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Abstract

We present a plug-in method for estimating
the cluster tree of a density. The method
takes advantage of the ability to exactly com-
pute the level sets of a piecewise constant
density estimate. We then introduce clus-
tering with confidence, an automatic pruning
procedure that assesses significance of splits
(and thereby clusters) in the cluster tree; the
only user input required is the desired confi-
dence level.

1 Introduction

The goal of clustering is to identify distinct groups in a
data set and assign a group label to each observation.
Ideally, we would be able to find the number of groups
as well as where each group lies in the feature space
with minimal input from the user. For example, Figure
1 below shows two curvilinear groups, 200 observations
each, and two spherical groups, 100 observations each;
we would like a four cluster solution, one per group.
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Figure 1: Data set with four well-separated groups

To cast clustering as a statistical problem, we regard
the data, X = {x1,...,xn} € RP, as a sample from
some unknown population density p(x). There are
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two statistical approaches. Parametric (model-based)
clustering assumes the data have been generated by a
finite mixture of ¢ underlying parametric probability
distributions py(x) (often multivariate Gaussian), one
component per group (Fraley, Raftery 1998; McLach-
lan, Basford 1988). This procedure selects a number
of mixture components (clusters) and estimates their
parameters. However, it is susceptible to violation of
distributional assumptions. Skewed or non-Gaussian
groups may be modeled incorrectly by a mixture of
several Gaussians.

In contrast, the nonparametric approach assumes a
correspondence between groups in the data and modes
of the density p(x). Wishart (1969) first advocated
searching for modes as manifestations of the presence
of groups; nonparametric clustering algorithms should
be able to “resolve distinct data modes, independently
of their shape and variance”.

Hartigan expanded this idea and made it more precise
(1975, 1981, 1985). Define a level set L(A; p) of a den-
sity p at level A as the subset of the feature space for
which the density exceeds \:

L(A;ip) = {xIp(x) > A}.

Its connected components are the maximally con-
nected subsets of a level set. For any two connected
components A and B, possibly at different levels, ei-
ther A C B, B C A, or AN B = (. This hierarchical
structure of the level sets is summarized by the cluster
tree of p.

The cluster tree is easiest to define recursively (Stuet-
zle 2003). Each node N of the tree represents a subset
D(N) of the support L(0; p) of p and is associated with
a density level A(N). The root node represents the en-
tire support of p and is associated with density level
A(N) = 0. To determine the daughters of a node, we
find the lowest level Ay for which L(Ag;p) () D(INV) has
two or more connected components. If no such Ay ex-
ists, then D(N) is a mode of the density, and N is a



leaf of the tree. Otherwise, let C1,Cs,...,C, be the
connected components of L(Ag;p)(VD(N). If n = 2,
we create two daughter nodes at level Ay, one for each
connected component; we then apply the procedure
recursively to each daughter node. If n > 2, we cre-
ate two connected components Cy and Cy |J Cs...|JCy,
and their respective daughter nodes and then recurse.
We call the regions D(N) the “high density clusters”
of p.

Note that we have defined a binary tree; other possible
definitions with non-binary splits could be used. How-
ever, the recursive binary tree easily accommodates
level sets with more than two connected components.
For example, if the level set L(A\g; p) () D(N) has three
connected components, C, Csy, C3, the binary tree first
splits, say, C1 from Cy|JC5 at height A4 and, after
finding any subsequent splits and leaves on the cor-
responding branch for Cp, returns to the connected
component Cy|JC5 at height A4, immediately splits
C5 and Cjs, and creates two more daughter nodes at
height Ay. The final cluster tree structure will contain
a node for each of the three connected components,
all at height \;. Figure 2 shows a univariate density
with four modes and the corresponding cluster tree
with initial split at A = 0.0044 and subsequent splits
at A = 0.0288,0.0434. Estimating the cluster tree is a
fundamental goal of nonparametric cluster analysis.
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Figure 2: (a) Density with four modes; (b) correspond-
ing cluster tree with three splits (four leaves)

There are several previously suggested -clustering
methods based on level sets. Wishart’s one level mode
analysis is probably the first such method (1969); its
goal is to find the connected components of L(A;p)
for a given A\. After computing a density estimate
p, all observations x; where p(x;) < A are set aside.
Well-separated groups of the remaining high density
observations correspond to connected components of
L(A;p). One drawback is that not all groups or modes
may be identified by examining a single level set.
Wishart’s hierarchical mode analysis addresses this
weakness; this complex algorithm constructs a cluster
tree (although not so named) through iterative merg-
ing.

Several other level set estimation procedures have been
proposed. Walther’s level set estimator consists of
two steps (1997). First, compute a density estimate
p of the underlying density p. Second, approximate
L(X\;p) by L*(\;p), a union of balls B; of radius r cen-
tered around x; with p(x;) > A that do not contain
x; with p(x;) < A. While this structure is computa-
tionally convenient for finding connected components,
its accuracy depends on the choice of r. Walther pro-
vides a formula for r based on the behavior of p on
the boundary 0L(A;p) of the level set L(A;p). The
Cuevas, Febrero, and Fraiman level set estimator also
is based on a union of balls of radius r (2000, 2001).
However, their estimate L*(\;p) is the union of all
balls B; centered around x; where p(x;) > A; no balls
are excluded. They propose several heuristic methods
for choosing r based on interpoint distance.

Stuetzle’s runt pruning method (2003) estimates the
cluster tree of p by computing the cluster tree of the
nearest neighbor density estimate and then prunes
branches corresponding to supposed spurious modes.
The method is sensitive to the pruning amount pa-
rameter chosen by the user. Klemela developed visu-
alization tools for multivariate density estimates that
are piecewise constant over (hyper-)rectangles (2004).
He defines a “level set tree” which has nodes at every
level corresponding to a unique value of p. Note that
the cluster tree only has nodes at split levels.

2 Constructing the cluster tree for a
piecewise constant density estimate

We can estimate the cluster tree of a density p by
the cluster tree of a density estimate p. However, for
most density estimates, computing the cluster tree is
a difficult problem; there is no obvious method for
computing and representing the level sets. Exceptions
are density estimates that are piecewise constant over
(hyper-)rectangles. Let By, Ba, ..., By be the rectan-
gles, and let p; be the estimated density for B;. Then

L(xp) = | B

Pi>A

If the dimension is low enough, any density estimate
can be reasonably binned. To illustrate, we choose the
Binned Kernel Density Estimate (BKDE), a binned
approximation to an ordinary kernel density estimate,
on the finest grid we can computationally afford (Hall,
Wand 1996; Wand, Jones 1995). We use ten-fold cross
validation for bandwidth estimation. Figure 3a shows
a heat map of the BKDE for the four well-separated
groups on a 20 x 20 grid with a cross-validation band-
width of 0.0244. Several high frequency areas are in-
dicated.



Note that during cluster tree construction,
L(A\g;p) N D(N) changes structure only when
the level A4 is equal to the next higher value of p(B;)
for one or more bins B; in D(N). After identifying
and sorting the bins’ unique density estimate values,
we can compute the cluster tree of p by “stepping
through” only this subset of all possible levels A\. Ev-
ery increase in level then corresponds to the removal
of one or more bins from the level set L(Ag; p).

Finding the connected components of L(Ag; p) N D(N)
can be cast as a graph problem. Let G be an adjacency
graph over the bins B; € L(Aq; p)ND(N). The vertices
of the graph are the bins B;. Two bins B; and B; are
connected by an edge if adjacent (i.e. share a lower-
dimensional face). The connected components of G
correspond to the connected components of the level
set L(Ag;p) N D(N) and finding them is a standard
graph problem (Sedgewick 2002).

Figure 3: (a) example data BKDE on a 20 x 20 grid;
(b) level set at A = 0.00016; cluster cores in orange,
white; (¢) corresponding partitioned feature space

When a node N of the cluster tree has been split into
daughters N;, N,., the high density clusters D(N;),
D(N,), also referred to as the cluster “cores”, do not
form a partition of D(N). We refer to the bins in
D(N)\(D(N;) U D(N,)) (and observations in these
bins) as the “fluff”. We assign each bin B in the
fluff to N, if the Manhattan distance dy; (B, D(N,.))
is smaller that dp (B, D(Ny)). If dy(B,D(N,)) >
dy (B, D(N;)), then B is assigned to N;. In case of
ties, the algorithm arbitrarily chooses an assignment.
The cluster cores and fluff represented by the leaves
of the cluster tree form a partition of the support of p
and a corresponding partition of the observations. The

same is true for every subtree of the cluster tree. Fig-
ure 3b shows L(0.00016;p) with removed bins in red.
Two daughter nodes are created, one for each con-
nected component/cluster core. Figure 3c illustrates
the subsequent partitioning of the feature space after
assignment of fluff bins to the closest core.

Figure 4a shows the cluster tree generated from the ex-
ample BKDE; the corresponding cluster assignments
and partitioned feature space (labeled by color) are in
Figures 4b,c. The cluster tree indicates the BKDE has
nine modes. The first split at A = 1-107!¢ and the
mode of p around (0.5, 0) (in yellow in Figure 4c) are
artifacts of the density estimate; no observations are
assigned to the resulting daughter node. The remain-
ing eight leaves correspond to (a subset of) one of the
groups.
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Figure 4: (a) Cluster tree for BKDE; (b) cluster as-
signments by color; (¢) partitioned feature space

We compare these results to common clustering ap-
proaches (briefly described here). K-means is a it-
erative descent approach that minimizes the within-
cluster sum of squares; it tends to partition the fea-
ture space into equal-sized (hyper-)spheres (Hartigan,
Wong 1979). Although we know there are four groups,
we range the number of clusters from two to twelve and
plot the total within-cluster sum of squares against the
number of clusters. The “elbow” in the curve occurs
around five or six clusters. Solutions with more clus-
ters have negligible decreases in the criterion. Model-
based clustering is described in Section 1. We allow
the procedure to search over one to twelve clusters
with no constraints on the covariance matrix; a ten-
cluster solution is chosen. Finally, we include results



from three hierarchical linkage methods (Mardia, et
al 1979). Hierarchical agglomerative linkage methods
iteratively join clusters in an order determined by a
chosen between-cluster distance; we use the minimum,
maximum, or average Euclidean distance between ob-
servations in different clusters (single, complete, aver-
age respectively). The hierarchical cluster structure
is graphically represented by a tree-based dendrogram
whose branches merge at heights corresponding to the
clusters’ dissimilarity. We prune each dendrogram for
the known number of groups (four). In all cases, we
compare the generated clustering partitions to the true
groups using the Adjusted Rand Index (Table 1) (Hu-
bert, Arabie 1985). The ARI is a common measure of
agreement between two partitions. Its expected value
is zero under random partitioning with a maximum
value of one; larger values indicate better agreement.

Table 1: Comparison of Clustering Methods

Method ARI
Cluster Tree: 20 x 20 (k = 8) 0.781
Cluster Tree: 15 x 15 (k = 6) 0.865
K-means (k = 4) 0.924
K-means (k = 5) 0.803
K-means (k = 6) 0.673
MBC (k = 10) 0.534

Linkage (single, complete, average) 1

The groups in the simulated data are well-separated;
however, the two curvilinear groups lead to an ex-
pected increased number of clusters. While the four
cluster k-means solution had high agreement with the
true partition, the total within-cluster sum of squares
criterion was lower for solutions with larger numbers
of clusters (5, 6) who had lower ARIs comparable to
the cluster tree partition generated for the BKDE on
a 20 x 20 grid. Model-based clustering overestimated
the number of groups in the population; the ARI cor-
respondingly drops. All three linkage methods gave
perfect agreement; this performance is not unexpected
given the well-separated groups.

Although the cluster tree method has an ARI of 0.781,
the algorithm generates the correct partition for the
density estimate. Its performance is dependent on the
density estimate. A similarly found density estimate
on a 15 x 15 grid with a cross-validation selected band-
width of 0.015 yielded a cluster tree with an ARI of
0.865. In both cases, the number of groups is overes-
timated (8 and 6). Figure 4 illustrates this problem
in the approach. While the cluster tree is accurate
for the given density estimate, a density estimate is
inherently noisy, which results in spurious modes not
corresponding to groups in the underlying population.

In our example, the procedure identified the four orig-
inal groups (the three splits post-artifact split in the
cluster tree) but erroneously continued splitting the
clusters. The corresponding branches of the cluster
tree need to be pruned.

3 Clustering with Confidence

We propose a bootstrap-based automatic pruning pro-
cedure. The idea is to find (1 — «) simultaneous upper
and lower confidence sets for each level set. During
cluster tree construction, only splits indicated as sig-
nificant by the bootstrap confidence sets are taken to
signal multi-modality. Spurious modes are discarded
during estimation; the only decision from the user is
the confidence level.

3.1 Bootstrap confidence sets for level sets

We choose upper confidence sets to be of the form
L*(N;p) = L(A — 6%;p) and lower confidence sets of
form L'(\;p) = L(X\ + 64;p) with 6%, 64 > 0. By
construction,

Lower = L'(\;p) C L(\;p) € L*(\;p) = Upper.

Let p1,P5, ..., P, be the density estimates for m boot-
strap samples of size n drawn with replacement from
the original sample. We call a pair (L(A — 0%;9),
L(\ + 84;p)) a non-simultaneous (1 — a) confidence
band for L(\;p) if for (1 — a) of the bootstrap density
estimates p}, the upper confidence set L(A—4%; p) con-
tains L(\; p;) and the lower confidence set L(A+8%;p)
is contained in L(\; p):

Pyoot {L(A+65:P) € L(X;p;) C L(A=6%3p)} > 11—«

Here is one method to determine 6%, 8, (Buja 2002).
For each bootstrap sample p; and each of the finitely
many levels of p, find the smallest §¥ () such that

L(Xp7) € LA = 0X(2); )

and the smallest &} (¢) such that

LA+ 84(i); ) € LN 7).

Choose 6% = (1 — %) quantile of the §}(i) and ¢} =
(1—2) quantile of the &} (i). By construction, the pair
(L(A=0%;p), L(A+6%;p)) is a (1—a) non-simultaneous
confidence band for L(\;p). To get confidence bands
for all A occurring as values of p with simultaneous
coverage probability 1 — «, we simply increase the cov-
erage level of the individual bands until

Pooot{ LA+ 6%;9) € L(X; pf) © L(X — 0%;p) YA} >
1-—a.



Note that the actual upper and lower confidence sets
for L(\;p) are the level sets (L(A—%;p), L(A+84;p))
respectively for p. The bootstrap is used only to find
u 5l .
A P

3.2 Constructing the cluster tree

After finding 0%, 6} for all A, we incorporate the boot-
strap confidence sets into the cluster tree construction
by only allowing splits at heights A for which the corre-
sponding bootstrap confidence set (L'(X;p), L*(\;p))
gives strong evidence of a split. We use a similar
recursive procedure as described in Section 2. The
root node represents the entire support of p and is
associated with density level A(N) = 0. To de-
termine the daughters of a node, we find the low-
est level \g for which a) L!(\g;p) () D(N) has two
or more connected components that b) are discon-
nected in L*(Ag;p)(VD(N). Condition (a) indi-
cates that the underlying density p has two peaks
above height A; condition (b) indicates that the two
peaks are separated by a valley dipping below height
A. Satisfying both conditions indicates a split at
height A. If no such A; exists, N is a leaf of the
tree. Otherwise, let C!,C% be two connected com-
ponents of L'(A\g;p) () D(N) that are disconnected in
L*(M\g;p) N D(N). Let C} and C¥ be the connected
components of L*(\g;p) () D(N) that contain C! and
Cl respectively. If n = 2, we create two daughter
nodes at level Aq for C{ and C% and, to each, ap-
ply the procedure recursively. If n > 2, we create two
connected components C} and C¥ |JC¥...JC¥ and
daughter nodes and recurse.

Returning to the example cluster tree (Figure 4a),
we examine the split at A = 0.0036, the first split
that breaks the lower left curvilinear group into two
clusters. Figure 5 shows the bootstrap confidence set
(v = 0.05) for this level set. The original level set
L(0.0036;p) is in Figure 5a, color-coded by subsequent
final leaf. The lower confidence set (Figure 5b) is found
to be 65 = 0.0037 higher, i.e. L(0.0073;p). The upper
confidence set (Figure 5¢) is found to be 6% = 0.0026
lower, i.e. L(0.001;p). At A = 0.0036, the upper con-
fidence set does not have two connected components
(no valley). Moreover, even though the lower confi-
dence set does have two connected components, they
do not correspond to the two connected components in
L(0.0036; p). We do not have evidence of a significant
split and so do not create daughter nodes at this level.

Clustering with Confidence (CWC) using o = 0.05
generates the cluster tree and data/feature space par-
titions seen in Figure 6. The cluster tree’s significant
splits have identified the four original groups (ARI =
1). No other smaller clusters (or modal artifacts) are
found. Note that the split heights are higher than the

Figure 5: Bootstrap confidence set for A = 0.0036:
(a)L(0.0036; p) ; (b) Lower confidence set, 6, = 0.0037;
(c) upper confidence set, §y = 0.0026

corresponding split heights in the cluster tree in Figure
4. The CWC procedure required stronger evidence for
a split than was available at the lower levels. It per-
formed similarly to hierarchical linkage methods and
more favorably than k-means or model-based cluster-
ing (Table 1).
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Figure 6: (a) 95% confidence cluster tree (b) cluster
assignments; (c) partitioned feature space



4 Examples

The algorithms presented could be used for any num-
ber of dimensions, but are more tractable for lower
dimensions. For easy visualization of the results, we
present two examples using real data in two dimen-
sions. We comment on higher dimensionality in the
summary and future work section.

4.1 Identifying different skill sets in a
student population

In educational research, a fundamental goal is identi-
fying whether or not students have mastered the skills
taught. The data available usually consists of whether
or not a student answered questions correctly and
which skills the questions require. Cognitive diagnosis
models and item response theory models, often used to
estimate students’ abilities, can be lengthy in run time;
estimation instability grows as the number of students,
questions, and skills increases. Clustering capabil-
ity estimates easily derived from students’ responses
and skill-labeled questions to partition students into
groups with different skill sets has been proposed as a
quick alternative (Ayers, Nugent, Dean 2008). A ca-
pability vector B; = {B1, Bia, ..., Bix} € [0,1]¥ for
K skills is found for each student. For skill k, a B
near 0 indicates no mastery, near 1 indicates mastery,
and near 0.5 indicates partial mastery or uncertainty.
The cluster center is viewed as a skill set capability
profile for a group of students.
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Figure 7: (a) Cluster tree (b) Cluster assignments

Figure 7b shows the (jittered) estimated capabilities
for 551 students on two skills, Evaluate Functions and
Multiplication, from an online mathematics tutor (As-
sistment system; Heffernan, Koedinger, Junker 2001).
The BKDE cross-validated bandwidth was 0.032. The
corresponding cluster tree (Figure 7a) has 10 different
skill set profiles (clusters). Figure 7b shows the sub-
sequent partition. Note that the two highest splits in
the tree separate the clusters in the top half section
of the feature space; these students have partial to
complete mastery of Multiplication and are separated

by their Evaluate Function mastery level. The more
well-separated skill set profiles are identified earlier.
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Figure 8: (a) K-means assignment (k=14); (b) Model-
based clustering assignment (k = 11);(c) Complete
linkage dendrogram; (d) Complete linkage cluster as-
signment (k = 4)

Figure 8 shows selected results from other clustering
procedures. The total within-cluster sum of squares
criterion suggested a k-means solution with 14 or 15
clusters. Figure 8a illustrates its propensity to parti-
tion into small tight spheres (perhaps overly so). Given
a search range of two to 18 clusters with no constraints,
model-based clustering chose a eleven cluster solution
(Figure 8b). The “strips” are divided into cohesive
sections of feature space; the “uncertain mastery” stu-
dents are clustered together. Note that model-based
clustering identified a very loose cluster of students
with poor Multiplication mastery and Evaluate Func-
tion mastery ranging from 0.2 to 1 that overlaps with
a tighter cluster of students with an Evaluate Func-
tion value of 0.5. This skill profile is a casualty of the
assumption that each mixture component in the den-
sity estimate corresponds to a group in the population.
However, overall the results seem to give more natural
skill profile groupings than k-means. All hierarchical
linkage methods yielded dendrograms without obvious
cluster solutions; Figures 8c,d show an example of a
four cluster complete linkage solution. Students with
different Evaluate Function mastery levels are com-
bined; in this respect, the results are unsatisfying.

Developing 10 different instruction methods for a
group of students is unreasonable in practice. We
use CWC to construct a cluster tree for « = 0.90 to
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Figure 9: (a) 10% confidence cluster tree (b) cluster
assignments

identify skill set profiles in which we are at least 10%
confident. Figure 9 shows the subsequent cluster tree
and assignments. At 10% confidence, we have only
three skill set profiles, each identified only by their
mastery level of Evaluate Functions. This result may
be a more reasonable partition given the less clear sep-
aration along Multiplication mastery. Note that there
are instances in which close “fluff” observations are as-
signed to different “cores”, a result of the tie-breaker.

4.2 “Automatic Gating” in Flow Cytometry

Flow cytometry is a technique for examining and sort-
ing microscopic particles. Fluorescent tags are at-
tached to mRNA molecules in a population of cells and
passed in front of a single wavelength laser; the level of
fluorescence in each cell (corresponding, for example,
to level of gene expression) is recorded. We might be
interested in discovering groups of cells that high fluo-
rescence levels for multiple channels or groups of cells
that have different levels across channels. A common
identification method is “gating” or subgroup extrac-
tion from two-dimensional plots of measurements on
two channels. Most commonly, these subgroups are
identified subjectively by eyeballing the graphs. Clus-
tering techniques would allow for more statistically
motivated subgroup identification (see Lo, Brinkman,
Gottardo 2008 for one proposed method).

Figure 10a shows 1545 flow cytometry measurements
on two fluorescence markers applied to Rituximab, a
therapeutic monoclonal antibody, in a drug-screening
project designed to identify agents to enhance its an-
tilymphoma activity (Gottardo, Lo 2008). Cells were
stained, following culture, with the agents anti-BrdU
and the DNA binding dye 7-AAD.

We construct a cluster tree (cross-validated BKDE
bandwidth of 21.834) and plot the cluster assignments
indicating whether the observations are “fluff” or part
of a cluster “core” (Figures 10b,c). The cluster tree
has 13 leaves (8 clusters, 5 modal artifacts). The cores
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Figure 10: (a) Flow cytometry measurements on the
two fluorescent markers anti-BrdU and 7-AAD; (b)
Cluster tree with 13 leaves (8 clusters, 5 artifacts);
(c) Cluster assignments: “fluft” = x; “core” = o

are located in the high frequency areas; the fluff is ap-
propriately assigned. The sizes of the cores give some
evidence as to their eventual significance. For example,
the core near (400, 700) consists of one observation; we
would not expect the corresponding cluster to remain
in the confidence cluster tree for any reasonable a.
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Figure 11: (a) K-means assignment (k=10); (b)
Model-based clustering assignment (k = 7)

Figure 11a shows a ten-cluster k-means solution simi-
larly chosen as before. While many of the smaller clus-
ters are found by both k-means and the cluster tree,
k-means splits the large cluster in Figure 10c into sev-
eral smaller clusters. Model-based clustering chooses
a seven-cluster solution (Figure 11b). We again see
overlapping clusters in the lower left quadrant; this
solution would not be viable in this application. Link-
age methods again provided unclear solutions.



We use CWC to construct a confidence cluster tree for
a = 0.10; we are at least 90% confident in the gen-
erated clusters (Figure 12). All modal artifacts have
been removed, and the smaller clusters have merged
into two larger clusters with cores at (200, 200) and
(700, 300). Note that the right cluster is a combina-
tion of the two high 7-AAD/low anti-BrdU clusters
from Figure 10c. CWC did not find enough evidence
to warrant splitting this larger cluster into subgroups.
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Figure 12: (b) 90% Cluster Tree with two leaves; (c)
Cluster assignments: “fuff” = x; “core” = e

5 Summary and future work

We have presented a plug-in method for estimating the
cluster tree of a density that takes advantage of the
ability to exactly compute the level sets of a piecewise
constant density estimate. The approach shows flexi-
bility in finding clusters of unequal sizes and shapes.
However, the cluster tree is dependent on the (inher-
ently noisy) density estimate. We introduced cluster-
ing with confidence, an automatic pruning procedure
that assesses significance of splits in the cluster tree;
the only input needed is the desired confidence level.

These procedures may become computationally in-
tractable as the number of adjacent bins grows with
the dimension and are realistically for use in lower di-
mensions. One high-dimensional approach would be to
employ projection or dimension reduction techniques
prior to cluster tree estimation. We also have devel-
oped a graph-based approach that approximates the
cluster tree in high dimensions. Clustering with Con-
fidence then could be applied to the resulting graph to
identify significant clusters.

References

Ayers, E, Nugent R, and Dean, N. (2008) “Skill Set Profile
Clustering Based on Student Capability Vectors Computed
From Online Tutoring Data”. Proc. of the Int’l Conference
on Educational Data Mining (peer-reviewed). To appear.

Buja, A. (2002) Personal Communication. Also
Buja, A. and Rolke, W. “Calibration for Simultane-
ity: (Re)Sampling Methods for Simultaneous Inference

with Applications to Function Estimation and Functional
Data”. In revision.

Cuevas, A., Febrero M., and Fraiman, R. (2000) “Estimat-
ing the Number of Clusters”. The Canadian Journal of
Statistics, 28:367-382.

Cuevas, A., Febrero M., and Fraiman, R. (2001) “Cluster
Analysis: a further approach based on density estimation”.
Computational Statistics & Data Analysis, 36:441-459.

Fraley, C and Raftery, A (1998). “How Many Clusters?
Which Clustering Method? - Answers Via Model-Based
Cluster Analysis”. The Computer Journal, 41:578-588.

Gottardo, R. and Lo, K.(2008) flowClust Bioconductor
package

Hall, P. and Wand, M. P. (1996) “On the Accuracy of
Binned Kernel Density Estimators”. Journal of Multivari-
ate Analysis, 56:165-184.

Hartigan, J. A. (1975) Clustering Algorithms. Wiley.

Hartigan, J. A. (1981) “Consistency of Single Linkage for
High-Density Clusters”. Journal of the American Statisti-
cal Association, 76:388-394.

Hartigan, J. A. (1985) “Statistical Theory in Clustering”.
Journal of Classification, 2:63-76.

Hartigan, J and Wong, M.A. (1979). A k-means clustering
algorithm. Applied Statistics, 28, 100-108.

Heffernan, N.T., Koedinger K.R., and Junker, B. W.
(2001) Using Web-Based Cognitive Assessment Systems for
Predicting Student Performance on State Fxams. Research
proposal to the Institute of Educational Statistics, US De-
partment of Education. Department of Computer Science
at Worcester Polytechnic Institute, Massachusetts.

Hubert, L. and Arabie, P. (1985) Comparing partitions.
Journal of Classification, 2, 193-218.

Klemeld, J. (2004) “Visualization of Multivariate Density
Estimates with Level Set Trees”. Journal of Computational
and Graphical Statistics, 13:599-620.

Lo, K., Brinkman R., and Gottardo, R. (2008). “Auto-
mated Gating of Flow Cytometry Data via Robust Model-
Based Clustering”. Cytometry, Part A, 7T3A: 321-332.

Mardia, K., Kent, J.T., and Bibby, J.M. (1979) Multivari-
ate Analysis. Academic Press.

McLachlan, G.J. and Basford, K.E. (1988) Mizture Models:
Inference and Applications to Clustering. Marcel Dekker.

Sedgewick, Robert. (2002) Algorithms in C, Part 5: Graph
Algorithms, 3rd Ed. Addison-Wesley.

Stuetzle, W. (2003) “Estimating the Cluster Tree of a Den-
sity by Analyzing the Minimal Spanning Tree of a Sample”.
Journal of Classification. 20:25-47.

Walther, G. (1997) “Granulometric Smoothing”. The An-
nals of Statistics, 25:2273-2299.

Wand, M. P. and Jones, M. C. (1995) Kernel Smoothing.
Chapman & Hall.

Wishart, D. (1969) “Mode Analysis: A Generalization of
Nearest Neighbor which Reduces Chaining Effect. Numer-
ical Tazonomy, ed. A. J. Cole, Academic Press, 282-311.



