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Fluorescence spectroscopy has emerged in recent years as an effective way to de-

tect cervical cancer. Investigation of the data preprocessing stage uncovered a need

for a robust smoothing to extract the signal from the noise. We compare various ro-

bust smoothing methods for estimating fluorescence emission spectra and data driven

methods for the selection of smoothing parameter. The methods currently imple-

mented in R for smoothing parameter selection proved to be unsatisfactory and we

present a computationally efficient procedure that approximates robust leave-one-out

cross validation.
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1 Introduction

In recent years, fluorescence spectroscopy has shown promise for early detec-

tion of cancer (Grossman et al., 2002; Chang et al., 2002). Such fluorescence

measurements are obtained by illuminating the tissue at one or more excitation

wavelengths and measuring the corresponding intensity at a number of emission

wavelengths. Thus, for a single measurement we obtain discrete noisy data from

several spectroscopic curves which are processed to produce estimated emission

spectra. One important step in the processing is smoothing and registering the

emission spectra to a common set of emission wavelengths.

However, the raw data typically contain gross outliers, so it is necessary to

use a robust smoothing method. For real time applications we need a fast and

fully automatic algorithm.

For this application, we consider several existing robust smoothing methods

which are available in statistical packages, and each of these smoothers also has

a default method for smoothing parameter selection. We found that the default

methods of do not work well. To illustrate this point, we present Figure 1 where

some robust fits, using the default smoothing parameter selection methods are

shown. We have also included the plots of the “best” fit (as developed in this

paper) for comparison purposes.

The best methods we found for smoothing parameter selection required some

form of robust cross validation - leaving out a subset of the data, smoothing,

then predicting the left out data, and evaluating the prediction error with a

robust loss function. Full leave-one-out robust cross validation performed well

for smoothing parameter selection but is computationally very time consuming.

We present a new method, systematic K-fold robust cross validation, which

reduces the computation time and still gives satisfactory results.

There has been previous work on the robust smoothing of spectroscopy data.

In particular, Bussian and Härdle (1984) consider the robust kernel method for

the estimation from Raman spectroscopy data with huge outliers. However,

whereas they only consider one specific robust smoothing method, we make
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Figure 1: Parts (a) and (b) show raw data with the smoothed estimates su-

perimposed. Part (c) is the fit corresponding to the best smoothing parameter

value, and part (d) show the fit based on default methods for various robust

smoothers. The default method from robust smoothing splines undersmooths,

whereas the default methods of robust LOESS and COBS oversmooths.

some comparisons of available methods and make some recommendations. Fur-

thermore, Bussian and Härdle (1984) do not treat the problem of automatic

bandwidth selection.

The paper is organized as follows. We first review some robust smoothers

in Section 2. Then in Section 3, we introduce the robust procedures for ro-

bust smoothing parameter selection along with some default methods from the

functions in R. We also introduce a method which approximates the usual leave-

one-out cross validation scheme to speed up the computation. In Section 4, we

perform a preliminary study, determine which smoothers and smoothing param-

eter methods to include in a large scale simulation study, and then give results

on this, along with the results on how the method works with real data. Finally,

we conclude the paper with some recommendations and directions of possible
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future research in Section 5.

2 Robust Smoothing Methodologies

In this section, we define the robust smoothing methods that will be considered

in our study. Consider the observation model

yi = m(xi) + εi, i = 1, . . . , n

where the εi are i.i.d. random errors, and we wish to obtain an estimate m̂ of

m. In order for this to be well defined, we need to assume something about the

“center” of the error distribution. The traditional assumption that the errors

have zero mean is not useful here as we will consider possibly heavy tailed

distributions for the errors. In fact, each different robust smoother in effect

defines a “center” for the error distribution, and the corresponding regression

functions m(x) could differ by a constant. If the error distribution is symmetric

about 0, then all of the methods we consider will be estimating the conditional

median of Y given X = x.

2.1 Robust Smoothing Splines

The robust smoothing spline is defined through an optimization problem: find

m̂ that minimizes

1

n

n∑
i=1

ρ(yi − m̂(xi)) + λ

∫
(m̂

′′

)2

for an appropriately chosen ρ(·) function and subject to m̂ and m̂′ absolutely

continuous with
∫

(m̂′′)2 < ∞. Of course, the choice of ρ is up to the investigator.

We generally require that ρ be even symmetric, convex, and grows slower than

O(x2) as |x| gets large. Here, λ > 0 is the smoothing parameter, with larger

values of λ corresponding to smoother estimates.

The implementation of the robust smoothing splines we have used is the R

function qsreg from the package fields, version 3.04 (Oh, et al., 2004), which
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uses

ρ(x) =

⎧⎨
⎩

x2

2C
if |x| ≤ C

|x| − C
2 if |x| > C

(1)

It is easily verified that the ρ(x) function in (1) satisfies the requirements above.

The break point C in (1) is a scale factor usually determined from the data.

See Oh et al. (2004) for details. For the qsreg function, the default is C =

10−5
√

var(x).

2.2 Robust LOESS

We used the R function loess from the package stats (version 2.4.1) to perform

robust locally weighted polynomial regression (Cleveland, 1979; Chambers and

Hastie, 1992). At each x, we find β̂0, β̂1, . . . , β̂p to minimize

n∑
i=1

ρ(yi − β0 − β1(x − xi) − · · · − βp(x − xi)
p)K

(
x − xi

h

)
,

where the resulting estimate is m̂(x) =
∑p

j=0 β̂jx
j . We consider only the de-

gree p = 2, which is the maximum allowed. With the family = "symmetric"

option, the robust estimate is computed via the Iteratively Reweighted Least

Squares algorithm using Tukey’s biweight function for the reweighting. K(·) is

a compactly supported kernel (local weight) function that downweights xi that

are far away from x. The kernel function used is the “tri-cubic”

K(x) =

⎧⎨
⎩ (1 − |x|3)3 if |x| < 1,

0 if |x| ≥ 1.

The parameter h in the kernel is the bandwidth, which is specified by the fraction

of the data λ (0 < λ ≤ 1) within the support of K(·/h), with larger values of λ

giving smoother estimates.

2.3 COBS

Constrained B-spline smoothing (COBS) is implemented in R as the function

cobs in the cobs package, version 1.1-3.5 (He and Ng, 1999). The estimator
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has the form

m̂(x) =

N+q∑
j=1

âjBj(x)

where N is the number of internal knots, q is the order (polynomial degree

plus 1), Bj(x) are B-spline basis functions (de Boor, 1978), and âj are the esti-

mated coefficients. There are two versions of COBS depending on the roughness

penalty: an L1 version and an L∞ version. For the L1 version the coefficients

â1, . . . , âN+q are chosen to minimize

n∑
i=1

|yi − m̂(xi)| + λ

N∑
i=1

|m̂′(ti+q) − m̂′(ti+q−1)|

where t1, . . ., tN+2q are the knots for the B-splines. The L∞ version is obtained

by minimizing

n∑
i=1

|yi − m̂(xi)| + λmax
x

|m̂′′(x)| .

The λ > 0 is a smoothing parameter similarly to the λ in robust smoothing

splines. Here not only λ has to be determined as with other robust smoothers,

but we also need to determine the number of internal knots, N , which acts

as a smoothing parameter as well. In the cobs program, the degree= option

determines the penalty: degree=1 gives an L1 constrained B-spline fit, and

degree=2 gives an L∞ fit.

3 Smoothing Parameter Selection

In all robust smoothers, a critical problem is the selection of the smoothing

parameter λ. One way we can do this is through subjective judgment or inspec-

tion. But for the application to automated real time diagnostic devices, this is

not practical. Thus, we need to develop an accurate, rapid method to determine

the smoothing parameter automatically.

For many nonparametric function estimation problems, the method of leave-

one-out cross validation (CV) is often used for smoothing parameter selection
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(Simonoff, 1996). The Least Squares CV function is defined as

LSCV (λ) =
1

n

n∑
i=1

(
yi − m̂

(i)
λ (xi)

)2

where m̂
(i)
λ is the estimator with smoothing parameter λ and the ith observation

(xi, yi) deleted. One would choose λ by minimizing LSCV (λ).

However, this method does not work well for the robust smoothers because

the LSCV function itself will be strongly influenced by outliers (Wang and

Scott, 1994).

3.1 Default Methods

All of the packaged programs described above have a default method for smooth-

ing parameter selection which is alleged to be robust.

The robust smoothing splines from qsreg function provides a default smooth-

ing parameter selection method using pseudo-data, based on results in Cox

(1983). The implementation is done via generalized cross validation (GCV)

with empirical pseudo-data, and the reader is referred to Oh et al. (2004, 2007)

for details.

In COBS, the default method for selecting λ is a robust version of the Bayes

information criterion (BIC) due to Schwarz (1978). This is defined by He and

Ng (1999) as

BIC(λ) = log

(
1

n

n∑
i=1

|yi − m̂λ(xi)|
)

+
1

2
pλ log(n)/n

where pλ is the number of interpolated data points.

The robust LOESS default method for smoothing parameter selection is to

use the fixed value λ = 3/4. This is clearly arbitrary and one cannot expect it

to work well in all cases.

Moreover, the pseudo-data method is known to produce an undersmoothed

curve, and BIC method usually gives an oversmoothed curve. These claims can

be verified by inspecting the plots in the corresponding papers referenced above

(Oh et al. 2004, 2007; He and Ng 1999) and can also be seen in Figure 1 of
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present paper. Such results led to an investigation of improved robust smoothing

parameter selection methods.

3.2 Robust Cross Validation

To solve the problem of smoothing parameter selection in the presence of gross

outliers, we propose a Robust CV (RCV ) function

RCV (λ) =
1

n

n∑
i=1

ρ(yi − m̂
(i)
λ (xi)) (2)

where ρ(·) again is an appropriately chosen criterion function. Similarly to

LSCV , the m̂
(i)
λ is the robust estimate with the ith data point left out. We

consider various ρ functions in RCV . For each of the methods considered, there

is an interpolation (predict) function to compute m̂
(i)
λ (xi) at the left out xi’s.

We first considered the absolute cross validation (ACV ) method proposed

by Wang and Scott (1994). With this method, we find a λ value that minimizes

ACV (λ) =
1

n

n∑
i=1

|yi − m̂
(i)
λ (xi)|.

So this is a version of RCV with ρ(·) = | · |. Intuitively, the absolute value

criteria is resistant to outliers, because the absolute error is much smaller than

the squared error for large values. Wang and Scott (1994) found that the ACV

criteria worked well for local L1 smoothing.

Because the ACV function (as a function of λ) can be wiggly and can have

multiple minima (Boente et al. 1997), we also considered Huber’s ρ function

to possibly alleviate this problem. Plugging in Huber’s ρ into (2), we have a

Huberized RCV (HRCV )

HRCV (λ) =
1

n

n∑
i=1

ρ(yi − m̂
(i)
λ (xi)).

To determine the quantity C in ρ(x), we used C = 1.28 ∗ MAD/.6745, where

MAD is the median absolute deviation of the residuals from an initial estimate

(Hogg 1979) . Our initial estimate is obtained from the smooth using the ACV
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estimate of λ. The constant 1.28/.6745 gives a conservative estimate since it

corresponds to about 20% outliers from a normal distribution.

However, the HRCV had a very little improvement over the ACV in simu-

lation studies, and thus decided not to include the HRCV in our investigation.

(For simulation results regarding the HRCV please see the Appendix, pp.1-

2).

3.3 Computationally Efficient Leave Out Schemes

We anticipate that the ordinary leave-one-out scheme for cross validation as

described above will take a long time, especially for a dataset with large n.

This is further exacerbated by the fact that the computation of the estimate

for a fixed λ uses an iterative algorithm to solve the nonlinear optimization

problem. Thus, we devise a scheme that leaves out many points at once and

still gives a satisfactory result.

Our approach is motivated by idea of K-fold cross validation (Hastie et

al. 2001) in which the data are divided into K randomly chosen blocks of

(approximately) equal size. The data in each of the blocks is predicted by

computing an estimate with that block left out. Our approach is to choose

the blocks systematically so as to maximize the distance between xi’s within

the blocks (which is easy to do with equispaced one dimensional xi’s as in

our application). We call this method systematic K-fold cross validation. We

expect the predictions at left out data points to be uniformly close to the original

leave-one-out scheme. With an appropriate choice of K, for small bandwidths

the influence of other left out points on prediction of a given value will be small

because the effective span of the local smoother is small. For large bandwidths,

the influence in prediction of left out points will be small because the effective

span of the local smoother is large so that no point has much influence.

Define the sequence (i : d : n) = {i, i + d, . . . , i + kd} where k is the largest

integer such that i + kd ≤ n. Let m̂
(i:d:n)
λ denote the estimate with (xi, yi),

(xi+d, yi+d), . . . , (xi+kd, yi+kd) left out. Define the robust systematic K-fold
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cross-validation with phase r (where K = d/r) by

RCV (d,r)(λ) =
∑

i∈(1:r:d)

∑
j≥0

ρ
(
yi+jd − m̂

(i:d:n)
λ (xi+jd)

)
.

If r = 1 so that K = d, we simply call this a systematic K-fold CV (without any

reference to phase r). There are two parameters for this scheme: the d which

determines how far apart are the left out xi’s, and the phase r which determines

the sequence of starting values i. Note that we compute d/r curve estimates for

each λ, which substantially reduces the time for computing the RCV function.

We will have versions RCV (d,r) for each of the criterion functions discussed

above.

The choice of d and r must be determined from data. Preliminary results

show that r > 1 (which will not leave out all data points) does not give satis-

factory results, and hence we will only consider the case r = 1.

(See Appendix pp.7-10 for tabulated results and pp.2-5 for discussions on

the comparisons of r = 1 versus r > 1).

3.4 Methods to Evaluate the Smoothing Parameter Selec-

tion Schemes

For the simulation study, we use the following criteria to assess the performance

of the smoothing parameter selection methods.

If we know the values of the true curve, we may compute the integrated

squared error (ISE)

ISE(λ) =
1

n

n∑
i=1

(m(xi) − m̂λ(xi))
2 ,

for each estimate and for various values of λ. (Note: many authors would

refer to ISE in our formula as ASE or “Average Squared Error.” However,

the difference is so small that we will ignore it.) Similarly, we can compute

integrated absolute error (IAE)

IAE(λ) =
1

n

n∑
i=1

|m(xi) − m̂λ(xi)|.
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We can determine which value of the λ will give us the “best” fit, based

on L1 (i.e., IAE) or L2 (i.e., ISE) criteria. For comparison, we will take the

squared root of ISE so that we show
√

ISE in the results.

Thus, we may find λ∗
ISE = argminλISE(λ), and λ∗

IAE = argminλIAE(λ)

as our optimal λ values that gives us the best fit. We then make a comparison

with the default λ values obtained by the methods in Section 3.1. In addition,

we compute the λ̂’s from the ACV (call this λ̂ACV ), and compare them with

the optimal values. To further evaluate the performances of ACV , we may

compute the “loss functions” ISE(λ̂) (ISE(λ) with λ̂ as its argument) and

IAE(λ̂), where λ̂ is obtained from each of default or ACV . We then compare

ISE(λ̂) against ISE(λ∗
ISE) (and similarly for IAE).

It may be easier to employ what we call an “inefficiency measure,”

IneffISE(λ̂) =
ISE(λ̂)

infλ ISE(λ)
(3)

where in our case λ̂ = λ̂ACV , but keep in mind that λ̂ may be obtained by any

method. Note that this compares the loss for λ̂ with the best possible loss for

the given sample. We can easily construct IneffIAE(λ̂), an inefficiency measure

for IAE, as well. The IneffISE(λ̂) (or IneffIAE(λ̂)) has distributions on [0,∞),

and if this distribution is concentrated near 1, then we have a confidence in the

methodology behind λ̂. Again, we will present
√

IneffISE(λ̂) in all the results,

so that it is in the same unit as the IneffIAE(λ̂).

4 Simulations and Application

4.1 Pilot Study

Before performing a large scale simulation study, we first did a pilot study for

several reasons. First, we want to make sure that all the robust smoothers

work well on our data. Second, we want to look at the performance of default

smoothing parameter selection procedures from the R routines to see if they

should be included in the larger scale simulation study. Lastly, in examining
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the robust cross validation, we would like to see the effect of various leave out

schemes in terms of speed and accuracy. We use the simulated data for this

pilot study.

4.1.1 Simulation Models

There are two types of simulation models we use.

First, we construct a simulated model which resemble the data in our prob-

lem, because we are primarily interested in our application. To this end, we

first pick a real data set (noisy data from one spectroscopic curve) that was

shown in Figure 1 and fit a robust smoother, with the smoothing parameter

chosen by inspection. We use the resulting smooth curve, m(x), as the “true

curve” in this simulation, and then we carefully study the residuals from this

fit and get an approximate error distribution to generate simulated data points.

We determined that most of the errors were well modeled by a normal distribu-

tion with mean 0 and variance 2025. We then selected 40 x values at random

between x = 420 and x = 1670 and added in an independent gamma random

variate with mean 315 and variance 28,350. Additionally, we put in two gross

outliers similar to the ones encountered in raw data of Figure 1. We call this

the Simulation 1. See Figure 2 (a), and note how similar our simulated data is

to the real data. We have also chosen a fitted curve based on another sample

data (data from a different spectroscopic curve), with an error distribution very

similar to Simulation 1. See Figure 2 (b). Call this Simulation 2.

The second type of simulation models is based purely on mathematical mod-

els. We also have two curves for this type. First, we choose a beta curve, with

the true curve as m(x) = 700beta(3, 30)(x), 0 ≤ x ≤ 1 (where beta(3,30) is

the pdf of Beta(3,30) distribution), which looks very much like some of the fit-

ted curves from real data. Second, we have included so-called a chirp function

(m(x) = 50(1−x) sin(exp(3(1− x))), 0 ≤ x ≤ 1), just to see how our methodol-

ogy works in very general setting. Note the scale difference in the chirp function,

so we adjusted the error distribution accordingly by changing the scale. We then
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Figure 2: All simulation models considered here. The blue points in (a) and (b)

are the real data points, whereas the black points are simulated data points.

create the error distributions closely resembling the errors in previous simula-

tion models. We call the simulation based on beta function the Simulation 3,

and we call the simulation with chirp function the Simulation 4. See Figure 2

(c) and (d).

In all simulation examples in this paper, we have n = 1, 550 equispaced

points.

4.1.2 Comparing Robust Smoothers and Smoothing Parameter Se-

lection Methods

We compare the robust smoothers from Section 2 by applying them to the

simulated data and comparing their computation time and performance.

Let us first step through some of the details regarding the smoothers. First,

the robust smoothing splines, using the R function qsreg, has a default method

as described in Section 3.1. It uses a range of 80 λ values as candidates for the

default λ̂. Since the range is wide enough to cover all the methods we try, we
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use these same λ values for all investigation of qsreg.

Next, we consider the robust LOESS using loess function in R. In this

case, the program does not supply us with the λ values, so we used a range

from 0.01 to 0.1, with length of 80. This range is sufficiently wide to cover all

the reasonable λ values and more.

When we use COBS with the R function cobs, we do need to make few ad-

justments. First, we tried both the L1 (degree=1) and L∞ (degree=2) versions

of COBS, and the L1 version was quite rough with discontinuous derivatives, so

was dropped from further consideration. In addition, recall that for COBS, not

only we have to determine λ but also the number of knots N as well. The default

for the number of knots is 20 (N = 20), and we use this N for the default (BIC)

method for the smoothing parameter selection of λ (using both the defaults by

fixing N = 20 and λ selected by BIC). However, if we fix the number of knots

at the default level, it gives unsatisfactory results, and some preliminary studies

has shown that the increasing the number of knot to 50 (N = 50) will make the

COBS fit better. But either way, the computing time of this smoother suffers

dramatically. The computing times for obtaining the estimates (for one curve)

were 0.03 seconds for qsreg, 0.06 seconds for loess, but 0.16 seconds for cobs

(for both N = 20 and N = 50). For these reasons, we decided to increase the

number of knots to 50 for the COBS experiments. Here, the candidate λ values

range from 0.1 to 1,000,000.

Now, we present the L1 and L2 loss functions (IAE(λ) and
√

ISE(λ)) for

each of the λ̂ values obtained by default and ACV , and compare them with

optimal λ values. The results are shown in Table 1. This reveals that all de-

fault methods perform very poorly, as in Figure 1. This is especially apparent

in default methods for robust smoothing splines and robust LOESS with fixed

λ = 3/4. The default method for COBS (with N = 20) also does not work

well. If we increase to number of knots to 50 (N = 50), then the default is not

as bad as the default methods of the competing robust smoothers. However,

the default method still performs more poorly than the ACV method. Further-

more, COBS’s overall performance based on CV is poorer than those of robust

14



Table 1: A table of L1 and L2 loss function values for default, ACV , and

optimum (IAE or ISE) criteria. For the COBS default, two sets of values are

shown; Default with N = 20 or Default.50 where N = 50.

Simulation 1 Simulation 2 Simulation 3 Simulation 4

IAE
√

ISE IAE
√

ISE IAE
√

ISE IAE
√

ISE

qsreg Default 24.45 31.80 16.30 21.05 23.46 29.99 0.53 0.69

ACV 9.90 12.64 7.69 9.47 9.74 13.05 0.19 0.24

Optimum 9.89 12.16 6.80 8.48 8.39 12.73 0.18 0.24

loess Default 229.05 478.19 194.44 324.32 427.32 914.51 13.15 19.57

ACV 8.61 10.76 6.19 7.50 8.79 11.30 0.19 0.24

Optimum 8.12 10.33 5.73 6.86 7.92 11.27 0.18 0.24

cobs Default 68.36 162.19 53.22 118.64 48.09 162.83 2.29 6.32

Default.50 14.26 23.65 10.65 18.76 7.88 13.79 0.27 0.47

ACV 10.11 12.72 9.52 14.72 6.98 9.83 0.19 0.25

Optimum 10.11 12.72 9.45 14.71 6.98 9.80 0.19 0.25

smoothing splines or robust LOESS.

We remarked that COBS suffers from lack of speed compared to its competi-

tors. This deficiency is not overcome by improvements in performance. Given

all the complication with COBS, we dropped it from the rest of the pilot study

and the simulations.

All in all, we conclude that the ACV method gives very satisfactory results.

We see clearly that any method that does not incorporate the cross validation

scheme does poorly. The only disadvantage of the leave-one-out cross validation

methods is its computation time. Nevertheless, we demonstrate in the next

section that there are ways to overcome this deficiency of ACV method.

4.1.3 Systematic K-fold Method

We investigate ACV (d,r) presented in Section 3.3 for faster computation and

comparable performance.

Recall that we will only consider r = 1, the systematic K-fold scheme. (see
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Table 2: A table of loss functions in Simulation 1, using robust smoothing splines

(qsreg).

ACV Time

Scheme IAE
√

ISE (seconds)

Default 24.45 31.80 2.96

Full LOO 9.90 12.64 4,477.47

d = 50, r = 1 9.90 12.64 145.50

d = 25, r = 1 9.89 12.16 70.53

d = 5, r = 1 9.89 12.16 12.26

Optimum 9.89 12.16

Section 3.3). For our problem, with d = 5 and r = 1 (the systematic 5-fold

CV), λ̂ is almost optimal, but the computation is 365 times faster than the full

leave-one-out (LOO) scheme! And the computation time is proportional (to

a high accuracy) to how many times we compute a robust smoothing spline.

Table 2 confirms that the performance of K-fold CV schemes (d = K, r = 1)

are superior to default methods and comparable to the full LOO method.

Hence, based on all the results presented, we use the systematic K-fold CV

as a main alternative to the full LOO CV.

(For more details and the results on other Simulations, see pp.2-10 of the

Appendix).

4.1.4 Comparing Systematic K-fold CV with Random K-fold CV

We would like to see how the random K-fold schemes compare to our systematic

schemes. In particular, since the systematic 5-fold CV worked very well in our

example, we compare systematic 5-fold CV against the random 5-fold CV.

We take a λ̂ from each of 100 draws (i.e., 100 different partitions) of random

5-fold ACVs. Then, we compute the inefficiency measure (3) introduced in the

previous section, for both IAE and ISE. We do this for each of the 100 draws,

and we compare them with the inefficiency measure of the systematic 5-fold CV.
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Figure 3: A histogram of inefficiencies obtained from the random 5-fold ACV.

The systematic 5-fold inefficiency value is shown as a dot. The results are based

on 100 draws of random 5-fold CVs, in Simulation 1.

We present histograms of the inefficiency values in Figure 3. The results in the

figures suggest that the systematic 5-fold does well relative to random 5-fold

and optimal value. Experience with other values of K and other simulations

yielded similar results.

(For details, see Appendix, pp.11-17).

One problem with the random K-fold CV is that it introduces another source

of variation that can lead to an undesirable consequence. For example, when

the random K-fold CV randomly leaves out many points that are in the neigh-

borhood of each other, it will do a poor job of predicting those left out points

and hence produces a suboptimal result. It is known that a random K-fold CV

result can be hugely biased for the true prediction error (Hastie et al. 2001).

Therefore, we decided not to consider the random K-fold CV any further.
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Table 3: A table comparing robust smoothers and loss functions and the mean

and median inefficiency measure values.
√

E[ISE(λ̂)] E[IAE(λ̂)]
√

IneffISE(λ̂) IneffISE(λ̂)

mean median mean median

qsreg 12.61 9.89 1.11 1.05 1.05 1.03

loess 10.45 8.21 1.07 1.03 1.03 1.01

4.2 Large Simulation Study

We now report on the results of a large scale simulation study to further assess

the performance of the robust estimators. Specifically, we compare the robust

smoothing spline and robust LOESS.

The data is obtained just as in Section 4.1.1, where we take a vectorized

“true” curve m(x) and add a vector of random errors to it (with error distri-

bution as described in that section), and repeat this M times with the same

m(x).

If we obtain ISE(λ) and IAE(λ) functions for each simulation, we can

easily estimate mean integrated squared error (E[ISE(λ)]) by averaging over

the number of replications, M . The E[IAE(λ)] may likewise be obtained.

Our results are based on M = 100.

4.2.1 Detailed Evaluation with Full Leave-One-Out CV.

We begin by reporting our results based on the full LOO validation with ACV

for the Simulation 1 model (we defer all other results until next subsection).

We want to assess the performance of the two robust smoothers of interest

by comparing E[ISE(λ̂)] values, with λ̂ = λ̂ACV , and similarly for E[IAE(λ̂)].

Also, we present the results of the inefficiency measures. Again, we will take

squared roots of those quantities involving ISE so that we present
√

E[ISE(λ̂)]

and
√

IneffISE(λ̂) in the tables. The results are presented in Table 3. Clearly,

all the integrated error measures of robust LOESS are lower than those of the

robust smoothing splines, although these results by themselves do not indicate
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Table 4: A table of median values of inefficiencies in all simulations. Each entry

consists of either
√

IneffISE(λ̂) or IneffIAE(λ̂) with λ̂ value corresponding to

different rows.

Simulation 1 Simulation 2

IAE
√

ISE IAE
√

ISE

qsreg Default 2.59 2.68 2.34 2.41

Full LOO 1.03 1.05 1.02 1.03

d = 5, r = 1 1.02 1.02 1.00 1.00

loess Default 28.67 47.29 32.95 43.48

Full LOO 1.01 1.03 1.02 1.01

d = 5, r = 1 1.01 1.03 1.00 1.00

Simulation 3 Simulation 4

IAE
√

ISE IAE
√

ISE

qsreg Default 2.36 2.17 2.67 2.54

Full LOO 1.09 1.06 1.05 1.04

d = 5, r = 1 1.05 1.06 1.02 1.02

loess Default 46.88 73.53 70.73 77.85

Full LOO 1.04 1.02 1.05 1.01

d = 5, r = 1 1.02 1.04 1.03 1.03

which smoothing method is more accurate.

(See Appendix, pp.18-20, for further details and results).

4.2.2 Results on All Simulations.

We now report on all simulation results, including those of the systematic K-fold

CV as described in section 3.3. See Table 4 for the results, where we only report

5-fold systematic CV since 25- and 50-fold results are very similar. The result

is that all of
√

IneffISE(λ̂) and IneffIAE(λ̂) values are near 1 for all λ̂ values

obtained from full LOO schemes, for ACV . This is true for all four simulation

models we considered. The numbers are very similar for all the K-fold CV
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schemes (where we considered K = 5, 25, and 50).

(For the results on 25- and 50-fold CVs, see Appendix pp.21-22).

In contrast, the
√

IneffISE(λ̂) and IneffIAE(λ̂) values for λ̂default are at least

2 and can be as much as 77!

The results again demonstrate and reconfirm what we already claimed: our

cross validation method is far superior to default methods and is basically as

good as - if not better than - the full LOO method.

In conclusion, we have seen that robust LOESS gives the best accuracy

for our application, although the computational efficiency of robust smoothing

splines is better. At this point, we are not sure if the increase in accuracy is

worth the increase in computational effort, since both procedures work very

well. Either one will serve well in our application and in many situations to

be encountered in practice. For our application, we recommend the systematic

5-fold CV scheme with the robust LOESS, based on our simulation results.

4.3 Application

Now, we discuss the results of applying our methods to real data. We have done

most of the work in previous sections, and all we need for the application is to

apply the smoother with appropriate smoothing parameter selection procedure

to other curves.

Following the recommendations from the previous section, we used the ro-

bust LOESS with ACV based on systematic 5-fold CV (d = 5, r = 1) for

smoothing parameter selection. We found that this worked well. See Figure 4

for a sample of results.

We have also performed some diagnostics from fitting to the real data, such

as plotting residuals versus fitted values and Quantile-Quantile plot (Q-Q plot),

as well as looking at the autocorrelation of the residuals to determine whether

there is much correlation between adjacent grid points. The diagnostics did

not reveal any problems, and therefore we are confident of the usefulness of our

method. (The details are in Appendix p.20 and pp.23-24).
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Figure 4: Plots of raw data with robust smoother superimposed in four of the

emission spectra.

5 Conclusion and Discussion

We have seen how well our robust cross validation schemes perform in our appli-

cation. Specifically, we are able to implement a smoothing parameter selection

procedure in a fast, accurate way. We can confidently say that with either ro-

bust smoothing splines or robust LOESS using the ACV based on systematic

K-fold cross validation works well in practice.

There may exists some questions raised regarding our method. One such

issue may be the fact that we have only considered absolute value and Huber’s

rho functions in the RCV function. But we have shown that ACV with absolute

value works very well, and most other criterion functions will undoubtedly bring

more complications, so we do not foresee any marked improvements over ACV .

In addition, there may be some concern about the choice of d and r in our leave

out schemes. We obtained a ranges of candidate d and r values by trial and error,

and this must be done in every problem. Nevertheless, this small preprocessing

step will be beneficial in the long run. As demonstrated in the paper, we can
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save an enormous amount of time once we figure out the appropriate values for

d and r to be used in our scheme. Furthermore, if we need to smooth many

different curves as was done here, then we need only to do this for some test

cases. Some other issues such as use of default smoothing parameter selection

methods and the use of random K-fold has been resolved in the course of the

paper.

Now, we would like to discuss some possible future research directions. There

exist other methods of estimating smoothing parameters in robust smoothers,

such as Robust Cp (Cantoni and Ronchetti, 2001) and plug-in estimators (Boente

et al., 1997). We have not explored these in the present work, but they could

make for an interesting future study.

Another possible problem to consider is the theoretical aspect of robust cross

validation schemes. Leung et al. (1993) gives various conjectures, but as far as

we know, there have been no results yet.

Also, extending the methods proposed here to the function estimation on a

multivariate domain presents some challenges. In particular, the implementa-

tion of systematic K-fold cross validation was easy for us since our independent

variable values were 1-dimensional and equally spaced.

In conclusion, we believe that our methods are flexible and easily imple-

mentable in a variety of situations. We have been concerned with applying ro-

bust smoothers only to the spectroscopic data from our application so far, but

they should be applicable to other areas which involve similar data to ours.
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Supplemental Material for Robust Smoothing:

Smoothing Parameter Selection and

Applications to Fluorescence Spectroscopy

Jong Soo Lee and Dennis D. Cox

A Appendix

This Appendix contains some supplementary results not shown in the main text.

A.1 Huberized Robust Cross Validation

Recall that a Huberized RCV (HRCV ) is defined as

HRCV (λ) =
1

n

n∑
i=1

ρH(yi − m̂
(i)
λ (xi)).

In the main text, we have not included any analysis regarding HRCV
We first present the L1 and L2 loss functions (IAE(λ) and ISE(λ)) for each

of the λ values obtained by default, ACV , and HRCV , and compare them with
optimal λ values. For comparison, we will take the squared root of ISE so that
we show

√
ISE in the results. The results are shown in Table 1.

We now investigate the performance of HRCV to see how it compares with
those of ACV . First, we perform various HRCV (d,r) schemes, using the same
(d,r) values in ACV (d,r) above. The results of loss function values are also in
Table 2 (at appropriate columns). Comparing with ACV results, we find that
HRCV method performs very similar to the ACV ; in fact, the HRCV losses
seem to be lower.

Next, Figure 2 gives a comparison of the ACV and HRCV curves. The
HRCV curve is slightly smoother than the ACV curve while preserving most
of the features ACV curve has. This is true for comparing both (a) against (b)
and (c) against (d) in Figure 2. We note that both HRCV and the systematic
K-fold has some smoothing effect, so that we see that (d) is the smoothest of all.

Moreover, the λ̂ACV and λ̂HRCV values are equal. We will see more evidence
of this similarity between ACV and HRCV in the large simulation study.

The computational time of ACV and HRCV are virtually identical (and
hence presented only the times from ACV in Table 2). But with our proposal
for getting a scale parameter for HRCV , it is necessary to have a fit from the
ACV first and compute the residuals, a disadvantage for HRCV .
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Table 1: A table of L1 and L2 loss function values for default, ACV , HRCV ,
and optimum (IAE or ISE) criteria. For the COBS default, two sets of default
values are shown (default N or N = 50). The ISE values are square-rooted.

Simulation 1 Simulation 2

IAE
√

ISE IAE
√

ISE

qsreg Default 24.45 31.80 16.30 21.05

ACV 9.90 12.64 7.69 9.47

HRCV 9.90 12.64 6.94 8.58

Optimum 9.89 12.16 6.80 8.48

loess Default 229.05 478.19 194.44 324.32

ACV 8.61 10.76 6.19 7.50

HRCV 8.61 10.76 5.85 6.99

Optimum 8.12 10.33 5.73 6.86

cobs Default (N = 20) 68.36 162.19 53.22 118.64

Default (N = 50) 14.26 23.65 10.65 18.76

ACV 10.11 12.72 9.52 14.72

HRCV 10.11 12.72 9.52 14.72

Optimum 10.11 12.72 9.45 14.71

Simulation 3 Simulation 4

IAE
√

ISE IAE
√

ISE

qsreg Default 23.46 29.99 0.53 0.69

ACV 9.74 13.05 0.19 0.24

HRCV 9.74 13.05 0.20 0.25

Optimum 8.39 12.73 0.18 0.24

loess Default 427.32 914.51 13.15 19.57

ACV 8.79 11.30 0.19 0.24

HRCV 8.61 11.27 0.19 0.24

Optimum 7.92 11.27 0.18 0.24

cobs Default (N = 20) 48.09 162.83 2.29 6.32

Default (N = 50) 7.88 13.79 0.27 0.47

ACV 6.98 9.83 0.19 0.25

HRCV 7.02 9.80 0.19 0.25

Optimum 6.98 9.80 0.19 0.25

We determine that ACV is the best overall smoothing parameter selection
scheme. Although HRCV is the best method for finding the good estimate of
the λ, the disadvantage exist with the HRCV in that we first need to run a
robust smoother with a good estimate of λ to get the residuals which are used
to select the scale parameter in Huber’s ρ function. This means that we need
to run ACV first to get a good estimate of λ. Furthermore, the improvement
by HRCV is very slight over ACV (as was seen in Table 1).

A.2 Discussion of the Choices of the d and r Values

Recall our scheme: Define the sequence (i : d : n) = {i, i + d, . . . , i + kd} where

k is the largest integer such that i+kd ≤ n. Let m̂
(i:d:n)
λ denote the estimate with

2
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Figure 1: Plots of ACV curves with various leave out schemes. If a value of d
is not given, then d = n, i.e. one data point at a time is left out.

(xi, yi), (xi+d, yi+d), . . . , (xi+kd, yi+kd) left out. Define the robust systematic
K-fold cross-validation with phase r (where K = d/r) by

RCV (d,r)(λ) =
∑

i∈(1:r:d)

∑
j≥0

ρ
(
yi+jd − m̂

(i:d:n)
λ (xi+jd)

)
.
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Figure 2: Comparing ACV with HRCV.

If r = 1 so that K = d, we simply call this a systematic K-fold CV (without
any reference to phase r).

See Figure 3 for the graphical description of leave out schemes.
Let us discuss the choices of the d and r values for the ACV (d,r) and

HRCV (d,r) scheme. We choose d and r based on “trial and error” from the
data. For example, one way to determine the candidate (d,r) values is to fix
one value and vary the other, and consider only those in a “reasonable” range.
For our setting, we see that d = 50 and r = 1 resemble the full leave-one-out
method reasonably well, and so we discard the scheme where r = 1 and d is
over 50 (since the full LOO means d = n). Of course, different applications will
dictate different values of (d,r), but we will see that this preprocessing step is
well worth the time in practice.

In Table 2, we have loss functions from different ACV (d,r) along with those
from default methods, the full leave-one-out ACV , and the optimal values,
considering both IAE and ISE. We have also included their computation
times. If the value of d is not given in the table, then d = n, i.e. we are leaving
out only a single data point each time. We save some computational time by
leaving out every rth point, and about n/r estimates are computed. We see
that the smoothing parameter estimates do lose accuracy when r ≥ 5. If we
delete many points at once (e.g., d = 50 or d = 25), the computational time is
cut dramatically, and with r = 1 we obtain good accuracy, even with small d
values. In particular, with d = 5 and r = 1 (the systematic 5-fold CV), λ̂ is
the same as λ∗

IAE and λ∗
ISE , but the computation is 365 times faster than the

true leave-one-out scheme! As expected, the computation time is proportional
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Figure 3: Plots of our cross validation schemes. Plot (a) describes the true
leave-one-out case (r = 1, d = n). Plot (b) is the case r = 3, d = n. Plot (c)
explains the case r = 1, d = 3. Plot (d) is the case r = 2, d = 6

(to a high accuracy) to how many times we compute a robust smoothing spline.
Table 2 confirms that the performance of true leave-one out and systematic
K-fold CV schemes (d = K, r = 1) are superior to default and other methods.

To supplement the numerical results, we look at the actual ACV functions
for the various schemes. See Figure 1. Note that sometimes there seem to be
multiple minima in the ACV function and can be wiggly. In this example, we
see that the ACV curve with d = 25 and r = 1 (systematic 25-fold CV) very
closely approximates the leave-one-out ACV curve. In fact, the results from
Table 2 suggest that the systematic 5-fold and 25-fold CV actually performs
better than true leave-one-out CV.

Now, if we look at the results of Simulation 1 for robust LOESS, we see that
we get pretty much the same conclusion as we did when we used the robust
smoothing splines, qsreg, except that robust loess is a little more computation-
ally expensive (about twice as slow). For the results, see Table 3.

A.3 Results From Other Simulations

We obtain similar conclusions from all simulations (Simulations 1 to 4) as well.
See the Tables 4 to 7.
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Table 2: A table of loss functions in Simulation 1, using robust smoothing splines
(qsreg). The times are based on ACV .

ACV HRCV Time
Scheme IAE

√
ISE IAE

√
ISE (seconds)

Default 24.45 31.80 24.45 31.80 2.96

Full LOO 9.90 12.64 9.90 12.64 4,477.47

r = 5 12.00 14.95 10.23 12.71 886.82
r = 10 12.89 15.85 12.00 14.95 443.46

d = 50, r = 1 9.90 12.64 9.90 12.64 145.50
d = 25, r = 1 9.89 12.16 9.89 12.16 70.53
d = 5, r = 1 9.89 12.16 9.89 12.16 12.26

d = 50, r = 10 12.40 15.34 12.40 15.34 14.26
d = 25, r = 5 12.00 14.95 10.59 13.16 13.87

Optimum 9.89 12.16

Table 3: A table of loss functions in Simulation 1, using robust LOESS. The
times are based on ACV . Compare with Table 2.

ACV HRCV Time
Scheme IAE

√
ISE IAE

√
ISE (seconds)

Default 229.05 478.19 229.05 478.19 0.08

Full LOO 8.61 10.76 8.61 10.76 8,349.17

r = 5 8.61 10.76 8.82 11.05 1,676.25
r = 10 8.71 10.90 9.39 11.83 841.63

d = 50, r = 1 8.61 10.76 8.61 10.76 268.55
d = 25, r = 1 8.43 10.54 8.43 10.54 133.20
d = 5, r = 1 8.43 10.54 8.29 10.37 23.22

d = 50, r = 10 8.71 10.90 9.22 11.60 26.90
d = 25, r = 5 8.71 10.90 8.71 10.90 26.63

Optimum 8.12 10.33 8.12 10.33
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Table 4: A table of loss functions for Simulation 1. This is a summary of results
from Tables 2 and 3

ACV HRCV
Scheme IAE

√
ISE IAE

√
ISE

qsreg Default 24.45 31.80 24.45 31.80
Full LOO 9.90 12.64 9.90 12.64
r = 5 12.00 14.95 10.23 12.71
r = 10 12.89 15.85 12.00 14.95
d = 50, r = 1 9.90 12.64 9.90 12.64
d = 25, r = 1 9.89 12.16 9.89 12.16
d = 5, r = 1 9.89 12.16 9.89 12.16
d = 50, r = 10 12.40 15.34 12.00 14.95
d = 25, r = 5 12.00 14.95 10.59 13.16
Optimum 9.89 12.16 9.89 12.16

loess Default 229.05 478.19 229.05 478.19
Full LOO 8.61 10.76 8.61 10.76
r = 5 8.61 10.76 8.82 11.05
r = 10 8.71 10.90 9.39 11.83
d = 50, r = 1 8.61 10.76 8.61 10.76
d = 25, r = 1 8.43 10.54 8.43 10.54
d = 5, r = 1 8.43 10.54 8.29 10.37
d = 50, r = 10 8.71 10.90 9.22 11.60
d = 25, r = 5 8.71 10.90 8.71 10.90
Optimum 8.12 10.33 8.12 10.33

7



Table 5: A table of loss functions for Simulation 2.
ACV HRCV

Scheme IAE
√

ISE IAE
√

ISE
qsreg Default 16.30 21.05 16.30 21.05

Full LOO 7.69 9.47 6.94 8.58
r = 5 7.69 9.47 7.35 9.11
r = 10 7.35 9.11 7.35 9.11
d = 50, r = 1 7.69 9.47 6.94 8.58
d = 25, r = 1 7.35 9.11 6.94 8.58
d = 5, r = 1 6.94 8.58 6.94 8.58
d = 50, r = 10 7.35 9.11 7.35 9.11
d = 25, r = 5 7.35 9.11 7.35 9.11
Optimum 6.80 8.48 6.80 8.48

loess Default 194.44 324.32 194.44 324.32
Full LOO 6.19 7.50 5.85 6.99
r = 5 6.31 7.69 6.08 7.34
r = 10 7.27 9.01 6.19 7.50
d = 50, r = 1 6.19 7.50 5.77 6.88
d = 25, r = 1 6.19 7.50 5.77 6.88
d = 5, r = 1 5.98 7.20 5.73 6.98
d = 50, r = 10 6.46 7.91 6.08 7.34
d = 25, r = 5 6.46 7.91 5.91 7.08
Optimum 5.73 6.86 5.73 6.86
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Table 6: A table of loss functions for Simulation 3.
ACV HRCV

Scheme IAE
√

ISE IAE
√

ISE
qsreg Default 23.46 29.99 23.46 29.99

Full LOO 10.66 13.59 9.74 13.05
r = 5 10.66 13.59 9.74 13.05
r = 10 10.66 13.59 9.74 13.05
d = 50, r = 1 10.66 13.59 9.74 13.05
d = 25, r = 1 10.66 13.59 9.74 13.05
d = 5, r = 1 10.19 13.32 8.99 12.73
d = 50, r = 10 10.66 13.59 9.74 13.05
d = 25, r = 5 10.19 13.32 9.74 13.05
Optimum 8.39 12.73 8.39 12.73

loess Default 427.32 914.51 427.32 914.51
Full LOO 8.79 11.30 8.61 11.27
r = 5 8.12 12.67 8.46 11.32
r = 10 8.72 24.85 8.09 11.81
d = 50, r = 1 8.28 11.27 8.28 11.27
d = 25, r = 1 8.28 11.27 8.28 11.27
d = 5, r = 1 8.28 11.27 8.28 11.27
d = 50, r = 10 8.72 24.85 8.09 11.81
d = 25, r = 5 8.12 12.67 8.28 11.27
Optimum 7.92 11.27 7.92 11.27
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Table 7: A table of loss functions for Simulation 4.
ACV HRCV

Scheme IAE
√

ISE IAE
√

ISE
qsreg Default 0.53 0.69 0.53 0.69

Full LOO 0.19 0.24 0.20 0.25
r = 5 0.19 0.24 0.20 0.25
r = 10 0.19 0.24 0.20 0.25
d = 50, r = 1 0.19 0.24 0.20 0.25
d = 25, r = 1 0.19 0.24 0.19 0.24
d = 5, r = 1 0.19 0.24 0.19 0.24
d = 50, r = 10 0.19 0.24 0.20 0.25
d = 25, r = 5 0.19 0.24 0.20 0.25
Optimum 0.18 0.24 0.18 0.24

loess Default 13.15 19.57 13.15 19.57
Full LOO 0.19 0.24 0.19 0.24
r = 5 0.18 0.24 0.18 0.24
r = 10 0.18 0.24 0.18 0.24
d = 50, r = 1 0.23 0.28 0.19 0.24
d = 25, r = 1 0.19 0.24 0.19 0.24
d = 5, r = 1 0.19 0.24 0.19 0.24
d = 50, r = 10 0.18 0.24 0.18 0.24
d = 25, r = 5 0.18 0.25 0.19 0.24
Optimum 0.18 0.24 0.18 0.24
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A.4 Random vs Systematic K-fold

See Figures 4 to 15. The figures contain 5-,25-, and 50-fold systematic CV
compared with the corresponding random CVs. For the random K-fold CVs,
we compute the inefficiency measure for each of the 100 draws, and we compare
them with the inefficiency of the systematic K-fold CV. This is done by creating
a histogram of inefficiency measures from the 100 draws, and indicating the
inefficiency of the systematic K-fold CV by a dot. The results in the figures
suggest that the systematic K-fold does well relative to random K-fold and
optimal value (Ineff = 1). Even when the random K-fold can obtain results
that are better than the systematic K-fold results, it can as well produce much
worse results.
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Figure 4: A histogram of inefficiencies obtained from the random 5-fold ACV,
to be compared with systematic 5-fold value (dot). From Simulation 1. Based
on 100 draws.
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to be compared with systematic 25-fold value (dot). From Simulation 1. Based
on 100 draws.

IAE − QSREG

inefficiency

F
re

qu
en

cy

1.00 1.05 1.10 1.15 1.20

0
20

40
60

80

ISE − QSREG

inefficiency

F
re

qu
en

cy

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80

IAE − LOESS

inefficiency

F
re

qu
en

cy

1.03 1.04 1.05 1.06 1.07 1.08 1.09

0
20

40
60

ISE − LOESS

inefficiency

F
re

qu
en

cy

1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16

0
20

40
60
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Figure 7: A histogram of inefficiencies obtained from the random 5-fold ACV,
to be compared with systematic 5-fold value (dot). From Simulation 2. Based
on 100 draws.
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to be compared with systematic 25-fold value (dot). From Simulation 2. Based
on 100 draws.
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Figure 9: A histogram of inefficiencies obtained from the random 50-fold ACV,
to be compared with systematic 50-fold value (dot). From Simulation 2. Based
on 100 draws.
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Figure 11: A histogram of inefficiencies obtained from the random 25-fold ACV,
to be compared with systematic 25-fold value (dot). From Simulation 3. Based
on 100 draws.
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Figure 12: A histogram of inefficiencies obtained from the random 50-fold ACV,
to be compared with systematic 50-fold value (dot). From Simulation 3. Based
on 100 draws.
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Figure 13: A histogram of inefficiencies obtained from the random 5-fold ACV,
to be compared with systematic 5-fold value (dot). From Simulation 4. Based
on 100 draws.
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Figure 14: A histogram of inefficiencies obtained from the random 25-fold ACV,
to be compared with systematic 25-fold value (dot). From Simulation 4. Based
on 100 draws.
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Figure 15: A histogram of inefficiencies obtained from the random 50-fold ACV,
to be compared with systematic 50-fold value (dot). From Simulation 4. Based
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Figure 16: The means of ISE, IAE, ACV , and HRCV for robust smoothing
splines.

A.5 Large Simulation Study

The data is obtained just as in Section 4.1.1 of the main text, where we take
a vector of “true” curve m(x) and add a random error from the distribution
specified in that section to each point of the vector, and repeat this M times
with the same same m(x).

If we obtain ISE(λ) and IAE(λ) functions for each simulation, we can eas-
ily estimate mean integrated squared error (MISE = E[ISE(λ)]) by averaging
across the simulations (average over M), and MIAE may likewise be obtained.
We also obtain ACV (λ) and HRCV (λ) curves for each simulation, and we aver-
age across the simulations to get the mean curves MACV (λ) and MHRCV (λ).
Our results are based on M = 100 simulated data sets.

We are interested in determining λ∗
ISE = argminλISE(λ) and λ∗

IAE =
argminλIAE(λ), and we are also interested in comparing the two theoretical
curves ISE(λ) and IAE(λ) with ACV (λ) and HRCV (λ). For the comparison
plots, we selected a range of λ’s that included the minimizers and and roughly
an order of magnitude on each side of the minimizer.

Figure 16 shows plots of the means of these four curves for robust smoothing
splines, and Figure 17 shows the results for robust LOESS. These plots suggest
that both robust cross validation functions do a better job of tracking MISE
than MIAE. We were somewhat surprised by this as we expected ACV would
be more consistent with MIAE.

We see in Figure 16 that the minimizing λ are virtually the same in all four
functions, and the shapes of the four functions are very similar. In Figure 17,
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Figure 17: The means of ISE, IAE, ACV , and HRCV for robust LOESS.

Table 8: A table comparing robust smoothers and loss functions. The values in
rows E[ISE(λ̂)] are square rooted to be on the same unit as the E[IAE(λ̂)].

qsreg loess

ACV
√

E[ISE(λ̂)] 12.61 10.45

E[IAE(λ̂)] 9.89 8.21

HRCV
√

E[ISE(λ̂)] 12.39 10.30

E[IAE(λ̂)] 9.77 8.13

the minimizing λ are slightly different, although they are close to each other.
However, looking at the ordinate values, we see that minimum values of both
theoretical curves (MISE and MIAE) in Figure 17 are smaller than in the
corresponding plots in Figure 16. This leads us to suspect that the robust
LOESS is better suited for our problem.

We want to assess the performance of the two robust smoothers of interest
by comparing E[ISE(λ̂)] values, with λ̂ a robust cross validation estimate, and

similarly for E[IAE(λ̂)]. The result are presented in Table 8. Clearly, all the
integrated error measures of robust LOESS are lower than those of the robust
smoothing splines. In addition, we see that the values for HRCV are uniformly
slightly better than those for ACV .

Next, we present the results of the inefficiency measures in Table 9. Again,
this gives evidence that HRCV is slightly better than ACV , as the mean and
median inefficiency measures are smaller in all cases. Interestingly, the robust
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Table 9: The mean and median inefficiency measure values. The ISE values
are square rooted.

ISE IAE
qsreg loess qsreg loess

ACV mean 1.107 1.067 1.047 1.029

min 1.000 1.000 1.000 1.000
1Q 1.003 1.007 1.006 1.005
median 1.048 1.026 1.029 1.012
3Q 1.156 1.074 1.059 1.036
max 2.066 2.504 1.406 1.200

HRCV mean 1.070 1.033 1.034 1.019

min 1.000 1.000 1.000 1.000
1Q 1.000 1.000 1.006 1.001
median 1.025 1.011 1.020 1.009
3Q 1.108 1.031 1.048 1.023
max 1.502 1.200 1.224 1.145

LOESS has in most cases smaller inefficiencies, indicating that one can do a
better job of estimating the optimal smoothing parameter for robust LOESS
than for robust smoothing splines (although these results by themselves do not
indicate which smoothing method is more accurate).

FInally, we look at all 4 simulation results by means of inefficiencies. These
are presented in Tables 10-13.

A.6 Diagnostics

Here, we discuss the diagnostics of fitting the real data with a robust smoother.
We picked the same excitation wavelength (310 nm) that we have been using
throughout.

First, we did the usual checks on residuals, such as plotting residuals versus
fitted values (residual plot) and Quantile-Quantile plot (Q-Q plot). Since our
data contain outliers, some of the residuals are very large, which needs to be
taken into account.

For the residual plot, we used the original residuals with the limits on the
y-axis chosen so that very large residuals are not shown. We only lose 28
observations out of 1550 by this limitation on the y values. Looking at Figure 18
(a), we see no discernible patterns in the plot of residuals versus fitted values.

We have also produced a Q-Q plot, but with the trimmed residuals obtained
as follows. All the residuals that are smaller than the 2.5th percentile are set
equal to the 2.5th percentile, and the residuals larger than the 97.5th percentile
are set equal to the value at the 97.5th percentile. If we glance at Figure 18 (b),
most points fall near the line, except the upper half of positive sample quantiles.
However, this is not a big cause for concern, as we are not trying to test for the
normality of residuals.
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Table 10: A table of median values of inefficiencies in Simulation 1. The ISE
values are square rooted.

ACV HRCV
IAE

√
ISE IAE

√
ISE

qsreg Default 2.59 2.68 2.59 2.68
Full LOO 1.03 1.05 1.02 1.03
d = 50, r = 1 1.03 1.05 1.02 1.02
d = 25, r = 1 1.03 1.04 1.02 1.02
d = 5, r = 1 1.02 1.02 1.01 1.01

loess Default 28.67 47.29 28.67 47.29
Full LOO 1.01 1.03 1.01 1.01
d = 50, r = 1 1.01 1.03 1.01 1.02
d = 25, r = 1 1.01 1.03 1.01 1.03
d = 5, r = 1 1.01 1.03 1.01 1.02

Table 11: A table of median values of inefficiencies in Simulation 2. The ISE
values are square rooted.

ACV HRCV
IAE

√
ISE IAE

√
ISE

qsreg Default 2.34 2.41 2.34 2.41
Full LOO 1.02 1.03 1.01 1.02
d = 50, r = 1 1.02 1.02 1.01 1.02
d = 25, r = 1 1.02 1.03 1.01 1.02
d = 5, r = 1 1.00 1.00 1.00 1.00

loess Default 32.95 43.48 32.95 43.48
Full LOO 1.02 1.01 1.01 1.01
d = 50, r = 1 1.01 1.01 1.00 1.01
d = 25, r = 1 1.01 1.01 1.01 1.01
d = 5, r = 1 1.00 1.00 1.00 1.00
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Table 12: A table of median values of inefficiencies in Simulation 3. The ISE
values are square rooted.

ACV HRCV
IAE

√
ISE IAE

√
ISE

qsreg Default 2.36 2.17 2.36 2.17
Full LOO 1.09 1.06 1.10 1.04
d = 50, r = 1 1.08 1.05 1.09 1.04
d = 25, r = 1 1.08 1.05 1.09 1.04
d = 5, r = 1 1.05 1.06 1.07 1.03

loess Default 46.88 73.53 46.88 73.53
Full LOO 1.04 1.02 1.04 1.01
d = 50, r = 1 1.04 1.01 1.05 1.00
d = 25, r = 1 1.03 1.02 1.03 1.02
d = 5, r = 1 1.02 1.04 1.03 1.03

Table 13: A table of median values of inefficiencies in Simulation 4. The ISE
values are square rooted.

ACV HRCV
IAE

√
ISE IAE

√
ISE

qsreg Default 2.67 2.54 2.67 2.54
Full LOO 1.05 1.04 1.04 1.02
d = 50, r = 1 1.04 1.06 1.04 1.02
d = 25, r = 1 1.04 1.04 1.04 1.02
d = 5, r = 1 1.02 1.02 1.03 1.01

loess Default 70.73 77.85 70.73 77.85
Full LOO 1.05 1.01 1.05 1.00
d = 50, r = 1 1.03 1.02 1.04 1.01
d = 25, r = 1 1.03 1.02 1.03 1.01
d = 5, r = 1 1.03 1.03 1.03 1.02
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Figure 18: A plot of residuals vs. fitted values and the Q-Q plot.

In addition, we want to look at the autocorrelation of the residuals to deter-
mine whether there is much correlation between adjacent emission wavelengths
(grid points xi). When we computed the autocorrelations of the trimmed resid-
uals as described above for the Q-Q plot, we found that there are only small
autocorrelations, suggesting that the assumption of independent errors is valid.
See Figure 19.
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Figure 19: The autocorrelation plots for the trimmed residuals.
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