition 2 (Coherence2). A set of previsions is incoherent2 if for some
finite subset of those previsions there exists an alternative set of previsions
that result in a (uniformly) smaller loss in all the states ω ∈ Ω. The set of
previsions is called coherent2 otherwise.
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SCORING RULES AND COHERENCE 3

Thus, coherence2 is the requirement that no finite subset of the decision
maker’s previsions can be (uniformly) dominated by a rival set of previsions
in terms of squared-error loss.

[3] established that a set of marginal previsions is coherent in the one sense
if and only if it is coherent in the other sense. In [3, pp. 88-89 and 188-190] he
gave a geometric argument to show that the second criterion distinguishes
coherent from incoherent sets of marginal previsions of events identically
with the first criterion. His elegant reasoning is simple to state. When an
incoherent1 set of marginal previsions are announced for a finite set of events,
collectively those correspond to a point outside the simplex generated by the
linear span of the indicator functions for the finitely many events forecasted.
Then, projecting onto the simplex from that point produces a coherent1

set of marginal previsions whose squared-error loss dominates that of the
first set of previsions, regardless which state occurs. That is, the Euclidean
distances from the projected point on the face of the simplex to each corner
of the simplex is strictly less than the corresponding distances from the point
outside the simplex to those corners; hence, those incoherent1 previsions for
a finite set of events are also incoherent2. Moreover, if the set of previsions
are coherent1 they correspond to a point within the simplex. But no other
point within the simplex is simultaneously closer to all the corners. Hence,
a coherent1 set of previsions for events also is coherent2.

Regarding the problem of strategic play in eliciting a decision maker’s
previsions, which affects the first criterion, that concern is mitigated using
the second criterion since, under squared-error (Brier) score, the decision
maker uniquely minimizes her/his expected loss for a set of previsions by
announcing the (subjective) expected value for each variable forecast. When
forecast variables are indicator functions for a set of events, the decision
maker’s previsions then are her/his personal probabilities for those events.
That is, as [4] reported he “invented” the rule, known since [1] as Brier score,
which is a strictly proper scoring rule for eliciting probabilities for events.

Definition 3 (Scoring Rules). A scoring rule for scoring the conditional
forecast P (A|B) of an event A given another event B is a pair of extended-
real-valued functions (g0, g1) defined on the interval [0, 1] with the following
understanding. If A occurs, the forecaster suffers a loss of IBg1(P (A|B)),
and if AC occurs, the forecaster suffers a loss of IBg0(P (A|B)). The scoring
rule (g0, g1) is proper if, for all events A and B, the forecaster’s subjective
conditional probability of A given B minimizes the expected score. That is,
(g0, g1) is proper if x = p minimizes (1−p)g0(x)+pg1(x) for each 0 ≤ p ≤ 1.
A proper scoring rule (g0, g1) is strictly proper if, for all 0 ≤ p ≤ 1, x = p is
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4 SCHERVISH, SEIDENFELD AND KADANE

the only value of x that minimizes (1 − p)g0(x) + pg1(x). For convenience,
if a proper scoring rule is not strictly proper, we call it merely proper.

When B 6= Ω, the expected score mentioned in Definition 3 is P (B) times
the conditional expected score given B. If P (B) = 0, there are some issues
that arise, but most of them do not affect the results that we present in this
paper. We return to these issues in Section 6. To avoid the one issue that does
affect our results, we assume that 0 ≤ P (A|B) ≤ 1 for every pair (A,B) of
events with B 6= ∅. We make this assumption because many proper scoring
rules are not defined for previsions outside of the unit interval. Although it
is part of our goal to deal with incoherent previsions, we cannot allow them
to be quite so incoherent if we wish to apply proper scoring rules.

[9] generalized de Finetti’s use of squared error loss in Definition 2 and
characterized a general class of (strictly) proper scoring rules for eliciting
personal probabilities for events. However, Savage did not devote much de-
tail to the argument that the other proper scoring rules also agree with the
criterion in Definition 1 in demarcating coherent from incoherent sets of
previsions. [7] established that, for the case of finitely many marginal pre-
visions, de Finetti’s geometric argument extends to all continuous strictly
proper scoring rules by generalizing the role played by the Euclidean metric
with Brier score to Bregman divergence for continuous scoring rules. That is,
with each continuous, strictly proper scoring rule if a finite set of marginal
previsions is incoherent1 then it is dominated in score by some coherent1

set of forecasts. And no finite coherent1 set of marginal previsions can be so
dominated.

Definition 4 (Dominance). Let (A1, B1), . . . , (An, Bn) be a finite collec-
tion of pairs of events such that each Ai is to be forecast conditional on
Bi. Suppose that the conditional forecast of Ai given Bi is to be scored by
the scoring rule (g0,Ai,Bi , g1,Ai,Bi) for i = 1, . . . , n. Define g′Ai,Bi(x, ω) =
IAi∩Bi(ω)g1,Ai,Bi(x) + IACi ∩Bi

(ω)g0,Ai,Bi(x). Let p = (p1, . . . , pn) and q =
(q1, . . . , qn) be two different sets of conditional forecasts for the n events.
We say that q weakly dominates p if, for all ω ∈ Ω,

(2)
n∑
i=1

g′Ai,Bi(qi, ω) ≤
n∑
i=1

g′Ai,Bi(pi, ω),

with strict inequality for at least one ω. We say that q strictly dominates p
if (2) holds for all ω with strict inequality for all ω.

There is a second, decision-theoretic line of argument relating to the equiv-
alence between the two senses of coherence, however, that was anticipated by
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SCORING RULES AND COHERENCE 5

[2, p. 181-182] and sketched without much detail by [9, sections 8 and 9.1].
Consider a decision problem comprised by a set of options Ø and subject to
a loss function (bounded below) defined with respect to the finite partition
Θ. If an option O∗ fails to be a Bayes solution to the problem, i.e., if for
each probability on Θ, O∗ fails to minimize the expected loss with respect
to the options in Ø, then some randomized rule with support in Ø strictly
dominates O∗. When Ø is finite, this result was established by [8, Lemma
3, p. 1049]. Here we extend this reasoning to statistical problems where Θ
is finite, i.e., “Nature” has only finitely many nonrandomized options, but
where the “Statistician” has a continuum of nonrandomized options. We
apply the extension to decision problems in which the options are sets of
forecasts and the loss function is the sum of the scoring rules.

In the remainder of this article we identify those cases in which an inco-
herent collection of forecasts is weakly or strictly dominated by a coherent
collection of forecasts or by something else. The cases depend on whether
the scoring rules are proper or strictly proper, and/or continuous or discon-
tinuous. The cases also depend on whether or not the incoherent forecasts
are Bayes decisions in the decision problems described in the previous para-
graph. One consequence of what we prove is that Definitions 1 and 2 re-
main equivalent even if one replaces Brier score by any collection of strictly
proper scoring rules (one for each event being forecast) satisfying some mild
assumptions. When the scoring rules are continuous, there is a coherent1 set
of forecasts that strictly dominates each finite incoherent1 set of forecasts,
just as with Brier score. However, we illustrate that when the scoring rules
are discontinuous (and even though strictly proper) there may fail to be a
coherent1 set of forecasts that weakly dominate a particular incoherent1 set
of forecasts. In other words, although there is equivalence between the two
senses of coherence even with discontinuous strictly proper scoring rules, it
is no longer the case that incoherence2 is characterized by the existence of
a dominating coherent2 set of forecasts.

2. Summary of Results. The concept of dominance is similar to that
of inadmissibility, and scoring rules are just like loss functions. For these
reasons, we make use of results from statistical decision theory to prove
our results about when a given set of forecasts can be dominated. For each
finite collection A = {(A1, B1), . . . , (Ak, Bk)} of pairs of subsets of Ω with
Bi 6= ∅, we construct a decision problem whose action space is the set of
vectors of forecasts for the Ai given Bi. In each such decision problem, we
check whether a particular set of forecasts is a Bayes decision with respect
to some prior distribution.
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6 SCHERVISH, SEIDENFELD AND KADANE

The standard theorems of statistical decision theory usually assume that
the loss function is bounded below. In our setting, this would correspond
to assuming that the scoring rules are all bounded below. There are several
good reasons for making such an assumption, one of which is illustrated in
Example 1 in Section 4. Adding a finite constant to either or both branches of
a proper scoring rule does not affect any of the properties that we are study-
ing, i.e., merely proper vs. strictly proper, continuity, dominance, forecasts
being Bayes. For this reason, assuming that scoring rules are bounded below
is equivalent, for our purposes, to assuming that the greatest lower bound
is 0. It is trivial from Definition 3 that every proper scoring rule (g0, g1)
satisfies the following: g0(x) is minimized at x = 0 and g1(x) is minimized
at x = 1. Hence, we lose no generality in assuming that g0(0) = g1(1) = 0.
To summarize, we assume the following of proper scoring rules:

Assumption 1. For k = 0, 1, gk is bounded below, and g0(0) = g1(1) = 0.

There are two other assumptions that play roles in some of our results,
and we state them here for completeness.

Assumption 2. For k = 0, 1, gk(x) is continuous at x = k.

Assumption 3. For k = 0, 1, gk(x) is finite for 0 < x < 1.

If every conditional forecast has a corresponding scoring rule, and the loss
is the sum of all the scores, we can generalize Definition 2 for event forecasts.

Definition 5 (Coherence3). A collection of conditional forecasts for events
is
incoherent3 if for some finite subcollection of those forecasts there exists an
alternative set of forecasts that strictly dominates in the sense of Defini-
tion 4. The collection of forecasts is called coherent3 otherwise.

The question then arises as to whether or not coherence3 is equivalent to
coherence1 in all forecasting problems. The answer depends on which scoring
rules one allows. It also depends on what one allows for an “alternative set
of forecasts.” It turns out that allowing a randomized forecast to serve as
the alternative expands the collection of scoring rules that make coherence1

and coherence3 equivalent. (We are more explicit about what we mean by a
randomized forecast in Definition 8.) For example, we prove the following:

Theorem 1. Assume that each conditional forecast is scored by a strictly
proper scoring rule that satisfies Assumptions 1 and 2.
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SCORING RULES AND COHERENCE 7

• If randomized forecasts are allowed, then coherence1 and coherence3

are equivalent in every forecasting problem.
• If only nonrandomized forecasts are allowed and if all scoring rules

are also continuous, then coherence1 and coherence3 are equivalent in
every forecasting problem.

The proof of Theorem 1 appears in Section 5. We provide an example
(Example 4) to illustrate that one cannot, without further assumptions, ob-
tain a dominating nonrandomized forecast when using discontinuous strictly
proper scoring rules. We also provide an example (Example 3) to illustrate
that incoherent1 forecasts may not be strictly dominated, without further
assumptions, when using strictly proper scoring rules that violate Assump-
tion 2.

We prove additional results about the possibility of one set of forecasts
being dominated by another. For example, Theorem 2 includes conditions
under which dominance occurs with the use of merely proper scoring rules.
Theorem 2 also includes conditions under which a weakly dominating pos-
sibly randomized forecast exists. Theorem 3 gives conditions under which
an incoherent3 set of forecasts gets scored identically to a coherent1 set of
forecasts.

3. Mathematical Framework for Results. As mentioned earlier, we
make use of some standard results from statistical decision theory, and hence
we want to express the problem of comparing forecasts using proper scoring
rules as a statistical decision problem.

3.1. Decision Theoretic Framework. Each decision problem is indexed
by a finite collection A = {(A1, B1), . . . , (An, Bn)} of pairs of subsets of a
set Ω with all Bi nonempty. The parameter space for each decision problem
is the collection of constituent events determined by A, as defined here.

Definition 6 (Constituents). Let A1, . . . , An, B1, . . . , Bn be events. Con-
struct the (at most 3n)) events Cj = E1,j ∩ · · · ∩ En,j where each Ei,j ∈
{Ai ∩ Bi, ACi ∩ Bi, BC

i } for i = 1, . . . , n. Let ai(j) = 1 if Ei,j = Ai ∩ Bi,
and let ai(j) = 0 if not. Also, let bi(j) = 1 if Ei,j ⊆ Bi and bi(j) = 0 if
Ei,j = BC

i . The distinct nonempty sets C1, . . . , Cm of this form are called
the constituents.

The action space for the decision problem indexed by A is the set [0, 1]n,
where the ith coordinate is interpreted as the conditional forecast for Ai
given Bi. The loss function is the total score from a collection of scoring
rules as in Definition 4, and which we make more explicit here.
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8 SCHERVISH, SEIDENFELD AND KADANE

Definition 7 (Total Scores). Let A = {(A1, B1), . . . , (An, Bn)} be a fi-
nite collection of pairs of events with all Bi nonempty. Suppose that, for
each i, the conditional forecast for Ai given Bi is scored by a proper scoring
rule (g0,Ai,Bi , g1,Ai,Bi). Let p = (p1, . . . , pn) be a vector of conditional fore-
casts. The total scores for these forecasts are defined as follows. For each
constituent Cj, the total score is constant on Cj and equals

(3) dj =
n∑
i=1

bi(j)gai(j),Ai,Bi(pi) = ICj (ω)
n∑
i=1

g′Ai,Bi(pi, ω),

where ai(j) and bi(j) are defined in Definition 6, and g′Ai,Bi is defined in
Definition 4.

To avoid ambiguity, we are explicit about what we mean by randomized
rules (which we call randomized forecasts) in these decision problems.

Definition 8 (Randomized Forecast). Let {(A1, B1), . . . , (An, Bn)} be a
finite collection of pairs of events. A randomized forecast is a probability
measure δ on [0, 1]n to be understood as the joint distribution of a random
vector of conditional forecasts for (A1, . . . , An) given (B1, . . . , Bn) respec-
tively. The total scores for the randomized forecast δ are, for j = 1, . . . ,m,

(4) dj =
∫

[0,1]n

n∑
i=1

bi(j)gai(j),Ai,Bi(pi)δ(dp).

The definition of total scores in Definition 8 matches the definition of the
loss function for a randomized rule in statistical decision theory. Of course,
a nonrandomized forecast p can be interpreted as a randomized forecast δ
by letting δ({p}) = 1. In this case, (3) and (4) are the same.

Definition 9 summarizes the above construction of a decision problem.

Definition 9 (Problem A). Let Ω be a space. For each pair (A,B) of
subsets of Ω with B 6= ∅, let (g0,A,B, g1,A,B) be a proper scoring rule. For
each finite collection A = {(A1, B1), . . . , (An, Bn)} of pairs of subsets of Ω
with all Bi nonempty, define the following decision problem (called problem
A). The parameter space is Θ = {C1, . . . , Cm} the constituents from Def-
inition 6, the action space O is [0, 1]n, the set of all vectors p of possible
conditional forecasts for A1, . . . , An given B1, . . . , Bn respectively, and the
loss function is the total score. A randomized forecast δ is Bayes in problem
A if there exists a probability distribution q = (q1, . . . , qm) over Θ such that
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SCORING RULES AND COHERENCE 9

δ minimizes the expected loss, i.e.,

(5)
m∑
j=1

qjdj = inf
δ∗

m∑
j=1

qj

∫
[0,1]n

n∑
i=1

bi(j)gai(j),Ai,Bi(pi)δ
∗(dp),

where the inf is over all randomized forecasts δ∗.

Some simplification of the expression in (5) is possible. First, use the
standard notation for the loss function of a randomized rule to denote, for
each randomized rule δ,

gai(j),Ai,Bi(δ) =
∫

[0,1]n
gai(j),Ai,Bi(pi)δ(dp).

Next, let R be the probability that extends q to the algebra of events gen-
erated by Θ. In particular

R(Ai ∩Bi) =
m∑
j=1

ai(j)bi(j)qj , and R(ACi ∩Bi) =
m∑
j=1

[1− ai(j)]bi(j)qj .

Then (5) becomes

n∑
i=1

{
R(Ai ∩Bi)g1,Ai,Bi(δ) +R(ACi ∩Bi)g0,Ai,Bi(δ)

}
(6)

= inf
δ∗

n∑
i=1

{
R(Ai ∩Bi)g1,Ai,Bi(δ

∗) +R(ACi ∩Bi)g0,Ai,Bi(δ
∗)
}
,

a more familiar formula indicating that δ minimizes the expected total score.
If δ is the nonrandomized forecast p, then (6) becomes

n∑
i=1

{
R(Ai ∩Bi)g1,Ai,Bi(pi) +R(ACi ∩Bi)g0,Ai,Bi(pi)

}
(7)

= inf
q1,...,qn

n∑
i=1

{
R(Ai ∩Bi)g1,Ai,Bi(qi) +R(ACi ∩Bi)g0,Ai,Bi(qi)

}
.

The reader should note that Definition 9 assumes that the scoring rule used
to score the conditional forecast of A given B is the same every time that
(A,B) appears in a finite subcollection A.
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10 SCHERVISH, SEIDENFELD AND KADANE

3.2. Equivalence of Definitions of Coherence. Because we deal with ar-
bitrarily sized collections of forecasts, we want to be able to classify each
such collection as Bayes or not in a manner similar to how an arbitrary
collection of previsions is classified as coherent or not.

Definition 10 (Bayes Forecasts). Suppose that an agent must produce
a conditional forecast for A given B for each pair of events (A,B) in the
collection C. Suppose that, for each (A,B) ∈ C, the conditional forecast
for A given B is scored by a proper scoring rule (g0,A,B, g1,A,B). We say
that a randomized forecast δ is weakly Bayes if, for every finite subcollection
A = {(A1, B1), . . . , (An, Bn)} ⊆ C, δ is Bayes in problem A. A weakly Bayes
forecast δ is strongly Bayes if there exists a finitely additive probability R on
(Ω, 2Ω) that satisfies

n∑
i=1

{
R(Ai ∩Bi)g1,Ai,Bi(δ) +R(ACi ∩Bi)g0,Ai,Bi(δ)

}
(8)

=
n∑
i=1

{
R(Ai ∩Bi)g1,Ai,Bi(R(Ai|Bi)) +R(ACi ∩Bi)g0,Ai,Bi(R(Ai|Bi))

}
,

for every finite subcollection A.

Weakly Bayes forecasts turn out to be the ones that are coherent3,

Lemma 1. If a collection of forecasts is weakly Bayes, then the forecasts
in no finite subcollection are strictly dominated.

The proof of Lemma 1 and the proofs of all other results stated in this
section, appear in Section 5.

Table 1 summarizes our results about the existence of dominating fore-
casts depending on what we assume about the scoring rules.

Lemma 1 together with the results in the second and third rows of Table 1
allow us to derive the following two results:

Corollary 1. Assume that all scoring rules satisfy Assumptions 1–3
and that randomized forecasts are allowed. Then a collection of forecasts is
weakly Bayes if and only if it is coherent3.

Corollary 2. Assume that all scoring rules satisfy Assumptions 1 and 3
and are continuous. Also assume that only nonrandomized forecasts are al-
lowed. Then a collection of forecasts is weakly Bayes if and only if it is
coherent3.
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SCORING RULES AND COHERENCE 11

Table 1

Summary of assumptions and conclusions of results providing dominating or equivalent
forecasts. The first three results comprise Theorem 2 and assume that a collection of

forecasts is given that is not weakly Bayes. The fourth result is Theorem 3 and assumes
that a collection of weakly Bayes forecasts is given.

Conclusions Assumptions Examples to Justify
Assumptions

A possibly randomized fore-
cast weakly dominates.

All scoring rules satisfy As-
sumption 1 and all merely
proper scoring rules satisfy As-
sumptions 2 and 3.

Example 1 and
Lemma 3.

A possibly randomized fore-
cast strictly dominates.

All scoring rules satisfy As-
sumptions 1–3.

Example 2.

A coherent forecast strictly
dominates

All scoring rules are continu-
ous and satisfy Assumptions 1
and 3.

Example 4.

A coherent forecast with the
same total scores.

All scoring rules are continu-
ous and satisfy Assumption 1.

Example 5.

What remains, to establish Theorem 1, is to show that weakly Bayes is
equivalent to coherent1. Our result assumes that all scoring rules are strictly
proper.

Lemma 2. Assume that all scoring rules satisfy Assumption 1. A coherent1
set of forecasts is strongly Bayes. If all of the scoring rules are strictly proper,
every collection of weakly Bayes forecasts is coherent1.

3.3. Weak and Strict Dominance in General. Theorem 2 is our general
result containing conditions for the existence of dominating forecasts of var-
ious sorts when the initial forecasts are not weakly Bayes. Theorem 3 gives
conditions for the existence of a set of coherent forecasts with the same
total scores when the initial set of forecasts is weakly Bayes. The various
conclusions of these theorems are listed here:

1. There exists a finite subcollection {(A1, B1), . . . , (An, Bn)} ⊆ C whose
forecasts P (A1|B1), . . . , P (An|Bn) are not weakly Bayes, and for every
such subcollection there exists a possibly randomized forecast that
weakly dominates P (A1|B1), . . . , P (An|Bn).

2. There exists a finite subcollection {(A1, B1), . . . , (An, Bn)} ⊆ C whose
forecasts P (A1|B1), . . . , P (An|Bn) are not weakly Bayes, and for every
such subcollection there exists a possibly randomized forecast that
strictly dominates P (A1|B1), . . . , P (An|Bn).
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12 SCHERVISH, SEIDENFELD AND KADANE

3. There exists a finite subcollection {(A1, B1), . . . , (An, Bn)} ⊆ C whose
forecasts P (A1|B1), . . . , P (An|Bn) are not weakly Bayes, and for ev-
ery such subcollection there exists a coherent forecast that strictly
dominates P (A1|B1), . . . , P (An|Bn).

4. There exists a coherent collection of forecasts that has the same to-
tal scores as {P (A|B) : (A,B) ∈ C} for every finite subcollection
{(A1, B1), . . . , (An, Bn)} ⊆ C.

We refer to each of these as Conclusion i for i = 1, 2, 3, 4 in the remainder
of the paper.

Theorem 2. Suppose that an agent must provide a conditional forecast
for each pair of events in the collection C. Suppose that the agent chooses
forecasts that are not weakly Bayes in the sense of Definition 10. Assume
that all of the proper scoring rules (mentioned in Definition 10) satisfy As-
sumptions 1 and 3 and that all of the merely proper scoring rules satisfy As-
sumption 2. Then Conclusion 1 holds. If, in addition, Assumption 2 holds
for every scoring rule, then Conclusion 2 holds. If, in addition, all of the
scoring rules are continuous, then Conclusion 3 holds.

Theorem 3. Suppose that an agent must provide a conditional forecast
for each pair of events in the collection C. Suppose that the agent chooses
forecasts that are weakly Bayes in the sense of Definition 10. Assume that
all of the proper scoring rules (mentioned in Definition 10) are continuous
and satisfy Assumptions 1 and 3. Then Conclusion 4 holds.

The proofs of Theorem 2 and 3 appear in Section 5.

4. Examples. In this section, we provide results and examples to illus-
trate why we make each of the assumptions in our various theorems. The
examples involve only marginal previsions. None of the assumptions that we
make is needed solely because we we allow both conditional and marginal
previsions. That is, even if we were to restrict attention solely to marginal
previsions, as [7] do, our proofs would still use all of the assumptions in
order to deal with the examples in this section. To simplify notation, we
do not write all of these marginal previsions as conditional on Ω. Instead,
we leave off the “|Ω” from each prevision in these examples. Similarly, the
scoring rule for scoring the prevision of each event A is denoted (g0,A, g1,A)
instead of (g0,A,Ω, g1,A,Ω). And the collections of pairs of events are written
as collections of individual events because the second coordinate of each pair
is implicitly Ω.
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SCORING RULES AND COHERENCE 13

4.1. Assumption 1. If scoring rules are allowed to be unbounded both
above and below, one runs the risk of encountering∞−∞ in even the most
elementary calculations, such as total scores. The possibility of ∞−∞ also
makes the definition of Bayes rule problematic.

Example 1 illustrates that incoherent1 forecasts may not be even weakly
dominated without Assumption 1. It also shows how a finite collection of
forecasts can be weakly Bayes without being strongly Bayes.

Example 1. Let C = {A1, A2} where A1 ⊂ A2. Suppose also that none of
C1 = A1, C2 = A2 ∩AC1 , and C3 = AC2 is empty. The constituents are then
C1, C2, and C3. Let

(g0,A1(x), g1,A1(x)) = (x2, (1− x)2), and
(g0,A2(x), g1,A2(x)) = (log(x), log(x) + 1/x).

The first is Brier score, while the second is peculiar. To see that the second
scoring rule is strictly proper, note that the expected score (when Pr(A2) = p)
is

(9) (1− p) log(x) + p

[
log(x) +

1
x

]
= log(x) +

p

x
.

The expression in (9) is smooth as a function of x for x > 0, and its deriva-
tive with respect to x is 1/x−p/x2. For p > 0, the derivative equals 0 if and
only if x = p. Also, the second derivative is −1/x2 +2p/x3, which is positive
at x = p, so x = p provides the unique minimum. For p = 0, the expression
in (9) is also minimized uniquely at x = 0.

Now, suppose that an incoherent1 agent assigns P (A1) = 1 and P (A2) =
0. The total scores are d1 =∞, d2 =∞, and d3 = −∞. No forecast can do
better than −∞ on the third constituent, so there is no set of forecasts that
strictly dominates these incoherent1 forecasts. The only way to match −∞
on the third constituent is to forecast 0 for A2. (For a randomized forecast,
there must be positive probability of forecasting 0 for A2.) No matter what
one then forecasts for A1, the total scores are now the same as those of the
incoherent1 forecast. So the incoherent1 forecasts cannot be weakly dominated
by another forecast, coherent1 or otherwise.

The forecasts in this example are Bayes in problem C with respect to a
prior R if and only if R(C3) = 1. For the subcollection A = {A1}, the
forecasts are Bayes in problem A with respect to R if and only if R(A1) = 1.
No prior gives probability 1 to both A1 and C3 as they are disjoint. Hence,
although the choices P (A1) = 1 and P (A2) = 0 are weakly Bayes, they are
not strongly Bayes.
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14 SCHERVISH, SEIDENFELD AND KADANE

4.2. Assumption 2. This is the assumption that each branch of the scor-
ing rule is continuous at the point where it achieves its minimum. Discon-
tinuity at this low end of the scoring rule can have curious consequences
for the existence of dominating forecasts. Example 2 illustrates why we dis-
tinguish between Conclusions 1 and 2 depending on whether Assumption 2
holds for all scoring rules.

Example 2. Let C = {A1, A2} with A2 = AC1 . Suppose also that neither
A1 nor A2 is empty. The constituents are C1 = A1 and C2 = AC1 . Let
(g0,A1(x), g1,A1(x)) = (x2, (1 − x)2). The other scoring rule is g1,A2(x) =
x− log(x) and

g0,A2(x) =

{
0 if x = 0,
1 + x if x > 0.

To see that the second scoring rule is strictly proper, note that the expected
score (when Pr(A2) = p) is

(1− p)(1 + x) + p[x− log(x)] if x > 0,
∞ if x = 0 and p > 0,
0 if x = 0 and p = 0.

Clearly, x = 0 minimizes this function if and only if p = 0. If p > 0, the
function is smooth for x > 0 with derivative (with respect to x) equal to
1 − p/x and second derivative p/x2. The derivative equals 0 if and only if
x = p. Also, the second derivative is positive at x = p, so x = p provides the
unique minimum.

Now, suppose that an incoherent1 agent assigns P (A1) = 1/2 and P (A2) =
0. The total scores are d1 = 1/4 and d2 = ∞. Every randomized forecast
that has a score on the first constituent of less than 1/4, must choose a fore-
cast of 0 for A2 with probability greater than 3/4. Every randomized forecast
that assigns positive probability to a 0 forecast for A2 produces a score on
the second constituent of ∞. So the incoherent forecasts cannot be strictly
dominated. The forecasts P ′(A1) = 1 and P ′(A2) = 0 weakly dominate.

Example 3 shows that a collection of forecasts can be weakly Bayes with-
out being strongly Bayes if some merely proper scoring rules fail to satisfy
Assumption 2, even when all scoring rules satisfy Assumption 1. This is
why Lemma 10 and Conclusion 1 in Theorem 2 assume that merely proper
scoring rules satisfy Assumption 2.

Example 3. Let C = {A0, A1, A2, . . .} where each event is nonempty,
A1 ⊃ A2 ⊃ · · · and A0 ⊆ Ai for all i > 0. Suppose that an agent assigns
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SCORING RULES AND COHERENCE 15

previsions such that 0 < P (Ai) < 1 for all i but for i > 0, P (Ai) ↓ 0.
Suppose that (g0,Ai , g1,Ai) is Brier score for all i > 0 but

g0,A0(x) =


0 if x = 0,
1/4 if 0 < x < 1/2,
x2 if 1/2 ≤ x ≤ 1,

g1,A0(x) =


∞ if x = 0,
1/4 if 0 < x < 1/2,
(1− x)2 if 1/2 ≤ x ≤ 1.

To see that this last scoring rule is proper, argue by cases. If Pr(A0) = 0,
then the expected score is 0 if x = 0 and strictly positive otherwise. If 0 <
Pr(A0) ≤ 1/2, then the expected score is ∞ if x = 0, 1/4 if 0 < x ≤ 1/2,
and strictly greater than 1/4 otherwise. If 1/2 < Pr(A0) = p ≤ 1, then the
expected score is ∞ if x = 0, 1/4 if 0 < x ≤ 1/2, and (1−p)x2 +p(1−x)2 if
1/2 < x ≤ 1. The last quantity is uniquely minimized at x = p with a value
p(1− p) that is strictly less than 1/4.

For every finite subcollection A of C that does not include A0, the corre-
sponding forecasts are Bayes in problem A because they are coherent1. For
each finite subcollection A that includes A0, the corresponding forecasts are
still Bayes in problem A, because the score from P (A0) is identical to the
score one would get by replacing P (A0) by any number strictly between 0 and
the smallest of the P (Ai) for Ai ∈ A. Hence, the forecasts might as well be
coherent1 as far as the scores are concerned. So, the collection of forecasts
is weakly Bayes.

However, the entire collection of forecasts is not strongly Bayes. The rea-
son is that every finitely additive probability R that makes (8) true for all of
the finite subcollections that do not include A0 has R(A0) = 0. But (8) does
not hold with R(A0) = 0 when the finite subcollection includes A0.

4.3. Assumption 3. Scoring rules that violate Assumption 3 are patho-
logical as the following result shows. Lemma 3 characterizes scoring rules
that satisfy Assumption 1 but violate the Assumption 3.

Lemma 3. Let g0 and g1 be functions that are bounded below. Assume
that either g0(x) or g1(x) is infinite for at least one value of x ∈ (0, 1). Then
(g0, g1) is a proper scoring rule if and only if the following conditions hold:

• For k = 0, 1, gk(x) is minimized at x = k.
• For all 0 ≤ x ≤ 1, max{g0(x), g1(x)} =∞.

Such a scoring rule is not strictly proper.
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16 SCHERVISH, SEIDENFELD AND KADANE

Proof. The expected score for forecasting x when the probability of the
event is p equals

(10) (1− p)g0(x) + pg1(x).

It is now clear that the first condition is necessary and sufficient for (10) to
be minimized at x = p if p ∈ {0, 1}. It is also clear that the second condition
is sufficient for (10) to be minimized at x = p for all p ∈ (0, 1). To see
that the second condition is necessary, assume that g0(x0) = ∞ for some
x0 ∈ (0, 1). (A similar argument works if g1(x1) = ∞ for some x1 ∈ (0, 1).)
The only way that (10) can be minimized at x = p when p = x0 is for (10)
to be infinite for all 0 ≤ x ≤ 1. That is, the second condition must hold.
Since the expected score is minimized at all x when 0 < p < 1, such scoring
rules are not strictly proper.

Notice that the scoring rules in Lemma 3 all have infinite expected score
whenever a forecast is strictly between 0 and 1 and/or the probability of the
event is strictly between 0 and 1.

4.4. Continuity. Discontinuous scoring rules tend to have risk sets that
do not contain all of the lower boundary. Hence, the admissible rules will
not always form a complete class. That is, there may be inadmissible rules
that are dominated only by other inadmissible rules but not by admissible
rules. Example 4 illustrates why we cannot expect a dominating coherent1

set of forecasts with discontinuous scoring rules even though there are other
incoherent1 dominating strategies.

Example 4. Consider the scoring rule

g0(x) =

{
x2 if x ≤ 1/2,
1/2 + x2 if x > 1/2,

g1(x) =

{
1/2 + (1− x)2 if x ≤ 1/2,
(1− x)2 if x > 1/2.

If p ∈ {0, 1}, the expected score is clearly minimized uniquely by forecasting
x = p. If 0 < p < 1, the expected score from forecasting x is{

p[1/2 + (1− x)2] + (1− p)x2 if x ≤ 1/2,
p(1− x)2 + (1− p)(1/2 + x2) if x > 1/2.

If p ≤ 1/2, the first branch has a unique minimum at x = p, the second
branch is strictly increasing and there is a jump up immediately after x =
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1/2, so the expected score is minimized uniquely at x = p. (If p = 1/2, the
jump is of size 0.) Similarly, if p > 1/2, the second branch has a unique
minimum at x = p, the first branch is strictly decreasing and there is a jump
down immediately after x = 1/2, so the expected score is minimized uniquely
at x = p. Hence, the scoring rule is strictly proper.

Next, consider a case with n = 2, A2 = AC1 with neither event empty. Use
the same scoring rule for both events. There are two constituents, C1 = A1

and C2 = AC1 . Let the incoherent1 forecasts be p1 = 0.6 and p2 = 0.7.
Then d1 = 1.15 and d2 = 0.95. A forecast (r1, r2) is coherent1 if and only
if r1 + r2 = 1. For each coherent1 forecast with r1 < 1/2, the score on C1

is 1 + (1 − r1)2 + r2
2, which is always strictly greater than 1.5. For each

coherent1 forecast with r1 > 1/2, the score on C2 is 1 + r2
1 + (1− r2)2 which

is always strictly greater than 1.5. For the coherent1 forecast r1 = r2 = 0.5,
the scores on both C1 and C2 are equal to 1.0. Hence, no coherent1 forecast
can weakly dominate the incoherent1 forecast p1 = 0.6 and p2 = 0.7. On
the other hand, there are other incoherent1 forecasts that dominate (p1, p2).
For example p′1 = 0.55 and p′2 = 0.65 has total scores of d′1 = 1.125 and
d′2 = 0.925.

Example 5 illustrates why Theorem 3 doesn’t deal with the case in which
an incoherent1 set of forecasts is Bayes but the scoring rules are not contin-
uous.

Example 5. Consider the scoring rule

g0(x) =

{
x2 if x ≤ 1/2,
1 if x > 1/2,

g1(x) =

{
1/2 + (1− x)2 if x ≤ 1/2,
0 if x > 1/2.

Let 0 ≤ p ≤ 1. The expected score for forecasting x is{
p[1/2 + (1− x)2] + (1− p)x2 if x ≤ 1/2,
1− p if x > 1/2.

This is minimized at x = p for all p. Of course if p > 1/2, it is minimized
at all x > 1/2 also. The scoring rule is merely proper.

Next, consider a case with n = 2, A2 = AC1 with neither event empty. Use
the same scoring rule for both events. There are two constituents, C1 = A1

and C2 = AC1 . Let the incoherent forecasts be p1 = 0.5 and p2 = 0.7. Then
d1 = 1/4 and d2 = 7/4. If the probability of A1 is 1/2, the Bayes rule
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18 SCHERVISH, SEIDENFELD AND KADANE

assigns both events probability 1/2 and the total scores are both equal to 1.
The expected total score is 1, which is the same as the total expected score
of the incoherent1 forecasts. Hence, the incoherent1 forecasts are Bayes with
all probabilities strictly positive and hence cannot be dominated. In order for
forecasts (r1, r2) to have total score equal to 1/4 on C1 one needs r1 = 1/2
and r2 > 1/2, which is not coherent1.

Example 6 illustrates how strongly Bayes forecasts can be weakly domi-
nated if some merely proper scoring rules are discontinuous.

Example 6. Consider the collection C = {A1, A2, A3} with A3 = (A1 ∪
A2)C and A1 ∩A2 6= ∅. The constituents are C1 = A1 ∩A2, C2 = A1 ∩AC2 ,
C3 = AC1 ∩A2, and C4 = A3. The forecasts are P (A1) = P (A2) = P (A3) =
1/2. The scoring rules (g0,Ai , g1,Ai) for i = 1, 2 are both the following:

g0(x) =

{
0 if x < 1/2,
x2 if x ≥ 1/2,

g1(x) =

{
1/2 if x < 1/2,
(1− x)2 if x > 1/2.

To see that this is proper, let 0 ≤ p ≤ 1. The expected score for forecasting
x is {

p/2 if x < 1/2,
p(1− x)2 + (1− p)x2 if x ≥ 1/2.

This is minimized at x = p for all p. Of course if p < 1/2, it is minimized
at all x < 1/2 also. The scoring rule is merely proper. Let (g0,A3 , g1,A3) be
(2g0, 2g1). The forecasts are Bayes with respect to every probability R that
satisfies R(C1) = 1/2, R(C2) = 0, R(C3) = 0, and R(C4) = 1/2. The total
scores are dj = 1 for all j. The alternative forecasts q1 = q2 = q3 = 0 have
total scores of d1 = d4 = 1, and d2 = d3 = 1/2, which weakly dominate the
original strongly Bayes forecasts.

4.5. Conclusion 3. Example 7 illustrates why Theorem 2 has the weak
Conclusion 3 rather than the stronger claim that the same set of coherent1

forecasts dominates every incoherent1 subcollection.

Example 7. Let C = {A1, A2, A3, A4, A5} where A1, A2, A3 form a par-
tition of Ω into three nonempty events, A4 = A1 ∪ A2 and A5 = A2 ∪ A3.
Suppose that the forecast for each event is scored using Brier score. Consider
the following incoherent1 forecasts: P (A1) = 1.0, P (A2) = 0.3, P (A3) = 1.0,
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P (A4) = 0.1, and P (A5) = 0.1. The subcollection {A3, A4} is not Bayes. The
constituents are C1 = A4 and C2 = A3 with total scores of d1 = 1.81 and
d2 = 0.01. Every set of forecasts that dominates these must assign probabil-
ity less than 0.1 to A4. The subcollection {A1, A5} is also incoherent1. The
constituents now are B′1 = A1 and B′2 = A5 with total scores of d′1 = 0.01
and d′2 = 1.81. Every set of forecasts that dominates these must assign prob-
ability less than 0.1 to A5. If a single set of forecasts were to dominate both
of the two finite subcollections above, it would have to assign probability less
than 0.1 to each of A4 and A5. But A4 ∪A5 = Ω, hence no coherent1 set of
forecasts can dominate both of the incoherent1 subcollections above.

5. Proofs of Results.

5.1. Some General Results About Scoring Rules. Some of our results rely
on an understanding of the structure of general scoring rules. We make us
of the following two results from [10].

Theorem 4 ([10, Theorem 4.2]). Let (g0, g1) be a left-continuous scoring
rule that satisfies Assumptions 1–3 and such that g1(x) doesn’t jump to ∞
at x = 0. The scoring rule is proper if and only if there exists a σ-finite
measure λ on [0, 1) such that for all x

(11) g1(x) =
∫

[x,1)
(1− q)λ(dq), and g0(x) =

∫
[0,x)

qλ(dq).

The scoring rule is strictly proper if and only if, in addition, λ gives positive
measure to every nondegenerate interval.

Lemma 4 ([10, Lemma A.2]). Let (g0, g1) be a proper scoring rule. Let
0 ≤ p ≤ 1, and consider mp(x) = pg1(x) + (1 − p)g0(x) as a function of
x for fixed p. If g1 and g0 are bounded in a neighborhood of p, then mp is
continuous at x = p.

We also need a few additional general results about scoring rules.

Lemma 5. Suppose that a left-continuous merely proper scoring rule (g0, g1)
satisfies Assumptions 1–3. Let 0 ≤ p ≤ 1, and suppose that x = p′ 6= p also
minimizes (1 − p)g0(x) + pg1(x). Then, both g0 and g1 are constant on the
open interval from p to p′. If g0 and g1 are continuous, then they are constant
on the closed interval from p to p′.
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Proof. Assume that p′ > p. The other case is similar. By (11), we have

(12) pg1(p′) + (1− p)g0(p′)− [pg1(p) + (1− p)g0(p)] =
∫

[p,p′)
(p′ − q)λ(dq).

Since p′− q > 0 for q ∈ (p, p′), the fact that the left-hand side of (12) equals
0 implies that λ((p, p′)) = 0. From the representation in Theorem 4, we see
that both g0 and g1 are constant on each interval to which λ assigns 0 mass.
In the continuous case, all such intervals are closed.

Lemma 6. Let (g0, g1) be a (strictly) proper scoring rule that satisfies
Assumption 3. For each 0 < x < 1, define hi(x) = limy↑x gi(y). Then (h0, h1)
is (strictly) proper.

Proof. Let mp(x) be as in Lemma 4, and define `p(x) = ph1(x) + (1 −
p)h0(x). If there were an x ∈ (0, 1) at which one of g0 or g1 were discontin-
uous, but not the other, then mx would be discontinuous at x, which con-
tradicts Lemma 4. It follows that g0 and g1 are discontinuous at the same
set of points in (0, 1). From the definition of (h0, h1) we see that all four
functions g0, g1, h0, h1 share the same set of discontinuities. Let 0 < p < 1
be a discontinuity point of (g0, g1) (if any). Then by Lemma 4,

ph1(p) + (1− p)h0(p) = p lim
x↑p

g1(x) + (1− p) lim
x↑p

g0(x)

= lim
x↑p

[pg1(x) + (1− p)g0(x)

= pg1(p) + (1− p)g0(p).

Hence, `p(p) = mp(p) for all 0 < p < 1. For p ∈ {0, 1}, we also have
`p(p) = mp(p), because gi = hi at both endpoints for i = 0, 1. For x 6= p and
x ∈ {0, 1}, we have

(13) ph1(p) + (1− p)h0(p) = pg1(p) + (1− p)g0(p) ≤ pg1(x) + (1− p)g0(x).

For x 6= p and 0 < x < 1, we have
(14)
ph1(p) + (1− p)h0(p) ≤ lim

y↑x
[pg1(y) + (1− p)g0(y)] = ph1(x) + (1− p)h0(x).

Together (13) and (14) imply that (h0, h1) is proper. If (g0, g1) is strictly
proper, then the inequality is strict in (13). Assume by way of contradiction
that the inequality is equality in (14). Apply Lemma 5 to (h0, h1) to conclude
that h0 and h1 are both flat on the open interval between p and x. Theorem 4
implies that h0 and h1 are monotone, so they have at most countably many
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discontinuities. Hence g0 and g1 have at most countably many discontinuities
and g0 and g1 are also both flat on the interval between p and x. This
contradicts the fact that (g0, g1) is strictly proper.

Lemma 7 extends one direction of Theorem 4 to general scoring rules.

Lemma 7. Let (g0, g1) be a proper scoring rule that satisfies Assump-
tions 1–3. Then there exists a σ-finite measure λ on [0, 1) such that for all
continuity points x ∈ (0, 1)

g1(x) =
∫

(x,1)
(1− q)λ(dq), and g0(x) =

∫
(0,x)

qλ(dq).

Proof. Let (g0, g1) be a proper scoring rule, and create the left-continuous
proper scoring rule (h0, h1) in Lemma 6. First, assume that g1(x) does not
jump to ∞ at x = 0. Note that gi(x) = hi(x) for all continuity points x and
i = 0, 1. The conclusion now follows from Theorem 4 applied to (h0, h1).
Finally, if g1(x) jumps to ∞ at x = 0, let h′1(0) = limx↓0 g1(x) and let
h′i(x) = hi(x) for all other i and x. If we can show that (h′0, h

′
1) is proper,

the above reasoning will finish the proof. The only way that (h′0, h
′
1) could

fail to be proper is if there exists p > 0 such that ph′1(0) + (1 − p)h′0(0) <
ph′1(p) + (1 − p)h′0(p). But, both h′0 and h′1 are continuous at 0, hence this
inequality would imply that ph1(x) + (1 − p)h0(x) < ph1(p) + (1 − p)h0(p)
for some 0 < x < p which contradicts (h0, h1) being proper.

Lemma 8. Suppose that (g0, g1) is a proper scoring rule that satisfies
Assumptions 1–3. Define m(p) = (1− p)g0(p) + pg1(p). Then

lim
p→0

m(p) = lim
p→1

m(p) = 0.

Proof. We prove the limit at 0, as the limit at 1 is similar. Since g0(p)
goes to 0, we need only prove that pg1(p) goes to 0. Suppose, to the contrary,
that it does not go to 0. For 0 < p < 1, m(p) is the pointwise minimum of
a collection of linear functions and hence is concave and continuous on the
open interval. It follows that limp→0 pg1(p) exists. Let the limit be c > 0.
From Lemma 7, for every continuity point p of g0 and every continuity point
t ∈ (p, 1),

pg1(p) = p

∫
(p,t)

(1− q)λ(dq) + pg1(t).

Hence, for every continuity point t ∈ (0, 1), limp→0 p
∫

(p,t)(1 − q)λ(dq) = c.
Let {pn}∞n=1 be a sequence of continuity points of g0 that converges to 0. In
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the integral above, 1− q > 1− t for all q ∈ (p, t), hence for every continuity
point t ∈ (0, 1), pnλ((pn, t)) eventually gets larger than c/2. Let t > 0 be a
continuity point small enough so that g0(t) < c/3. It follows from Lemma 7
that, for all but finitely many n,

c

3
> g0(t) ≥

∫
(pn,t)

qλ(dq) ≥ pnλ([pn, t)) >
c

2
,

a contradiction.

5.2. Equivalence of Definitions of Coherence. In this section, we prove
Lemma 1 and Lemma 2.

Lemma 1. Let A = {(A1, B1), . . . , (An, Bn)} be a finite subcollection,
and let p1, . . . , pn be the conditional forecasts. The left-hand side of (7) and
the left-hand side of (8) are the expected total score under the probability
R. If the forecasts in this subcollection were strictly dominated, then the
dominating forecasts would have strictly smaller score for every ω. Since
there are only finitely many different total scores, the expected total score,
would be strictly smaller for every finitely additive probability, hence the
dominated forecasts could not satisfy (6) and they could not satisfy (8) and
hence they would not be weakly Bayes.

The proof of Lemma 2 is broken into a series of intermediate results.

Lemma 9. Suppose that (8) holds and that the right-hand side of (8) is
finite. Then for each i = 1, . . . , n,

R(Ai ∩Bi)g1,Ai,Bi(δ) +R(ACi ∩Bi)g0,Ai,Bi(δ)
= R(Ai ∩Bi)g1,Ai,Bi(R(Ai|Bi)) +R(ACi ∩Bi)g0,Ai,Bi(R(Ai|Bi)).(15)

Proof. If R(Bi) = 0, the result is trivial. So assume that R(Bi) > 0.
Because the scoring rule is proper, we know that for each i

R(Ai|Bi)g1,Ai,Bi(δ) + [1−R(Ai|Bi)]g0,Ai,Bi(δ)
≥ R(Ai|Bi)g1,Ai,Bi(R(Ai|Bi)) + [1−R(Ai|Bi)]g0,Ai(R(Ai|Bi)).

If the inequality above were strict for some i with R(Bi) > 0, then the
left-hand side of (8) would be strictly larger than the right-hand side of
(8).

Lemma 10. Assume that all scoring rules satisfy Assumption 1 and that
all merely proper scoring rules satisfy Assumptions 2 and 3. If a collection
of forecasts is weakly Bayes, then it is strongly Bayes.
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Proof. For every finite subcollection of C, there exists a finitely additive
probability R such that (8) holds. We show that there is an R that works
for all finite subsets. Let A = {(A1, B1), . . . , (An, Bn)} be an arbitrary finite
subcollection of C. Let PA = {R : (8) holds}. We would like to show first
that PA is closed in the topology of pointwise convergence, which is also
the product topology on the function space P = [0, 1]2

Ω
which includes all

finitely additive probabilities on Ω. All strictly proper scoring rules satisfy
Assumption 3. Assumptions 1 and 3 guarantee that the right-hand side of
(8) is always finite. Lemma 9 then says that for each R ∈ PA and each
i, (15) holds. Hence, PA =

⋂n
i=1 P{(Ai,Bi)}. Next, we write each P{(Ai,Bi)}

as the inverse image of a closed set under a continuous function. For each
A ∈ 2Ω, the coordinate projection function fA : P → [0, 1], defined by
fA(R) = R(A), is continuous. For each i, define the function

`i(e1, e2) =

{
e1g1,Ai,Bi

(
e1

e1+e2

)
+ e2g0,Ai,Bi

(
e1

e1+e2

)
if e1 + e2 > 0,

0 otherwise,

for 0 ≤ e1, e2 ≤ 1. We can write

P{(Ai,Bi)} = (fAi∩Bi , fACi ∩Bi)
−1(Di),

where
(16)
Di = {(e1, e2) : e1g1,Ai,Bi(δ) + e2g0,Ai,Bi(δ) = `i(e1, e2), and e1 + e2 ≤ 1}.

If Di is closed, then so is P{(Ai,Bi)}. The argument that Di is closed differs
depending on whether or not the scoring rule (g0,Ai,Bi,, g1,Ai,Bi) is strictly
proper. If the scoring rule is strictly proper, then the ith coordinate of the
randomized forecast δ must be nonrandomized since only nonrandomized
rules can be weakly Bayes with strictly proper scoring rules. Let the δ assign
probability 1 to the ith coordinate being p. In this case Di = {(e1, e2) :
e1(1− p) = e2p}, which is a closed set.

If the scoring rule is merely proper, we argue as follows. Since Di is a sub-
set of IR2, it is closed if it contains the limit of every convergent sequence. Let
{(e1,n, e2,n)}∞n=1 be a convergent sequence in Di. Let the limit be (e1,0, e2,0).
We need to consider two cases. First, if e1,0 + e2,0 = 0, then (e1,0, e2,0) ∈ Di

trivially. For the rest of this part of the proof, assume that e1,0+e2,0 > 0. De-
fine h(e1, e2) = e1/(e1+e2), and let rn = h(e1,n, e2,n) for n = 0, 1, . . .. Then h
is continuous at (e1,0, e2,0) and rn converges to r0. We can write `i(e1, e2) =
(e1 + e2)`∗i (h(e1, e2)), where `∗i (r) = rg1,Ai,Bi(r) + (1− r)g0,Ai,Bi(r). rn = r0

for all n and (e1,0, e2,0) ∈ Di. Lemma 8 establishes that each `∗i is continuous
on the closed interval [0, 1]. So, `i is continuous at (e1,0, e2,0) which is then
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in Di. Hence, Di is closed and so is P{(Ai,Bi)}. It follows that each PA is
closed.

Finally, we show that the intersection of all PA is nonempty. It is easy
to see that if B is a finite subcollection such that B ⊆ A, then PA ⊆ PB.
It follows that the collection of all PA has the finite intersection property.
Because the set of finitely additive probabilities is compact in the product
topology, it follows that the intersection of all PA is nonempty. That is,
there is at least one finitely additive probability R such that (8) holds for
all finite subcollections. Hence the forecasts are strongly Bayes.

The connection between coherent1 forecasts and strongly Bayes forecasts
needed for Lemma 2 relies on the ability to extend a collection of coherent1

previsions into a linear functional on a linear space. The next two theo-
rems extend de Finetti’s fundamental theorem of prevision [3, Section 3.10]
to deal explicitly with conditional previsions. The fundamental theorem of
prevision applies to more general random variables than indicators of events.
In keeping with de Finetti’s original presentation, we state and prove the
next two results and their corollary for bounded random variables rather
than merely for indicators of events. In this paper, we use the results only
for indicators of events.

Theorem 5 (Fundamental Theorem of Prevision). Let C be a set of pairs
where the first element of each pair is a bounded random variable and the
second is a nonempty event. For each (X,B) ∈ C, let P (X|B) be a condi-
tional prevision. Assume that the conditional previsions are coherent1. Let
(X,Ω) 6∈ C. Then there exists a closed interval [c, d] such that P (X|Ω) = x
is coherent1 with all the other conditional previsions if and only if c ≤ x ≤ d.

Proof. Define the linear space

Y =

{
n∑
i=1

αiIBi [Xi − P (Xi|Bi)] + f : (Xi, Bi) ∈ C and(17)

αi ∈ IR for i = 1, . . . , n and f ∈ IR

}
.

For each Y ∈ Y expressed as in (17), let L(Y ) = f . The coherence1 of the
previsions makes it clear that L is well defined. (If the same Y could be
expressed two different ways with different values of f , then book could be
made by trading the two different representations of Y against each other.)
It is also easy to see that L is a linear functional defined on Y. Define the
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following two sets

P = {Y ∈ Y : Y ≤ X},
P = {Y ∈ Y : Y ≥ X}.

Set c = supY ∈P L(Y ) and d = infY ∈P L(Y ). For the “if” direction, suppose
that c ≤ x ≤ d. Suppose, to the contrary, that there exist (X1, B1), . . . , (Xn, Bn)
in C and real numbers α1, . . . , αn and β 6= 0 and ε > 0 such that

(18) β(X − x) +
n∑
i=1

αiIBi [Xi − P (Xi|Bi)] < −ε.

If β > 0, then (18) implies

(19) X < x− ε

β
−

n∑
i=1

αi
β
IBi [Xi − P (Xi|Bi)].

The right side of (19) is an element of P , hence d ≤ x− ε
β which contradicts

x ≤ d. Similarly, if β < 0, we arrive at a contradiction to c ≤ x. For the
“only if” direction, suppose that P (X|Ω) = x is coherent1 with the other
previsions. Suppose, to the contrary, that x < c. Let Y =

∑n
i=1 αiIBi [Xi −

P (Xi|Bi)] + f ∈ P be such that Y ≤ X and f > (c + x)/2. The following
gambles make book against these previsions:

−(X − x) + (Y − f) ≤ x− f < x− c
2

< 0.

Similarly, if x > d we can find a Y ∈ P that allows us to make book.

Theorem 6 (Fundamental Theorem of Conditional Prevision). Let C be a
set of pairs where the first element of each pair is a bounded random variable
and the second is a nonempty event. For each (X,B) ∈ C, let P (X|B) be a
conditional prevision. Assume that the conditional previsions are coherent1.
Let (X,D) 6∈ C with D 6= ∅. Then there exists a set E of real numbers such
that P (X|D) = x is coherent1 with all the other conditional previsions if
and only if x ∈ E.

Proof. First, suppose that both (D,Ω) and (XID,Ω) are in C. de Finet-
tie [3] proves that a necessary and sufficient condition for P (X|D) to be
coherent1 is P (XID|Ω) = P (X|D)P (D|Ω). If P (D|Ω) > 0, then E =
{P (XID|Ω)/P (D|Ω)}. If P (D|Ω) = 0, then E = IR. Next, suppose that
(D,Ω) ∈ C but (XID,Ω) 6∈ C. If P (D|Ω) = 0, then E = IR. If P (D|Ω) 6= 0,
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apply Theorem 5 to find an interval [c, d] of possible coherent1 values for
P (XID|Ω). Then E = {x/P (D|Ω) : c ≤ x ≤ d}. Next, assume that
(D,Ω) 6∈ C but (XID,Ω) ∈ C. Apply Theorem 5 to find an interval [c, d]
of possible coherent1 values for P (D|Ω). If c = 0, then E = IR. If c > 0,
then E = {P (XID|Ω)/x : c ≤ x ≤ d}. Finally, assume that neither (D,Ω)
nor (XID,Ω) is in C. Apply Theorem 5 to find an interval [c1, d1] of possi-
ble coherent1 values of P (D|Ω). For each x ∈ [c1, d1], apply the argument
above for the case in which (D,Ω) ∈ C but (XID,Ω) 6∈ C to find a set Ex of
possible coherent1 values of P (X|D). Then E = ∪x∈[c1,d1]Ex.

Corollary 3. Let C1 and C2 be two disjoint sets of pairs where the
first element of each pair is a bounded random variable and the second
is a nonempty event. For each (X,B) ∈ C1, let P (X|B) be a conditional
prevision. Assume that the conditional previsions are coherent1. For each
(X,B) ∈ C2, there exists a conditional prevision P (X|B) such that {P (X|B) :
(X,B) ∈ C1 ∪ C2} are coherent1.

Proof. Use Zermelo’s lemma to well-order the elements of C2. Let D
be the corresponding set of ordinals. We use transfinite induction to fin-
ish the proof. For each successor ordinal α ∈ D, apply Theorem 6 to find
a conditional prevision P (Xα|Bα) that is coherent1 with all earlier previ-
sions. For each limit ordinal β ∈ D, it is easy to see that the previsions
{P (Xα|Bα) : α < β} ∪ {P (X|B) : (X,B) ∈ C1} are coherent1 because ev-
ery finite subcollection was verified as coherent1 at an earlier stage in the
induction.

Lemma 11. Let C be a collection of pairs of events. A collection of con-
ditional previsions {P (A|B) : (A,B) ∈ C} is coherent1 if and only if there
exists a finitely additive probability R on (Ω, 2Ω) that agrees with P on C in
the following sense: For each (A,B) ∈ C, R(B)P (A|B) = R(A ∩B).

Proof. For the “if” part, assume that such an R exists. Let

A = {(A1, B1), . . . , (An, Bn)} ⊆ C

be a finite subcollection. It is trivial to extend R to a positive linear func-
tional L on the linear span L of constants and the indicators IAi∩Bi and IBi
for i = 1, . . . , n by

L

(
c+

n∑
i=1

aiIAi∩Bi +
n∑
i=1

biIBi

)
= c+

n∑
i=1

aiR(Ai ∩Bi) +
n∑
i=1

biR(Bi).
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Suppose, to the contrary that there exist α1, . . . , αn and ε > 0 such that

(20) X =
n∑
i=1

αiIBi [IAi − P (Ai|Bi)] < −ε.

Note thatX in (20) is an element of L. Because R agrees with the conditional
previsions, X equals

(21)
n∑
i=1

αi[IAi∩Bi −R(Ai ∩Bi)]−
n∑
i=1

αiP (Ai|Bi)[IBi −R(Bi)].

It follows from (21) that L(X) = 0, but (20) implies that L(X) < −ε, a
contradiction. Hence, no book can be made and the conditional previsions
are coherent1. For the “only if” part, assume that the conditional previsions
are coherent1. Extend the collection of conditional previsions to include all
pairs (B,Ω) and (A∩B,Ω) for each (A,B) ∈ C using Corollary 3. Let L′ be
the linear span of all constants and indicators IA∩B and IB for (A,B) ∈ C.
On L′, define

L′
(
c+

n∑
i=1

aiIAi∩Bi +
n∑
i=1

biIBi

)
= c+

n∑
i=1

aiP (Ai ∩Bi|Ω) +
n∑
i=1

biP (Bi|Ω).

Note that L′ satisfies L′(X) ≤ ‖X‖∞ and L′(1) = 1. According to the
Hahn-Banach theorem, L′ can be extended to a linear functional on the
linear span of all indicators of subsets of Ω. This extension, when restricted
to the indicators of events, is a finitely additive probability R that agrees
with P on C.

Lemma 2. Let {P (A|B) : (A,B) ∈ C} be a collection of conditional fore-
casts. To prove the first claim, assume that the forecasts are coherent1. Let
R be as in Lemma 11. To prove the second claim, assume that all of the
scoring rules are strictly proper and that the forecasts are weakly Bayes.
Since all strictly proper scoring rules satisfy Assumption 3, the forecasts
are strongly Bayes by Lemma 10. Let R be as in Definition 10, and let
{(A1, B1), . . . , (An, Bn)} ⊆ C be a finite subcollection. The right-hand side
of (8) is always finite. Lemma 9 says that (15) holds for all i = 1, . . . , n.
Because the scoring rules are strictly proper, P (Ai|Bi) = R(Ai|Bi) for all i
such that R(Bi) > 0. Since this is true for every finite subset, R agrees with
P on all of C. Lemma 11 completes the proof.
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5.3. Theorem 3. We have enough assumptions to apply Lemma 10 so
that the forecasts are strongly Bayes. Let R be as in Definition 10. Let
{(A1, B1), . . . , (An, Bn)} ⊆ C be a finite subcollection. We can also apply
Lemma 9. For each i such that P (Ai|Bi) 6= R(Ai|Bi) (if there are any), apply
Lemma 5 to (g0,Ai , g1,Ai) to conclude that gk,Ai(P (Ai)) = gk,Ai(R(Ai)) for
k = 0, 1. For all i such that P (Ai) = R(Ai) (if there are any) we already
have gk,Ai(P (Ai)) = gk,Ai(R(Ai)) for k = 0, 1. Since the finite subcollection
was arbitrary, Conclusion 4 now follows.

5.4. Theorem 2 and its corollaries. The proof of Theorem 2 relies on a
general result from decision theory, a strengthening of the standard minimax
theorem based on a construction of [8].

Definition 11 (Lower Boundary). Let Ω = {θ1, . . . , θm} be a finite pa-
rameter space and let ℵ be an action space. The Risk set is

R = {(R(C1, δ), . . . , R(Cm, δ)) : δ is a randomized rule}.

The lower boundary of the risk set is

∂L = {(x1, . . . , xm) ∈ R : yi ≤ xi for all i and yi < xi for some i
implies (y1, . . . , ym) 6∈ R}.

The risk set is closed from below if ∂L ⊆ R.

Theorem 7. Let Θ = {θ1, . . . , θm} be a finite parameter space. Let A be
an action space. Let L : Θ×A → IR be a loss function that is bounded below.
Let a0 ∈ A be an action that is not Bayes for even a single prior distribution
and such that L(θj , a0) <∞ for all j. Then, there exists a randomized rule
that strictly dominates a0. If the risk set for the decision problem is closed
from below, then there is a dominating rule that is a Bayes rule with respect
to some prior.

Proof. Replace L by L′(θj , a) = L(θj , a) − L(θj , a0). Then L′ is still
bounded below and the risk set is closed from below if and only if the
original risk set was closed from below. The risk function of a randomized
rule δ is

R(θj , δ) =
∫
A
L′(θj , a)δ(da).

The Bayes risk of δ with respect to a prior s = (s1, . . . , sm) is

r(s, δ) =
m∑
j=1

sjR(θj , δ).
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The minimax theorem (for example, [11, Theorem 3.77]) says that the de-
cision problem has a least favorable distribution u = (u1, . . . , um) and a
minimax value

inf
δ

sup
j
R(θj , δ) = inf

δ
r(u, δ).

By construction, the nonrandomized rule a0 is an equalizer with L′(θj , a0) =
0 for each j. Since a0 is not a Bayes rule with respect to the least favorable
distribution, its expected loss (namely 0) is strictly greater than the minimax
value. Hence, there exists a rule δ such that R(θj , δ) < 0 for all j, and so∫

A
L(θj , a)δ(da) < L(θj , a0), for all j.

This completes the proof of the first claim.
If the risk set is closed from below, it follows from [11, Theorem 3.77] that

there is a minimax rule δ0 that is also a Bayes rule with respect to u.

The proof of Theorem 2 begins by noting that we have enough assump-
tions to apply Lemma 10, hence there is a finite subcollection A1, . . . , An
such that (8) fails for every finitely additive probability R. Let pi = P (Ai|Bi)
for i = 1, . . . , n, and let C1, . . . , Cm be the distinct nonempty constituents
from Definition 6. Let d1, . . . , dm be the total scores from Definition 7.

The remainder of the proof is split into three cases depending on whether
the set

J = {j : dj =∞}

and/or its complement is empty. Together Lemmas 12, 13, and 14 establish
Theorem 2.

Lemma 12. Under the conditions of Theorem 2, if J = ∅, the conclusions
to Theorem 2 hold.

Proof. Construct problem A as in Definition 9. The loss function (and
risk function) is

L(Cj , q) =
n∑
i=1

bi(j)gai(j),Ai(qi).

The action p = (p1, . . . , pn) ∈ O is not Bayes. Apply Theorem 7 to achieve
Conclusion 2, which implies Conclusion 1.

If, in addition, all of the scoring rules are continuous, then the risk set is
closed from below. Apply the last part of Theorem 7 to obtain a dominating
rule δ0 that is also a Bayes rule with respect to a prior u = (u1, . . . , um).
Since u is a probability vector, it corresponds to an essentially unique set of
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forecasts (r1, . . . , rn) where ri is the conditional probability of Ai given Bi
inferred from the probabilities of the constituents. Specifically, let R(Ai ∩
Bi) =

∑m
j=1 ai(j)bi(j)uj and R(ACi ∩ Bi) =

∑m
j=1[1 − ai(j)]bi(j)uj so that

R(Bi) =
∑m
j=1 bi(j)uj and

ri =

{
R(Ai∩Bi)
R(Bi)

if R(Bi) > 0,
arbitrary if R(Bi) = 0.

The Bayes risk of δ0 is

inf
δ

m∑
j=1

bi(j)uj
∫
O

n∑
i=1

gai(j),Ai,Bi(qi)δ(dq)

= inf
δ

∫
O

n∑
i=1

R(Bi)[rig1,Ai,Bi(qi) + (1− ri)g0,Ai,Bi(qi)]δ(dq).

Each summand inside the integral can be minimized separately by qi = ri,
hence δ0 has the same Bayes risk as the nonrandomized rule r = (r1, . . . , rn).
So, we assume that δ0 is the nonrandomized rule. The risk function for this
dominating nonrandomized rule is

∑n
i=1 bi(j)gai(j),Ai,Bi(ri) < dj for each j.

Hence we have Conclusion 3.

Lemma 13. Under the conditions of Theorem 2, if JC = ∅, the conclusions
to Theorem 2 hold.

Proof. Let s1 = · · · = sm = 1/m, and define, for i = 1, . . . , n, Q(Ai ∩
Bi) =

∑m
j=1 ai(j)bi(j)sj and Q(ACi ∩ Bi) =

∑m
j=1[1 − ai]bi(j)sj , so that

Q(Bi) =
∑m
j=1 bi(j)sj . Then

qn =

{
Q(Ai∩Bi)
Q(Bi)

if Q(Bi) > 0,
arbitrary if Q(Bi) = 0.

Because q1, . . . , qn correspond to a probability, they are coherent1 condi-
tional forecasts and they have finite total scores in all constituents. Hence,
Conclusion 3 holds, which implies Conclusions 1 and 2.

Lemma 14. Under the conditions of Theorem 2, if neither J nor JC is
empty, the conclusions to Theorem 2 hold.

Proof. Because the scoring rules are all finite except possibly at the
endpoints, the only way to get an infinite score is for one of the events Ai to
get an extreme forecast that is not always correct. That is, either pi = 0 but
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Ai 6= ∅ or pi = 1 but Ai 6= Bi. (And, of course, the scoring rule corresponding
to (Ai, Bi) has to be unbounded at the appropriate endpoint.) Define

I = {i : either (g1,Ai,Bi(pi) =∞ and Ai 6= ∅)
or (g0,Ai,Bi(pi) =∞ and Ai 6= Bi)}.

Because J 6= ∅, it follows that I 6= ∅. For each i ∈ IC (if any), let

(h0,Ai,Bi , h1,Ai,Bi) = (g0,Ai,Bi , g1,Ai,Bi).

For each i ∈ I, replace (g0,Ai,Bi , g1,Ai,Bi) by Brier score (h0,Ai,Bi(x), h1,Ai,Bi(x)) =
(x2, (1−x)2). In the remainder of the proof, when we wish to refer to scores
under the original scoring rules, we call them the “g-scores”. When we wish
to refer to scores under the modified scoring rules, we call them the “h-
scores”.

Next, we show that the original forecasts p = (p1, . . . , pn) are not weakly
Bayes under the h-scores. Suppose, to the contrary, that they are weakly
Bayes under the h-scores. We have enough assumptions to apply Lemma 10
so that the forecasts are strongly Bayes under the h-scores. Let R be as
in Definition 10, and let r1,i = R(Ai ∩ Bi), r2,i = R(ACi ∩ Bi), and ri =
r1,i/(r1,i + r2,i) for i = 1, . . . , n. (If r1,i + r2,i = 0 for some i, then r1,i/(r1,i +
r2,i) should be interpreted as some arbitrary number in [0, 1].) For each
i = 1, . . . , n, x = pi must minimize r1,ih1,Ai(x) + r2,ih0,Ai(x). Because the
h-scoring rules are strictly proper for i ∈ I, we must have pi = ri for all
i ∈ I such that r1,i + r2,i > 0. Because all of the pi for i ∈ I are extreme,
it follows that r1,ih1,Ai(pi) + r2,ih0,Ai(pi) = 0 for each i ∈ I. The expected
total h-score for p is then∑
i∈IC

r1,ih1,Ai,Bi(pi) + r2,ih0,Ai,Bi(pi) =
∑
i∈IC

r1,ig1,Ai,Bi(pi) + r2,ig0,Ai,Bi(pi)

=
∑
i∈IC

r1,ig1,Ai,Bi(ri) + r2,ig0,Ai,Bi(ri),(22)

where the last equality follows from the fact that ri for i = 1, . . . , n also
minimize the expected g-scores. Because p is not weakly Bayes under the
g-scores, it must be that

n∑
i=1

r1,ig1,Ai,Bi(pi) + r2,ig0,Ai,Bi(pi) >
n∑
i=1

r1,ig1,Ai,Bi(ri) + r2,ig0,Ai,Bi(ri).

Because the pi = ri for i ∈ I are extreme, they contribute 0 to the total
expected g-score. Hence,∑
i∈IC

r1,ig1,Ai,Bi(pi) + r2,ig0,Ai,Bi(pi) >
∑
i∈IC

r1,ig1,Ai,Bi(ri) + r2,ig0,Ai,Bi(ri).
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This contradicts (22), hence p is not weakly Bayes under the h-scores.
Next, apply Lemma 12 to find a (possibly randomized) rule δ that dom-

inates p under the h-scores. If δ is a nonrandomized rule q = (q1, . . . , qn),
represent it as a randomized rule with δ({q}) = 1. The total h-scores from
δ and the original forecasts are respectively

d′j =
n∑
i=1

∫
O
bi(j)hai(j),Ai,Bi(qi)δ(dq), and

d′′j =
n∑
i=1

bi(j)hai(j),Ai,Bi(pi) <∞,

where O is the action space in the proof of Lemma 12. Let w = minj∈JC (d′′j−
d′j), the minimum amount by which δ dominates the original forecasts amongst
those constituents where the original g-scores are finite. Table 2 summarizes
some of what we know about the g-scores of δ and the incoherent1 forecasts.
The reason that E = 0 is that all of the pi for i ∈ I are extreme and they

Table 2

Total g-scores for the incoherent1 forecasts and the dominating randomized rule δ. The
g-scores are expressed in terms of the h-scores when the two agree. The total scores are

split into the contributions from i ∈ I and from i ∈ IC .

i ∈ I i ∈ IC
Incoherent forecasts

j ∈ J A =∞ B =
∑
i∈I

bi(j)gai(j),Ai,Bi(pi)

j ∈ JC E = 0 F = d′′j = dj
Dominating Randomized Rule δ

j ∈ J C =
∑
i∈I

∫
A
bi(j)gai(j),Ai,Bi(qi)δ(dq) D =

∑
i∈IC

∫
A
bi(j)hai(j),Ai,Bi(qi)δ(dq)

j ∈ JC G =
∑
i∈I

∫
A
bi(j)gai(j),Ai,Bi(qi)δ(dq) H =

∑
i∈IC

∫
A
bi(j)hai(j),Ai,Bi(qi)δ(dq)

contribute either 0 or ∞ to each total score. For j ∈ JC , the total score
is finite, hence all pi for i ∈ I must contribute 0 to the total score. It fol-
lows that E = 0 and F = dj . The reason dj = d′′j is that the g-scores and
h-scores are the same for all i ∈ IC . In addition, we know that D < d′′j ,
hence D < ∞. Also, H ≤ F − w. If we knew that G < w, then we would
know that δ weakly dominates the incoherent1 forecasts under the g-scores.
If, in addition, we knew that C < ∞, then we would know that δ strictly
dominates the incoherent1 forecasts under the g-scores. Even if these two
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facts are not true, we notice that C and G depend only on the distribution
(under δ) of the ith coordinates of q for i ∈ IC . If we change the joint
distribution of these coordinates without affecting the joint distributions of
the other coordinates, none of the other numbers in Table 2 is affected. We
proceed now to replace δ by another randomized rule δ′ in order to make
G < w, and if Assumption 2 holds for all scoring rules, C <∞.

First, consider the case in which we do not assume that every scoring
rule satisfies Assumption 2. Define δ′ as follows. The joint distribution of
{qi : i ∈ IC} is the same as that of δ. Under δ′, qi = pi with probability 1
for all i ∈ I. With this change, we have C = A =∞ and G = E = 0. Hence,
Conclusion 1 holds because G+H < E + F while A+B = C +D.

Next, assume that Assumption 2 holds for all scoring rules. Let v =
w/(2n). Under Assumption 2, each gk,Ai,Bi(x) is continuous at x = k and
gk,Ai,Bi(k) = 0 for k = 0, 1. For each i and each k = 0, 1, let tk,i 6∈ {0, 1} be
close enough to k so that gk,Ai,Bi(tk,i) ≤ v. Let δ′ be defined as follows. The
joint distribution of {qi : i ∈ IC} is the same as that of δ. Under δ′, qi = tpi,i
with probability 1 for all i ∈ I. With this change, we have that C < ∞
because δ′ gives 0 mass to extreme forecasts in the coordinates in I. Also,
for j ∈ JC , G ≤ nmaxi∈I gai(j),Ai,Bi(tpi,i) ≤ nv = w/2. So, Conclusion 2
holds.

Finally, suppose that all of the g-scoring rules are continuous. Then all
of the h-scoring rules are continuous, and all of the randomized rules above
are nonrandomized. If the nonrandomized rule q is coherent, the proof is
complete. If the forecasts in q are not coherent1 but are weakly Bayes, then
Theorem 3 says that there are coherent1 forecasts that have the same total
score in every constituent and hence strictly dominate p. If q are neither
coherent1 nor Bayes, at least they produce finite score in every constituent,
and they strictly dominate p1, . . . , pn. Now, apply Lemma 12 to q producing
another nonrandomized rule that is coherent1 and strictly dominates q and
hence strictly dominates p, so that Conclusion 3 holds.

Corollary 1. If the forecasts are coherent3, no randomized forecast
dominates the forecasts. The contrapositive of the second part of Theorem 2
says that the forecasts are weakly Bayes.

If the forecasts are weakly Bayes, Lemma 1 says that the forecasts are
coherent3.

Corollary 2. If the forecasts are coherent3, no nonrandomized forecast
dominates the forecasts. The contrapositive of the third part of Theorem 2
says that the forecasts are weakly Bayes.
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If the forecasts are weakly Bayes, Lemma 1 says that the forecasts are
coherent3.

5.5. Theorem 1. Assume that we have conditional forecasts for the pairs
of events in a collection C and that the forecast for each pair (A.B) ∈ C
is scored by a strictly proper scoring rule (g0,A,B, g1,A,B) that satisfies As-
sumptions 1 and 2. Every strictly proper scoring rule satisfies Assumption 3.

For the first claim in Theorem 1, apply Corollary 1 to conclude that the
forecasts are coherent3 if and only if they are weakly Bayes. For the second
claim, apply Corollary 2 to conclude that the forecasts are coherent3 if and
only if they are weakly Bayes.

For either claim, apply Lemma 2 to conclude that forecasts are weakly
Bayes if and only if they are coherent1.

6. Discussion. We have given sufficient conditions for a set of incoher-
ent (Definition 1) forecasts to be weakly or strictly dominated (according to
proper scoring rules) by either a coherent1 set of forecasts or by something
else. Our conditions are not necessary. On the other hand, for each of our
conditions, we have provided an example to show that the condition cannot
be eliminated without replacing it by some other condition that would rule
out the example. For example, the condition in Theorem 2 that all of the
merely proper scoring rules satisfy Assumption 2 is stronger than needed.
With some extra work, one could prove that the only merely proper scoring
rules that need to satisfy Assumption 2 are the ones that are flat either on
the interval (0, ε) or on the interval (1− ε, 1) for some ε > 0. (See Example 3
to see what can go wrong if Assumption 2 fails for such a scoring rule.) The
basic idea is that, so long as the set D in (16) doesn’t contain a sequence of
points {(e1,n, e2,n)}∞n=1 with limn(e1,n + e2,n) > 0 and e1,n/(e1,n + e2,n) arbi-
trarily close to one of the endpoints, the function `∗i (r) defined in the proof
of Lemma 10 will be continuous at all r that matter. As another example,
the reader will note that our theorems do not make any assumptions on the
types of events being forecast or on the particular not weakly Bayes forecasts
(aside from them not being weakly Bayes). Hence, we find that, in the proof
of Lemma 13, we obtain the strongest Conclusion 3 without assuming con-
tinuity of scoring rules so long as the original forecasts have infinite score in
every constituent. Similarly, in Lemma 12, we obtain Conclusion 2 without
assuming that any of our scoring rules satisfy Assumption 2. It is only in
Lemma 14 that we make use of which scoring rules satisfy Assumption 2. But
the distinction between these three lemmas is based on the forecasts and we
wanted the conclusions to Theorem 2 to hold for all forecasts simultaneously.

One somewhat surprising result that we found is the distinction between
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the conditions under which Conclusions 1 and 2 hold. Whether or not we
can guarantee weak dominance does not depend on whether or not we are
using merely proper scoring rules, but rather on a continuity property of the
strictly proper scoring rules (Assumption 2). [7] claim that, if one uses con-
tinuous merely proper scoring rules, one can guarantee a weakly dominating
coherent1 set of forecasts. In reality, one gets either a strictly dominating
coherent1 set of forecasts (via the third part of Theorem 2) or a coherent1

set of forecasts with identical scores (via Theorem 3). There is no middle
ground in which one can only achieve weakly dominating but not identical
scores.

Despite not having a complete characterization of all cases in which each
of the four conclusions holds, we believe that we have delineated the cases
very thoroughly. Our theorems apply regardless of which events are be-
ing forecast, regardless of what forecasts are given, and regardless of which
proper scoring rule is used to score each event (so long as every scoring rule
satisfies the conditions of the relevant theorem).

Our main results are formulated for forecasting events, where events are
identified with their indicator functions. However, we noted in the introduc-
tion that de Finetti used Brier score to establish the equivalence between
coherence1 and coherence2 of a set of previsions over the class of bounded
variables, measurable with respect to some common measurable space. Our
Theorems 6 and 7, on which relies the proof of our main result, apply to
bounded random variables and general loss functions, not merely indicators
for events. Thus, we have reason to explore generalizations of our principal
results for forecasting bounded variables with proper scoring rules. The first
thing that we would need is a general definition of proper scoring rule for
bounded random variables. If we are interested only in scoring previsions,
suppose that X is a bounded random variable and x is a proposed prevision.
The score could be some function g(X,x). We could call g proper if for every
bounded random variable X, E[g(X,x)] is minimized by x = P (X). Some
guidance in this direction is provided by [9]. We conjecture that a collection
of previsions for bounded random variables is coherent1 if and only if it is
impossible to find an alternative collection of possible previsions which lead
to uniformly smaller total score.

On a final note, we should say something about the impact of conditional
previsions given events whose probabilities are or could be coherently as-
signed as 0. For example, if one assigns only two previsions, P (A1|B) = 0.9
and P (A2|B) = 0.7. Suppose also that B 6= Ω and A1 ∩ A2 = ∅. These pre-
visions are coherent1 because no book can be made against them. Because
B 6= Ω, Theorem 5 allows P (B|Ω) = 0. However, one might be uncom-
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fortable giving conditional probabilities (conditional on the same event) to
disjoint events that add up to more than 1. [5, 6] show that for every finitely
additive probability there exists a collection of coherent1 conditional previ-
sions that also satisfies the axioms of probability conditional on events with
0 prevision. That is,

P (·|B) is a probability for every B 6= ∅,
P (B|B) = 1, for every B 6= ∅,

P (A ∩ C|B) = P (C|B)P (A|B ∩ C) for all A, B, and C

such that B ∩ C 6= ∅.

In this paper, we have not required that conditional previsions satisfy these
additional requirements when P (B|Ω) = 0 is either stated or allowed (by ex-
tension). The reason is that the equivalence between coherence1 and coherence3

does not depend on whether the additional requirements hold. We conjec-
ture that, if one further restricted the concept of coherence1 to require such
additional properties, then one could modify the concept of coherence3 to
remain equivalent. The modification would need to prevent strict dominance
on certain events related to those on which various previsions were condi-
tioned.
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