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Abstract: The Grade of Membership (GoM) model is a hierarchical mixed-membership
model used to characterize underlying latent classes based on categorical data. When
using GoM models to analyze survey data, the sampling design needs to be appropriately
modeled. Linear mixed-effect models (LME’s) easily model the stratification and clustering
in sampling designs. This paper introduces a modification of the GoM model to include a
polytomous logistic mixed-effects regression prior, designed to take sampling design induced
dependencies into account. In addition, there is a debate regarding the use of sampling
weights in model based analyses. I developed a new type of weighting, weighting based on
the estimated parameter, to incorporate the sampling weights in the updated GoM model.
Finally, simulation studies demonstrate the effect of the sampling weights under different
levels of informative sampling.
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1 Introduction

The grade of Membership (GoM) model is a hierarchical Bayesian mixed-membership

model used to analyze a variety of data, including depression-related psychiatric disorders,

(Woodbury and Manton, 1989), the number of likely topics published in the Proceedings

of the National Academy of Sciences in 1997-2000, and the number of underlying latent

class disability profiles in the National Long Term Care Survey (NLTCS), (Airoldi et al.,

2005). When analyzing survey data such as NLTCS, the stratification and clustering in the

sampling design induce dependencies not easily modeled in the GoM model. Mixed-effects
∗This work is based on my thesis, completed at Carnegie Mellon University. Current affiliation is with

the Epidemiology Data Center, Department of Epidemiology, Graduate School of Public Health, University
of Pittsburgh, bertoletm@edc.pitt.edu
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models, described in Searle et al. (1992), can model the dependencies induced by sampling

designs. There is a controversy regarding whether or not to include sampling weights when

using mixed-effects models to analyze survey data. Pfeffermann et al. (1998) and Rabe-

Hesketh and Skrondal (2006) have all developed methods to insert sampling weights into

linear mixed-effects models. In this paper, I propose a modification of the GoM model to

incorporate the sampling design when analyzing survey data. This involves two steps; 1)

using a polytomous logistic mixed-effects regression as a prior and 2) developing a mod-

ification of the previous methods to inserting sampling weights into a Bayesian model.

Finally, simulations demonstrate the effect of the sampling weights under different levels

of informative sampling.

Section 2 describes the standard unweighted GoM model and its derivation as seen in

Erosheva (2002). Section 3 describes the changing to the polytomous logistic mixed-effects

regression prior, first deriving the unweighted model. Weighting of the GoM model is

discussed, and weighting based on the estimated parameter is derived. Section 4 describes

some rotational indeterminacies in the GoM model, along with two known techniques for

solving these indeterminacies. Sections 5 and 6 describe the details and descriptions of the

simulation study. Section 7 summarizes the report. Section 8 collects together appendices

providing further detail on this work. In particular section 8.3 provides a description and

web-links for computer code used to conduct the simulations.

The contributions in this paper involve both the GoM model analysis and incorporation

of sampling weights. For the GoM model analysis, the polytomous logistic mixed-effects

regression prior allows for model-based incorporation of the sampling design. It also pro-

vides a framework for the GoM model to be analyzed with longitudinal data (either with

or without weights). With respect to sampling weights, we developed a principled way to

incorporate sampling weights into a Bayesian model-based analysis, called weighting based

on the estimated parameter. The simulation study provides a contribution regarding the

actual performance of the weighting of the GoM model with the new prior. These simu-
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lations demonstrate the following: 1) When λ is fixed in the simulations, the mean of the

posterior distributions is generally similar to the simulations in which λ is unconstrained

with an informative prior. However, the simulations in which λ is unconstrained with an

informative prior have larger variance. This is true for the unweighted simulations, and

mostly true for the weighted simulations. 2) The differences between the unweighted and

weighted estimates of parameters of the polytomous logistic mixed-effects regression pa-

rameters behave similarly to the analogous differences seen in the simulation studies of

weighted linear mixed-effects models under informative sampling, see Bertolet (2009), with

a few exception noted in the simulation descriptions. Finally, 3) the estimates of the λ

parameters appear robust to the sampling design and the type of weighting used in the

estimation.

2 Unweighted Derivation of the GoM Model

Following Erosheva (2002), the GoM model is comprised of extreme profiles and their con-

ditional response probabilities. Let the data consist of J binary questions for I individuals.

Let yi = (yi1, yi2, ..., yiJ) be a vector of 0’s and 1’s representing the response of individual

i on all J questions, i = 1, ..., N . A vector of GoM scores (latent variables) for each indi-

vidual, gi = (gi1, gi2, ..., giC), represents the mixture proportion of individual i in each of

C unobservable latent classes. These GoM scores are non-negative and sum to 1 for each

individual,

C∑
c=1

gic = 1, i = 1, ..., N. (1)

Sole membership in a given class defines the pure response probability, λcj , for each of the

J items of interest,

λcj = P (yij = 1|gic = 1). (2)
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The following assumptions are made for the GoM model;

Assumption 1: The conditional probability of response of individual i to question j, given

the GoM scores, is P (yij = 1|gi) =
∑C

c=1 gicλcj .

Assumption 2: Conditional on the GoM scores, the responses yij are independent for

different values of j, (yij1 ⊥ yij2)|gi .

Assumption 3: The responses yij are independent for different values of i, or yiij ⊥ yi2j .

Assumption 4: The GoM scores, gi, are realizations of a random vector with a Dirichlet

distribution.

The GoM model in Erosheva (2002) allows the responses to the J items to be polytomous.

For simplification, this thesis presents dichotomous response data only.

The GoM model is defined as

yij |gi ∼ Bernoulli

(
C∑
c=1

gicλcj

)
gi ∼ Dirichlet(α0ξ)

λcj ∼ Beta(η1cj , η2cj)

α0 ∼ Gamma(τ1, τ2)

ξ ∼ Dirichlet(ζ),

which contain a number of prior parameters and hyperparameters. Let η1cj and η2cj be

parameters for the pure response probabilities, λcj . The prior parameters for the GoM

scores are α0, the prior sample size, and ξ, the prior proportions of the population elements

in the underlying latent classes. The τ1, τ2 and ζ hyperparameters are set to be non-

informative.

Erosheva (2002) augmented this model with latent variables, mijc to assign individual

i to class c for question j, to ease the computations in the Bayesian MCMC estimation.
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Erosheva’s fundamental representation theorem proves the equivalence between the GoM

model and the data augmented GoM model below,

yij |mijc, λ ∼ Bernoulli

(
C∏
c=1

λ
mijc
cj

)
mijc|gi ∼ Multinomial(1, gi1, ..., giC)

gi|α0, ξ ∼ Dirichlet(α0ξ)

λcj ∼ Beta(η1cj , η2cj)

α0 ∼ Gamma(τ1, τ2)

ξ ∼ Dirichlet(ζ).

To solve for these parameters using a Bayesian MCMC algorithm, the joint distribution is

computed as

p(y,m, g, λ, α0, ξ) ∝ p(λ, α)p(y,m, g|λ, α0, ξ)

= p(λ)p(α0, ξ)
N∏
i=1

p(yi,mi, gi|λi, α0, ξ)

= p(λ)p(α0)p(ξ)
N∏
i=1

p(yi|mi, λ)p(mi|gi)p(gi|α0, ξ).

This formulation assumes that yi|(mi,λ) ⊥ (gi, α) and gi|mi ⊥ (λ, α) and gi|α ⊥ λ.

Inserting the distributional assumptions into the joint distribution provides,

p(y,m, g, λ, α) ∝ p(λ)p(α)
N∏
i=1

[p(mi|gi)p(yi|miλ)p(gi|α)]

= p(λ)p(α)

(
N∏
i=1

[
Γ(
∑C

c=1 αc)
Γ(α1)Γ(α2) · · ·Γ(αC)

gα1−1
i1 gα2−1

i2 · · · gαC−1
ik

])

×
N∏
i=1

 J∏
j=1

C∏
c=1

(gicλ
yij
cj (1− λcj)1−yij )mick


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The complete conditionals are obtained for mi, λcj and gi,

mi|− ∼ Multinomial(1, p1, ..., pC) pc ∝ (gicλ
yij
cj (1− λcj)(1−yij))

λcj |− ∼ Beta(1 +
N∑
i=1

yijmijc, 1 +
N∑
i=1

(mijc −mijcyij))

gi|− ∼ Dirichlet(α1 +
J∑
j=1

mij1, α2 +
J∑
j=1

mij2, · · · , αC +
J∑
j=1

mijC).

For α0 and ξ, a Metropolis-Hastings step needs to be used. First consider α0,

p(α0|−) ∝ p(α0)
N∏
i=1

[
Γ(α0)

Γ(ξ1α0) · · ·Γ(ξCα0)

C∏
c=1

gξcα0
ic

]

= ατ1−1
0 e−τ2α0

I∏
i=N

[
Γ(α0)

Γ(ξ1α0) · · ·Γ(ξCα0)

C∏
c=1

gξcα0
ic

]

= ατ1−1
0 exp{−α0(τ2 −

C∑
c=1

N∑
i=1

ξkloggic}
[

Γ(α0)
Γ(ξ1α0) · · ·Γ(ξCα0)

]

For the Metropolis-Hastings step, first draw a proposal point, α∗0 from the jumping

distribution, and then calculate the proposal ratio. In this case, we draw a candidate point

from a Gamma proposal distribution with parameters α = γ, β = γ

α
(m)
0

, where α(r)
0 was

the last accepted value for α0. The candidate point is accepted as the next element in the

sample with probability min{1, rα0}. The proposal ratio, rα0 , is

rα0 =
p(α∗0|−)p(α(r)

0 |α∗0)

p(α(r)
0 |−)p(α∗0|α

(r)
0 )

.
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Breaking this into two terms,

rα0(H) =
p(α(r)

0 |α∗0)

p(α∗0|α
(r)
0 )

=
Γ(γ, γ/α∗0)(α(r)

0 )

Γ(γ, γ/α(m)
0 )(α∗0)

=

(
α

(r)
0

α∗0

)γ (
α

(r)
0

α∗0

)γ−1

exp

{
−γ

(
α

(r)
0

α∗0
− α∗0

α
(r)
0

)}

rα0(M) =
p(α∗0|−)

p(α(r)
0 |−)

=

(
α∗0

α
(r)
0

)τ1−1

exp

{
−(α∗o − α

(r)
0 )(τ2 −

C∑
c=1

N∑
i=1

ξcloggic

}

×

(
Γ(α∗0)

∏C
c=1 Γ(ξcα

(r)
0 )

Γ(α(r)
0 )
∏C
c=1 Γ(ξcα∗0)

)N
.

Similarly, the Metropolis-Hastings step for ξ is derived,

p(ξ|−) ∝ p(ξ)
N∏
i=1

[
Γ(α0)∏C

c=1 Γ(ξcα0)

C∏
c=1

g
(αc−1)
ic

]

=

[
Γ(α0)∏C

c=1 Γ(ξcα0)

]N
exp

{
C∑
c=1

N∑
i=1

(α0ξc − 1)loggic

}
. (3)

For the ξc’s, a candidate point is drawn from a a Dirichlet proposal distribution centered

at the previous sample value, Dirichlet
(δCξ

(r)
1 ,··· ,δCξ(r)c )

(ξ∗). The candidate point is accepted

as the next element in the sample with probability min{1, rξ}. The proposal ratio is rξ,

rξ =
p(ξ∗|−)p(ξ(r)|ξ∗)
p(ξ(r)|−)p(ξ∗|ξ(r))

.
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Breaking this into two terms,

rξ(M) =
p(ξ∗|−)
p(ξ(r)|−)

=

(∏C
c=1 Γ(α0ξ

(r)
c )∏C

c=1 Γ(α0ξ∗c )

)N
exp

{
C∑
c=1

N∑
i=1

α0(ξ∗c − ξ(r)c ) log gic

}

rξ(H) =
p(ξ(r)|ξ∗)
p(ξ∗|ξ(r))

=

(∏C
c=1 Γ(δCξ(r)c )∏C
c=1 Γ(δCξ∗c )

)∏C
c=1 ξ

(r)
c

(δCξ∗c−1)∏C
c=1 ξ

∗
c
(δCξ

(r)
c −1)

 .

A sample from the posterior is obtained using MCMC with the complete conditionals and

the Metropolis-Hastings steps.

3 Incorporation of the Sampling Design in the GoM Model

3.1 Polytomous Logistic Regression Prior in the GoM Model

Assuming clustering in the sampling design, all individuals in the population are not inde-

pendent and the Assumption 3 from Section 2 no longer holds. Recall Assumption 1, that

P (yij = 1|gi) =
∑

c gicλcj . This suggests that the dependency between yi1j and yi2j is a

result of the dependencies between the GoM scores, gi’s and/or the pure response proba-

bilities, λcj . Given that the GoM scores represent individual characteristics and the pure

response probabilities represent class characteristics, I will represent dependencies between

individuals through dependencies in their GoM scores. Linear mixed-effects models can

model the dependencies induced by clusters, which are present in many sampling designs.

Given that the GoM scores for an individual are positive and sum to 1, I propose using

a polytomous logistic random-effects regression to model the effect of the sampling design

on the GoM scores. Let ykij represent the response of subject i in cluster k on question
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j. Similar changes in subscript are made on other variables. The assumptions from the

original GoM score are now:

Assumption 1: The conditional probability of response of individual i in cluster k to

question j, given the GoM scores, is P (ykij = 1|gki) =
∑C

c=1 gkicλcj .

Assumption 2: Conditional on the GoM scores, the responses ykij are independent for

different values of j, (ykij1 ⊥ ykij2)|gki .

Assumption 3: The responses of ykij for all subjects i in the same cluster k are dependent.

Assumption 4: The GoM scores, gki are realizations of a random vector with a polyto-

mous logistic random-effects distribution.

These assumptions allow GoM model analysis on data from a survey.

The updated GoM model is defined as

ykij |mkijc, λ ∼ Bernoulli

(∏
c

λ
mkijc
cj

)
mkijc|ψi ∼ Multinomial(1, gki1, ..., gkiC)

gkic =
exp{ψkic}∑C
c=1 exp{ψkic}

ψic|X,Z,U, β ∼ N(Xiβc + ZiUc, σ
2
ψ), c = 1, · · · , C − 1 (4)

ψkiC = 0, ψkic = log
(
gkic
gkiC

)
, c = 1, ..., C − 1

λcj ∼ Beta(η1cj , η2cj)

βc ∼ Normal(µβ,Σβ)

Uc ∼ Normal(0,Ω) (5)

σ2
ψ ∼ Scaled Inv χ2(ν, s2ψ)

This utilizes the LME framework from Searle et al. (1992) to insert the effect of the sampling

design on the GoM model. While the subscript on ykij denotes a clustered only design,
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more complex designs change the above model trivially, by changing the structure of the

X and Z matrices to incorporate the stratification and clustering information.

Similar to the unweighted GoM model, this model is estimated using MCMC. Before

considering sampling weights, we consider estimation of this unweighted model. The joint

conditional distribution is

p(y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ p(β, U, σ2

ψ)p(λ)p(y,m, ψ|λ, β, U, σ2
ψ, X, Z) (6)

= p(β)p(U)p(σ2
ψ)p(λ)p(y|m,λ)p(m|ψ)p(ψ|β, U, σ2

ψ, X, Z)

In the last equation, we assume that (y|m,λ) ⊥ (β, U, σ2
ψ, ψ) and (m|ψ) ⊥ (β, U, σ2

ψ) and

that (ψ|β, U, σ2
ψ) ⊥ λ. Continuing,

p(y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ p(β)p(U)p(σ2

ψ)p(λ)

×

 K∏
k=1

Nk∏
i=1

 J∏
j=1

C∏
c=1

p(ykij |mkijc, λcj)

 K∏
k=1

Nk∏
i=1

J∏
j=1

C∏
c=1

p(mkijc|ψkic)


×

C−1∏
c=1

K∏
k=1

Nk∏
i=1

p(ψkic|β, U, σ2
ψ)

Recall that k (of K) indexes clusters, i (of Nk) indexes individuals in clusters, j (of

J) indexes questions, c (of C) indexes latent classes. Writing p(U)
∏
k p(ψk|β, U, σ2

ψ) =∏
k(
∏
i

∏
c p(ψkic|β, U, σ2

ψ))p(Uk) will be useful for the insertion of sampling weights in the
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next section. Inserting in the distributional forms provides

p(y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ exp

{
−1

2

C∑
c=1

(βc − µβ)TΣ−1
β (βc − µβ)

}

× (σ2
ψ)−( ν

2
+1) exp

{
−
νs2ψ
2σ2

ψ

} C∏
c=1

J∏
j=1

λ
η1cj−1
cj (1− λcj)η2cj−1


×

K∏
k=1

Nk∏
i=1

J∏
j=1

C∏
c=1

[
exp(ψkic)∑C

c1=1 exp(ψkic1)
λ
ykij
cj (1− λcj)1−ykij

]mkijc

×
K∏
k=1

[
Nk∏
i=1

(
C−1∏
c=1

(σ2
ψ)−

1
2 exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
})

× exp
{
−1

2
UTkcO−1Ukc

}]
(7)

Note that the prior on Ukc uses the cluster version of the covariance matrix, O, instead of

the entire covariance of U , Ω. From this, we can get the complete conditionals for Gibbs

steps in the MCMC. The complete conditionals for the parameters associated with the
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polytomous logistic regression are

p(βc|−) ∝ exp
{
−1

2
(βc − µc)TΣ−1

β (βc − µc)
} K∏
k=1

Nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}

∼ Normal(µ1,Σ1)

µ1 =

(
Σ−1
β +

1
σ2
ψ

K∑
k=1

Nk∑
i=1

XT
kiXki

)−1(
Σ−1
β µc +

1
σ2
ψ

K∑
k=1

Nk∑
i=1

XT
ki(ψkic − ZkiUc)

)

Σ1 =

(
Σ−1
β +

1
σ2
ψ

K∑
k=1

Nk∑
i=1

XT
kiXki

)−1

p(Uc|−) ∝
K∏
k=1

Nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}

exp
{
−1

2
UTkcΩ

−1Ukc

}
∼ Normal(µ2,Σ2)

µ2 =

(
O−1 +

1
σ2
ψ

K∑
k=1

Nk∑
i=1

ZTkiZki

)−1(
1
σ2
ψ

K∑
k=1

Nk∑
i=1

ZTki(ψkic −Xkiβc)

)

Σ2 =

(
O−1 +

1
σ2
ψ

K∑
k=1

Nk∑
i=1

ZTkiZki

)−1

p(σ2
ψ|−) ∝ (σ2

ψ)−( ν
2
+1) exp

{
−
νs2ψ
2σ2

ψ

}
K∏
k=1

Nk∏
i=1

C−1∏
c=1

(σ2
ψ)−

1
2 exp

{
− 1

2σ2
ψ

(ψkc −Xkβc − ZkUkc)2
}

∼ Scaled Inv χ2

N(C − 1) + ν,

(∑K
k=1

∑Nk
i=1

∑C−1
c=1 (ψkic −Xkiβc − ZkiUkc)2

)
+ νs2ψ

N(C − 1) + ν


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The complete conditionals associated with the pure response probabilities and data aug-

mented values are

p(λcj |−) ∝
K∏
k=1

Nk∏
i=1

[
λ
ykij
cj (1− λcj)(1−ykij)

]mkijc
λ
η1cj−1
cj (1− λcj)η2cj−1

∼ Beta

(
K∑
k=1

Nk∑
i=1

ykijmkijc + η1cj ,
K∑
k=1

Nk∑
i=1

(1− ykij)mkijc + η2cj

)

p(mkij |−) ∝
C∏
c=1

[
exp{ψkic}∑C

c1=1 exp{ψkic1}
λ
ykij
cj (1− λcj)(1−ykij)

]mkijc

∼ Multinomial

(
1,

exp{ψki1}∑C
c1=1 exp{ψkic1}

λ
ykij
1j (1− λ1j)1−ykij , · · · ,

exp{ψkiC}∑C
c1=1 exp{ψkic1}

λ
ykij
Cj (1− λCj)1−ykij

)

Finally, a Metropolis step is needed for ψ,

p(ψkic|−) ∝
C∏
c=1

J∏
j=1

[
exp {ψkic}∑C

c1=1 exp {ψkic1}

]mkijc

× exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}

Let a candidate point be drawn from a Normally distribution, with the mean at the previous

MCMC value and a variance of σ2
ψjmp. The candidate point is accepted as the next element
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in the sample with probability min{1, rψkic}, where

rψkic =
p(ψ∗kic|−)

p(ψ(r)
kic|−)

=
C∏
c=1

J∏
j=1

[
exp{ψ∗kic}∑C

c1=1 exp{ψ∗kic1}

∑C
c1=1 exp{ψ(r)

kic1
}

exp{ψ(r)
kic}

]mkijc

× exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}

=
C∏
c=1

[
g∗kic

g
(r)
kic

]PJ
j=1mkijc

exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}

where gkic = exp{ψic}PC
c1=1 ψkic1

where ψkiC = 0. These complete conditionals and Metropolis-

Hastings steps can be implemented using MCMC algorithms.

3.2 Weighting the Logistic Regression GoM Model

Given that the GoM model has been modified to incorporate the sampling design, we

next evaluate if the sampling weights provide any additional information. Simulations in

Bertolet (2009) demonstrate that the sampling weights did help compensate for informative

sampling but not model misspecification. We next investigate the effect of the sampling

weights on informative sampling with the GoM model. The effect of model misspecification

and sampling weights on the GoM model will be discussed in future work.

Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal (2006) used pseudo-maximum

likelihood to estimate census likelihood equations with weighted sample likelihood equa-

tions. When using PML on the GoM model, similar issues arise as with the LME model,

namely, when should weights be inserted, does inserting the weights in different areas affect

the results and does scaling the weights reduce bias in the estimates? More specifically,

should we

1. Add weights to Equation 7 and have them propagate through to the complete con-

ditionals and Metropolis-Hastings steps?
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2. Add weights directly to the complete conditionals?

3. Use an alternate weighting method?

4. Scale of the weights as was done with the LME’s?

These issues are explored next.

3.2.1 Adding Sampling Weights to Equation 7

To add weights to the GoM model likelihood, consider the methods described in Pfeffer-

mann et al. (1998) and Rabe-Hesketh and Skrondal (2006) for weighting LME models.

This PML estimation of the census joint distribution is similar to the method by Rabe-

Hesketh and Skrondal (2006). The subscript w denotes this weighted joint distribution.

This provides a weighted joint distribution of

pw(y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ p(β)p(σ2

ψ)p(λ)

×
K∏
k=1

Nk∏
i=1

 J∏
j=1

C∏
c=1

p(ykij |mkijc, λcj)

wki

×
K∏
k=1

Nk∏
i=1

 J∏
j=1

C∏
c=1

p(mkijc|ψkic)

wki

×
C−1∏
c=1

K∏
k=1

[(
Nk∏
i=1

p(ψkic|β, U, σ2
ψ)wi|k

)
p(Uk)

]wk

The derivation of all the complete conditionals and Metropolis Hastings steps are in Section

8.1. An issue with this weighting is that weights propagate to the complete conditionals

in unexpected ways.

Consider, the complete conditional for mkijc is

pw(mki|−) ∝
J∏
j=1

C∏
c=1

(
gkicλ

ykij
cj (1− λcj)(1−ykij)

)mkijcwki
mki|− ∼ Multinomial(1, p1, ..., pC) pc ∝ (gkicλ

ykij
cj (1− λcj)(1−ykij))wki ,

15



where gkic = exp{ψkic}P
c1

exp{ψkic1}
. The mkij parameter describes a characteristic of an individual

as opposed to being a summary variable for the finite population (such as the λcj ’s). It is

not immediately clear that, for example, the probabilities in the multinomial distribution

for mkij should be raised to the power of the weight so that it can represent more people.

If provided the complete conditionals based on the census, the weights do not seem to have

a place in the complete conditionals of mkij . Similar arguments hold for weights in the

ψkic complete conditionals. This leads to the next option for incorporating the sampling

weights.

3.2.2 Adding Sampling Weights to the Complete Conditionals

Consider estimating the census complete conditional with weighted sample complete con-

ditionals. The subscript wCC below denotes the result from weighting the complete con-

ditionals. The complete derivation of these complete conditionals and Metropolis-Hastings

steps are in Section 8.2.

Consider the complete conditionals for λ and m with this weighting scenario,

pwCC(λcj |−) ∝
Ks∏
k=1

nk∏
i=1

[
λ
ykij
cj (1− λcj)(1−ykij)

]mkijcwki
λ
η1cj−1
cj (1− λcj)η2cj−1

∼ Beta

(
Ks∑
k=1

nk∑
i=1

ykijmkijcwki + η1cj ,

Ks∑
k=1

nk∑
i=1

(1− ykij)mkijcwki + η2cj

)

pwCC(mkij |−) ∝
C∏
c=1

[
exp{ψkic}∑C

c1=1 exp{ψkic1}
λ
ykij
cj (1− λcj)(1−ykij)

]mkijc

∼ Multinomial

(
1,

exp{ψki1}∑C
c1=1 exp{ψkic1}

λ
ykij
1j (1− λ1j)1−ykij , · · · ,

exp{ψkiC}∑C
c1=1 exp{ψkic1}

λ
ykij
Cj (1− λCj)1−ykij

)

With this wCC weighting, some components of the joint distribution are treated differently

in different complete conditionals. For example, in pwCC(λcj |−), the
[
λ
ykij
cj (1− λcj)1−ykij )

]
term from the posterior is weighted. However, the same term in pwCC(mkij |−) is not
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weighted. Treating a component from the posterior differently in different complete con-

ditionals appears unprincipled. This leads to the new weighting scheme below.

3.2.3 Weighting based on the Estimated Parameter

A more principled way to add sampling weights to the GoM model is to weight the term

of the joint distribution based on the parameter upon which that term is used to make

an inference. If the term of the joint distribution is making inferences only on individual

parameters, then it does not need to be weighted. If the term of the joint distribution is

making inferences on any group parameters (or parameters that more than one individual

is dependent upon), then it should be weighted. Call this weighting based on the estimated

parameter, and subscript the estimates with wEP .

To understand the reasoning for this, first define two different types of distributions

(or conditional distributions); 1) distributions providing information for at least one group

parameter and 2) distributions providing information for individual/cluster parameter or

priors with no estimable parameters. Consider the unweighted joint distribution as an

example

p(y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ p(β)p(U)p(σ2

ψ)p(λ)

×

 K∏
k=1

Nk∏
i=1

 J∏
j=1

C∏
c=1

p(ykij |mkijc, λcj)


×

 K∏
k=1

Nk∏
i=1

J∏
j=1

C∏
c=1

p(mkijc|ψkic)


×

C−1∏
c=1

K∏
k=1

Nk∏
i=1

p(ψkic|β, U, σ2
ψ) (8)

The likelihood portion of the joint distribution has three components; 1) p(ykij |mkijc, λcj),

2) p(mkijc|ψkic) and 3)p(ψkic|β, U, σ2
ψ). Note that p(ykij |mkijc, λcj) uses the data in ykij to

gain more information about both mkijc and λcj . Here mkijc is an individual parameter
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which applies only to individual ki. However, λcj is a group parameter, affecting more

than just the kith individual. The p(ykij |mkijc, λcj) terms combine information across

many ykij to estimate the group parameter λcj . Because of this, the p(ykij |mkijc, λcj)

term provides information for a group parameter. Similarly, p(ψkic|β, U, σ2
ψ) combines

information across many ψkic to estimate the group parameters β, U and σ2
ψ. Contrast

this to p(mkijc|ψkic). The ψkic parameter only pertains to the kith individual. The ψkic =

Xkiβc +ZkiUkc + εki, so it is a function of group parameters. However, as noted just after

Equation 6, the assumption is that mkijc|ψkic ⊥ (βc, Ukc, σ2
ψ). Therefore, the distribution

p(mkijc|ψkic) provides information about the individual parameter ψkic but not any of the

group parameters.

Next consider the prior distributions used to form the joint distribution. I will classify

the priors into two different groups, 1) non data-scalable priors that will not be weighted

and 2) data-scalable priors that will be weighted. Non data-scalable priors are priors that

do not change dimension regardless of the size of the data. The p(β), p(σ2
ψ) and p(λ) do

not change dimension if the number of individuals or clusters increase. However, p(U) is a

data-scalable prior, as the dimensions of U change as the number of clusters changes. The

dimension of U is KQ × 1, where K is the number of clusters. When a sample is taken,

then the dimension of the prior is KsQ× 1 where Ks is the number of sampled clusters.

In this wEP weighting scheme, the distributions providing information for at least one

group parameter and the data-scalable priors are weighted. The distributions providing

information for individual/cluster parameters and the non data-scalable priors are not

weighted.
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The wEP weighted joint distribution becomes

pwEP (y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ p(β)p(σ2

ψ)p(λ)

×

 K∏
k=1

Nk∏
i=1

 J∏
j=1

C∏
c=1

p(ykij |mkijc, λcj)

wki


×
K∏
k=1

Nk∏
i=1

 J∏
j=1

C∏
c=1

p(mkijc|ψkic)


×

C−1∏
c=1

K∏
k=1

[(
Nk∏
i=1

p(ψkic|β, U, σ2
ψ)wi|k

)
p(Uk|Ω)

]wk

Inserting the distributional forms provides

pwEP (y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ exp

{
−1

2

C∑
c=1

(βc − µβ)TΣ−1
β (βc − µβ)

}

× (σ2
ψ)−( ν

2
+1) exp

{
−
νs2ψ
2σ2

ψ

} C∏
c=1

J∏
j=1

λ
η1cj−1
cj (1− λcj)η2cj−1


×

Ks∏
k=1

nk∏
i=1

J∏
j=1

C∏
c=1

[
λ
ykij
cj (1− λcj)1−ykij

]mkijcwki
×

Ks∏
k=1

nk∏
i=1

J∏
j=1

C∏
c=1

[
exp(ψkic)∑C

c1=1 exp(ψkic1)

]mkijc

×
Ks∏
k=1

[
nk∏
i=1

(
C−1∏
c=1

(σ2
ψ)−

1
2 exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
})wi|k

× exp
{
−1

2
UTkcO−1Ukc

}]wk
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This leads to the following complete conditionals for the regression variables

pwEP (βc|−) ∝ exp
{
−1

2
(βc − µc)TΣ−1

β (βc − µc)
} Ks∏
k=1

nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}wki

∼ Normal(µ1,Σ1)

µ1 =

(
Σ−1
β +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
kiXki

)−1(
Σ−1
β µc +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
ki(ψkic − ZkiUc)

)

Σ1 =

(
Σ−1
β +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
kiXki

)−1

pwEP (Uc|−) ∝
K∏
k=1

[
nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUkc)2
}wi|k

exp
{
−1

2
UTkcO−1Ukc

}]wk
∼ Normal(µ2,Σ2)

µ2 =

(
K∑
k=1

wkO−1 +
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
kiZki

)−1(
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
ki(ψkic −Xkiβc)

)

Σ2 =

(
K∑
k=1

wkO−1 +
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
kiZki

)−1

pwEP (σ2
ψ|−) ∝ (σ2

ψ)−( ν
2
+1) exp

{
−
νs2ψ
2σ2

ψ

}
Kw∏
k=1

nk∏
i=1

C−1∏
c=1

(σ2
ψ)−

1
2 exp

{
− 1

2σ2
ψ

(ψkc −Xkβc − ZkUc)2
}wki

∼ Scaled Inv χ2
(
ν1, s

2
1

)
ν1 =

Ks∑
k=1

nk∑
i=1

wki(C − 1) + ν

s21 =

(∑Ks
k=1

∑nk
i=1

∑C−1
c=1 wki(ψkic −Xkiβc − ZkiUc)2

)
+ νs2ψ∑Ks

k=1

∑nk
i=1wki(C − 1) + ν
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The complete conditionals for the augmented data and pure response probabilities are

pwEP (λcj |−) ∝
Ks∏
k=1

nk∏
i=1

[
λ
ykij
cj (1− λcj)(1−ykij)

]mkijcwki
λ
η1cj−1
cj (1− λcj)η2cj−1

∼ Beta

(
Ks∑
k=1

nk∑
i=1

ykijmkijcwki + η1cj ,

Ks∑
k=1

nk∑
i=1

(1− ykij)mkijcwki + η2cj

)

pwEP (mkij |−) ∝
C∏
c=1

[
exp{ψkic}∑C

c1=1 exp{ψkic1}

(
λ
ykij
cj (1− λcj)(1−ykij)

)wki]mkijc

∼ Multinomial

(
1,

exp{ψki1}∑C
c1=1 exp{ψkic1}

[
λ
ykij
1j (1− λ1j)1−ykij

]wki
, · · · ,

exp{ψkiC}∑C
c1=1 exp{ψkic1}

[
λ
ykij
Cj (1− λCj)1−ykij

]wki)

Finally, the Metropolis-Hastings step for ψ is

pwEP (ψkic|−) ∝
C∏
c=1

J∏
j=1

[
exp {ψkic}∑C

c1=1 exp {ψkic1}

]mkijc

× exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}

Let a candidate point be drawn from a Normal distribution, with the mean at the previous

MCMC value and a variance of σ2
ψjmp. The candidate point is accepted as the next element

in the sample with probability min{1, rψkic}, where

r(wEP )ψkic =
p(ψ∗kic|−)

p(ψ(r)
kic|−)

=
C∏
c=1

J∏
j=1

[
exp{ψ∗kic}∑C

c1=1 exp{ψ∗kic1}

∑C
c1=1 exp{ψ(r)

kic1
}

exp{ψ(r)
kic}

]mkijc

× exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}

=
C∏
c=1

[
g∗kic

g
(r)
kic

]PJ
j=1mkijc

exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}
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One concern regarding the wEP weighting involve the weights in the pwEP (mkij |−)

distribution. When the weights are large, then
(
λ
ykij
cj (1− λcj)(1−ykij)

)wki
may become

very small, basically zero to machine precision. This will be addressed by scaling the

weights.

3.2.4 Scaling of the Weights

In Bertolet (2009), the scaling of the weights played a role in the estimation of parameters,

especially the variance components. The scaling in LME models was introduced to reduce

the bias in the variance components. The scaled 1 weightings from adjust the conditional

weights, wi|k, so
∑

iw
s1
i|k equals the effective sample size for cluster k, as defined in Potthoff

et al. (1992). The scaled 2 weights adjust the conditional weights so that
∑

iw
s2
i|k equals

the cluster sample size for cluster k, nk. The scaling of the weights will also be used in the

simulations in this report.

The posterior variances of the parameters are affected by the scaling of the weights. By

weighting the data, the sample size affectively becomes
∑

k

∑
iwki. When the weights are

unscaled, this is an estimate of the size of the population, which is larger than the sample

size and will create smaller posterior variances. For the simulations in this report, the

weights are scaled analogous to the scaled 2 weights so that
∑nk

i=1w
s
i|k = nk, where wsi|k

represents the scaled conditional weight from cluster k and nk Unlike the LME models, it

is not clear that the scaling of the cluster weights, wk, will have no affect on the estimates.

The cluster weights are scaled so that
∑Ks

k=1w
s
k = Ks where wsk represents the scaled cluster

weight and Ks represents the number of sampled clusters. The effect of the scalings of the

weights is an area for further investigation.
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4 Indeterminacies in the GoM model

4.1 GoM model, Factor Analysis and Rotations

The GoM model and factor analysis models both contain latent class structures designed

to find factors to explain interrelationships among observable variables. Woodbury and

Manton (1989), Marini et al. (1996) and Erosheva (2002) compare and contrast the latent

structures of the GoM models and the factor analytic models. Unfortunately, these models

both have rotational indeterminacies.

Rotational indeterminacies in factor analysis are well known and researched; see any

statistical multivariate analysis text such as Johnson and Wichern (1992). Rotational

indeterminacies in the GoM model have not been previously documented. To see where

these rotations are inserted in the GoM model, consider again Assumption 1 from Section

2 and Assumption 1 from Section 3.1,

Pkij = P (ykij = 1|gki, λcj) =
C∑
c=1

gkicλcj = gTkiλj

where gki = (gki1, gki2, · · · , gkiC)T are the GoM scores for individual ki and the pure

response probabilities for item j are λj = (λ1j , λ2j , · · · , λCj)T . Collecting all the Pkij into

a matrix, see that

P = GΛ

where G = (gT1 , · · · , gTN )T and Λ = (λ1, · · · , λJ). If R is an invertible matrix subject to

suitable restrictions discussed below, define,

G∗ = GR

Λ∗ = R−1Λ
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Now G∗ and R∗ are a new rotation for G and R. The definition of the probabilities of

response remains the same,

P = G∗Λ∗

Restrictions on the matrix R come from Equations 1 and 2. Namely,

GR1C×1 = 1

GR ≥ 0

R−1Λ ≥ 0

R−1Λ ≤ 1

where all inequalities are element-wise. The set of matrices R satisfying these conditions

usually has positive Lebesgue measure in the space of invertible matrices R, hence finding

these rotations in an MCMC algorithm is possible. Described next are two ways to work

with the rotational indeterminacies in the GoM model, using informative priors and fixing

λ parameters.

4.2 Informative Priors

In frequentist analysis, a number of specific rotations are defined for factor analysis. The

purpose of these rotations is to find factor loadings that are easily interpretable. There

are a variety of standard rotations that are used, such as orthogonal rotations (including

varimax, quartimax and equimax) and oblique rotations (including promax).

In Bayesian factor analysis, using informative (or subjective) priors uniquely determines

the rotation, see Kaufman and Press (1973) and Rowe (2001). The formulation of the GoM

model in Sections 3.1, and 3.2 allows for informative priors, especially the prior for λcj and

the specification η1cj and η2cj . Whenever informative priors are used in the remainder of
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this report, it is clearly stated.

4.3 Fix λ Parameters

GoM models and item response theory (IRT) models contain similar latent class struc-

tures, Erosheva (2005). As an example, the National Assessment of Educational Progress

(NAEP) uses IRT models to estimate proficiency scores (analogous to the GoM scores or

gi’s) of students on different skills, see the special issue of the Journal of Educational Mea-

surement (1992). In estimating the proficiency scores, the NAEP model first estimates item

parameters (analogous to the pure response probabilities, λ’s in the GoM model) ignoring

the survey design completely, then assumes the item parameters are fixed and produces

random draws of the proficiency scores accounting for the survey design, see von Davier

et al. (2007). In fixing the λ’s when estimating the g’s, the NAEP estimation avoids the

rotational indeterminacy and provides a precedent for this approach. An explanation of

the estimation of the proficiency scores and item parameters in NAEP based upon Mislevy

and Sheehan (1989b) follows.

4.3.1 Informative Stratified Sampling and GoM Models

Mislevy and Sheehan (1989a,b) argue that differential probabilities of sampling in a strati-

fied sampling model do not affect estimation of item parameters in an IRT model, but may

affect estimation of proficiency scores. Their argument is shown below in the context of

the GoM model using the Dirichlet prior from Section 2. Similar results hold for the GoM

model with logistic regression prior from Section 3.1.

Suppose that the GoM scores, gi and the augmented data inclusion variables, mijc are

observed. Consider the likelihood portion of Equation 3,

p(y,m, g|λ, α0, ξ) =
N∏
i=1

p(yi,mi, gi|λ, α0, ξ).
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Suppose the census data are stratified, where the distribution of the GoM scores differs in

each stratum. Let hi represent the stratum indicator for element i. Let f(gi|αhi , ξhi , hi)

be the distribution of the GoM scores in stratum hi. Let πs be the proportion of the

population in stratum s and assume that

f(g|α, ξ) =
H∑
s=1

πsf(g|αs, ξs, hi = s).

The likelihood becomes

p(y,m, g,H|λ, α0, ξ) =
N∏
i=1

f(H = hi|λ, π, α, ξ)f(yi,mi, gi|hi, λ, π, α, ξ)

=
N∏
i=1

Pr(H = hi|π)f(yi|mi, λ)p(mi|gi)f(gi|hi, ξhi , αhi)

=
H∏
s=1

πNss ×
H∏
s=1

f(ys|ms, λ)p(ms|gs)f(gh|hs, ξhs , αhs)

where the ys represent all responses from people in stratum s. There are corresponding

definitions for ms and gs. Note that the πs is distinct from the rest of the likelihood

and consistency for these parameters is derived using standard results on the multinomial

distribution, as the Ns grow. The second term is a product of H likelihoods with a common

λ parameter. Bradley and Gart (1962) show conditions for consistency when the likelihood

is made up of separate populations that have distinct population parameters (such as

gs,ms, ξhs and αhs .) and a few common parameters, such as λ.

Suppose a sample is taken and that the proportion of sampled elements within a stratum

does not equal the proportion of population elements in the stratum. Now define

f∗(g|α, ξ) =
H∑
s=1

π∗sf(g|αs, ξs, hi = s),

where π∗s is the sample proportion of the elements in stratum s. Then the likelihood
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becomes

p(y,m, g,H|λ, α0, ξ) = f(H|λ, π, α, ξ)f(y,m, g|H,λ, π, α, ξ)

=
n∏
i=1

Pr(H = hi|π∗)f(yi|mi, λ)p(mi|gi)f(gi|hi, ξhi , αhi)

=
H∏
s=1

π∗Nss ×
H∏
s=1

f(ys|ms, λ)p(ms|gs)f(gs|hs, ξhs , αhs).

Similar to the case where the census was taken, consistent estimates of of λ, αh’s, ξh’s can

be obtained, but we can not reconstruct f(g|α, ξ) =
∑

s πsf(g|αs, ξs, hi = s) because of our

inability to estimate π, the population proportions when the sampling design uses biased

π∗’s.

This argument is used in NAEP to show that the item response parameters (or λ’s in

the GoM model) are not affected by the sampling design, whereas the achievement scores

(or g’s in the GoM model) are affected by the sampling design. Next is a brief description

of the implementation of the Mislevy and Sheehan (1989b) results in NAEP.

4.3.2 National Assessment of Educational Progress

The National Assessment of Educational Progress (NAEP) is a national assessment pro-

gram that regularly tests students in grades 4, 8 and 12 on a variety of academic sub-

jects. NAEP provides an important operational example of the methodology advocated by

Mislevy and Sheehan (1989a,b). The data from NAEP are analyzed and published in the

National’s Report Card (see http://nces.ed.gov/nationsreportcard/) for comparative

analysis across years. There are many complexities in NAEP’s design that are derived from

the limited time to administer tests (often about one hour) while at the same time pro-

ducing reliable and valid assessments. The goal of NAEP is to produce reliable estimates

of proficiency for specific population subgroups in various academic subjects.

Group proficiencies are estimated using three stages as described in von Davier et al.

(2007). In the Scaling stage, an IRT model is fit to the data to estimate the item response
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parameters (equivalent to the λ’s in the GoM model). These IRT models do not account

for the sampling design. After estimation of the item response parameters, they are consid-

ered fixed in the remaining analysis. The justification for this is from Mislevy and Sheehan

(1989b) as stated in Thomas (2000). In the Conditioning stage, marginal maximum like-

lihood is used to estimate the mean and variance of the proficiency for students in the

population given the students individual covariate values (i.e. the g’s in the GoM model).

Using that mean and variance, random draws (also called multiple imputations or plausible

values) are obtained from the examinees posterior latent variable and are used to create

subgroup estimates. In the Variance Estimation stage, multiple imputation and jackknife

approaches are used to estimate subgroup variances.

The simulation study in this report provides results of weighting on the GoM model

when there are informative priors on the λ parameters, and when the λ’s are fixed.

5 GoM Simulation Study Set-Up

The role of the sampling weights in the GoM model is analyzed using a simulation study.

These simulations are designed for a number of comparisons; 1) the difference between the

polytomous logistic mixed-effects prior parameters (GoM estimates) when λ is fixed versus

when λ is unconstrained with an informative prior, 2) the difference between unweighted

and wEP weighted estimates, both when λ is fixed and when λ is unconstrained with an

informative prior, and 3) the difference between unweighted and wEP weighted estimates

of λ.

The simulated sampling design is the same in all the simulations; two top-level strata,

and within each stratum there are clusters. Elements from the clusters are then sampled.

There are three different levels of informativeness,

Non-Informative (Non): Clusters and elements are sampled according to the size of

an independently generated random variable.
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Informative Clusters (Clust): Clusters with larger random effects are over-sampled.

Elements are sampled according to the size of an independently generated random

variable.

Informative Individuals (Indiv): Clusters are sampled according to the size of an

independently generated random variable. Elements with larger random errors, εik

are over-sampled.

5.1 True Values in the Simulated Model

The simulated model contains C = 2 underlying classes and J = 5 questions. The pop-

ulation has 2 strata, with 20 clusters per stratum (Q = 40 population clusters) and 250

elements per cluster for a population size of N = 10, 000. The polytomous regression prior

has two X covariates which are indicators of stratum inclusion and no intercept. The

population Z matrix is of dimension (10000 × 80) or (N ×KQ). The regression function

for a given element is

ψhki1 = −1Ih==1 + 0.5Ih==2 + U1kIh==1 + U2kIh==2 + εhki1

U01k ∼ N(0, 0.04), U02k ∼ N(0, 0.64), εhkic ∼ N(0, 0.25)

where h = 1 or 2 denotes stratum inclusion and k represents the cluster. This LME

is similar to the generating model in Simulation Set 11 in Bertolet (2009) modified for

only one level of stratification. This LME contains two random slopes, each on a stratum

inclusion indicator variable. There is no data to estimate the values of U2k when the

element is in stratum 1. As such, the posterior of U2k for values of k in stratum 1 matches

the prior. Those values are not reported in the simulation. The reverse holds true for U1k

and stratum 2.

In this model, C = 2 so the ψhkic is only defined for c = 1, as the baseline class

for the polytomous logistic regression is c = 2. In other words, this is a logistic re-
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class 1 class 2
Question 1 0.765 0.050
Question 2 0.723 0.407
Question 3 0.447 0.410
Question 4 0.642 0.483
Question 5 0.950 0.250

Table 1: True Value of Simulated λ

gression as there are only two classes. The mean GoM score for someone in stratum

1 is E(g1ki) = ( exp{−1}
1+exp{−1} ,

1
1+exp{−1}) = (0.27, 0.73), and for stratum 2 is E(g2ki) =

( exp{0.5}
1+exp{0.5} ,

1
1+exp{0.5}) = (0.62, 0.38).

The true value of λcj = P (yhkij = 1|gki = c) for C = 2 classes and J = 5 questions

is in Table 1. These correspond roughly to a ”sick” class and a ”healthy” class. Prior

parameters are set at µβ = 0I2×1,Σβ = 10I2×2. The value of Ω is

Ω =

 0.01 0.001

0.001 0.01

⊗ IKs×Ks
Throughout the simulations, the estimates of σ2

ψ tended to drift. To control this, an

informative prior was used, with prior degrees of freedom ν = 200, and prior mean equalling

the true value of s2ψ = 0.25. Changing this back to a non-informative prior is discussed in

the future work. For the simulations below that use informative priors on λ, the values of

η1cj , η2cj are listed in the descriptions below.

5.2 MCMC Notes

Details of the twelve MCMC simulations presented in the graphs below are in Tables 2 and

3 and discussed next.

For the implementation of the MCMC, there is a Metropolis-Hastings step for the ψhkic.

The acceptance ratio is computed for each ψhkic for the 1000 elements in the sample and

the average acceptance ratio over the sampled elements is in Table 2 and 3. The target
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UNnon
FixL

UNclust
FixL

Unindiv
FixL

wEPnon
FixL

wEPclust
FixL

wEPindiv
FixL

Acceptance Ratio of ψ’s 45.5% 45.5% 45.5% 40.1% 42.3% 44.2%
Number of Iterations 200K 200K 200K 400K 300K 300K
Number of Burn-In Iterations 10K 10K 10K 10K 10K 10K
Amount of Thinning 20 20 20 20 20 20

Table 2: Notes for the MCMC simulation when λ is Fixed

UNnon
Uncon-
strL

UNclust
Uncon-
strL

Unindiv
Uncon-
strL

wEPnon
Uncon-
strL

wEPclust
Uncon-
strL

wEPindiv
Uncon-
strL

Acceptance Ratio of ψ’s 45.4% 45.5% 45.5% 40.8% 43.1% 44.4%
Value of η1cj + η2cj 100 100 100 200 300 150
Number of Iterations 300K 200K 200K 500K 500K 300K
Number of Burn-In Iterations 10K 10K 10K 10K 30K 10K
Amount of Thinning 20 20 20 20 20 20

Table 3: Notes for the Informative Prior (Unconstrained) λ MCMC simulation

acceptance ratio is about 40%. The jumping distribution for the ψ is normal, centered at

the previous ψ value with variance 1.

It is not possible to state exactly when a sample from the MCMC algorithm represents a

random sample from the posterior distribution. Assessing convergence of an MCMC chain

is delicate and I used a number of tools. The MCMC chains have a burn-in period to remove

effects of initial values and are thinned (to remove iteration to iteration dependencies and

save computing resources). These values were chosen by running each simulations for

an initial 5000 iterations (no burn-in and no thinning) and using the Raftery & Lewis

convergence diagnostics in the R package boa (Raftery and Lewis, 1992). The Raftery

and Lewis convergence diagnostics provides guidelines on MCMC burn-in, thinning and

number of runs to achieve an estimate of the 0.025 and 0.975 percentiles with an accuracy

of ±0.005 with a probability of 95%. Convergence of the MCMC runs after the burn-

in and thinning was monitored using the Heidelberger & Welch convergence diagnostics,

also in boa (Heidelberger and Welch, 1983). The Raftery & Lewis and Heidelberger &

Welch diagnostics are summarized in Cowles and Carlin (1996). The Raftery & Lewis
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total number of iterations, burn-in and thinning were altered based on the results of the

Heidelberger & Welch diagnostics, if necessary. In addition, I visually examine the plots

for any evidence of nonstationarity. Finally, I also examine the trace of the log likelihood

using the same set of methods. For comparison, Erosheva (2002) analyzed a GoM model

with 2 underlying classes and the Dirichlet prior, using 100,000 MCMC iterations with

10,000 iterations of burn-in and thinned by taking every 10th iteration for the sample.

Most of the parameters passed convergence tests, however each of the simulations had

non-convergence in some of the the random effects (i.e. the U01k and U02k). Most of the

failed tests were the Heidelberger & Welch halfwidth tests, though two of the U ’s failed

both the stationary test and the halfwidth test. However in mixed-effects regressions, the

specific values of the U0k’s are usually not of interest. It is the variance of the random

effect that is of interest, and that value is reported in the simulations below. The variance

of the random effects was computed for each MCMC iteration. The chain of variances of

the U ’s did converge for all of the simulations.

5.3 Presentation Format

The format of the presentation of the results is similar to that of Bertolet (2009). The

differences from that format are described here.

For each parameter there are two vertical lines, one grey and one light blue. The grey

line is the simulated parameter value. Because there is known shrinkage towards the prior

mean in Bayesian analyses, the light blue line indicates the mean of the unweighted non-

informative mean. Comparisons of the effects of informative sampling and weights are

compared to the unweighted non-informative estimates. Each line is labeled above. The

labels are in Table 4.
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Label Meaning
UN Unweighted analyses

wEP Weighted analysis using wEP weights
non Non-informative sampling
clust Clusters with large random effects, U01k or U02k, are over-sampled
indiv Individuals with large random error, εhki, are over-sampled

UnconstrL Unconstrained λ’s
FixedL Fixed λ’s

Table 4: Labels on GoM Simulations

6 GoM Simulation Results

Five simulation plots are shown below to evaluate the comparisons noted above; 1) the dif-

ference between unweighted and wEP weighted polytomous logistic mixed-effects regres-

sion prior parameters when λ is fixed versus when λ is unconstrained with an informative

prior, 2) the difference between unweighted and wEP weighted estimates, both when λ is

fixed and when λ is unconstrained with an informative prior, and 3) the difference between

unweighted and wEP weighted estimates of λ.

6.1 Unweighted Results of Sampling Design Parameters (GoM Scores)

The results from this simulation are in Figure 1. First, examine the difference in the

estimates where λ is fixed versus where λ is unconstrained with an informative prior. The

unweighted estimates under the non-informative sampling scheme when λ is fixed versus

when λ is unconstrained are very similar. For the unweighted estimates under informative

cluster sampling scheme, the unconstrained λ estimates have larger posterior spread for the

β’s. The posterior spread on the variance components are similar for the fixed versus the

unconstrained λ estimates. For the unweighted estimates under the informative individual

sampling scheme, the unconstrained λ estimates also have larger posterior spread for the

β’s. The posterior spread on the variance components are similar for the fixed versus the

unconstrained λ estimates.

Next, examine the difference in the fixed-effects under the different sampling schemes.
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As mentioned earlier, the β estimates exhibit shrinkage towards their prior mean of zero.

When the sampling design over-over-samplessamples clusters with large random effects

(U01k or U02k) then the estimates of the β’s increase, as expected. Similarly, when the

sampling design over-samples individuals with large random errors (εhkic) the estimates of

β increase.

Finally, examine the difference in the variance components under the different sampling

schemes. The estimates of σ2
ψ are consistent across sampling schemes. I expect that the

random error variance would decrease when the individuals are informative sampled based

on εhkic. I believe that the underestimation of σ2
ψ is not seen in these simulations because of

the informative prior placed on the parameter, as discussed in Section 5.1. The loosening of

this informative prior is discussed in the future work. The estimates of Var(Uk) for Stratum

1 and Stratum 2 are smaller for the informative cluster sampling than the non-informative

sampling, as expected. Under the informative individual sampling scheme, the estimates

of Var(Uk) for Stratum 1 and Stratum 2 are larger than the informative cluster sampling

scheme, as expected. There appears to be some positive bias for the estimates of Var(Uk)

Stratum 1 and some negative bias for the estimates of Var(Uk) Stratum 2 when compared

to the non-informative sampling scheme. This bias is not well understood, however it may

be due to the lack of bias on the σ2
ψ estimate.
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Figure 1: Unweighted GoM Results of Sampling Design Parameters (GoM Scores)
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6.2 Weighted Results of Sampling Design Parameters (GoM Scores)

The weighted estimates of the sampling design parameters (GoM Scores) are in Figure 2.

This figure is included for completeness, though it is difficult to interpret. There are two

confounding effects in this comparison. The first difference is the difference between the

estimates of the parameters of the polytomous logistic mixed-effects regression prior when

λ is fixed versus when λ is unconstrained with an informative prior. The second difference is

that the wEP weighting is different when λ is fixed and when λ is unconstrained. To see this

consider the unweighted joint distribution from Equation 8. As discussed in the Weighting

based on the Estimated Parameter subsection of Section 3.2.3, the p(ykij |mkijc, λcj) entry

of the likelihood gets weights because the estimated parameter λcj is a group parameter.

However, when λcj is fixed, then the term p(ykij |mkicj) no longer contains an estimated

group parameter and does not get weights.

Given the confounding described above, there are a few items of note in Figure 2. First

consider the fixed effects, or β parameter estimates. The parameter estimates when λ

is unconstrained have a larger posterior spread then λ is fixed. This is reasonable since

unconstrained λ’s will contribute variability and the unconstrained λ wEP estimates con-

tain weights in more places in the analysis (it is well known that weighted estimates have

larger variances). The estimates of β1 when λ is unconstrained have a lower mean than

the estimates when λ is fixed. The means β2 when λ is fixed and the estimates when

when λ is unconstrained with an informative prior are much closer to each other than for

β1. The basic trend of the estimates when λ is fixed is as expected, with the informative

cluster and individual sampling scheme estimates larger than the non-informative sampling

scheme. The same is true with the estimates when λ is unconstrained. I would expect the

weighted estimates to have less bias in the wEP estimates than the unweighted estimates

in Figure 1. This comparison is done in Figures 3 and 4.

Next consider the variance components. The estimates of σ2
ψ when λ is unconstrained

have similar posterior variance than the estimates when λ is fixed. The means of the esti-
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mates when λ is fixed are very close to the means of the estimates when λ is unconstrained.

The general trend on the σ2
ψ estimates is not expected. The estimates under informative

cluster sampling are larger than the estimates under non-informative sampling and the

estimates under informative individual sampling are larger than under informative cluster

sampling. Consider the estimates of Var(Uk) Stratum 1 and Stratum 2. The estimates

when λ is unconstrained have larger posterior variance than the estimates when λ is fixed,

as expected. The mean of the estimates of Var(Uk) Stratum 1 when λ is fixed are close

to the means when λ is unconstrained when the informative sampling does not affect this

parameter (for the informative individual and non-informative sampling schemes). When

the informative sampling does affect this parameter (informative cluster sampling), the

estimates when λ is unconstrained are closer to the true value. The same holds true for

Var(Uk) Stratum 2, except there is some difference between the estimates when λ is uncon-

strained and when λ is fixed in the non-informative sampling scheme, with the estimates

when λ is fixed being closer to the true value.
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Figure 2: Weighted Results of Sampling Design Parameters (GoM Scores)
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6.3 Results of Sampling Design Parameters (GoM Scores) when λ is

Fixed

Figure 3 compares the weighted and wEP weighted estimates of the sampling design parameters

(GoM scores) when λ is fixed.

First consider the fixed-effects or β estimates. The general trend of the unweighted estimates

is as expected, as noted in the description of Figure 1. The weighted estimate under the non-

informative sampling scheme match the unweighted estimate, as expected. For the β1 estimates

under the informative cluster sampling scheme, the weighted estimate has more bias in the same

direction as the unweighted estimate, which is not expected as the informative sampling of clusters

increases the β estimates and the weighting should reduce the affect of the informative sampling.

The weights do not appear to help under informative individual sampling, though they do not

increase bias either. For β2, the weighted estimates adjust the mean of the estimate in the correct

direction, with some overcompensation.

Next, consider the variance components. The general trends in the unweighted estimates are in

the description of Figure 1. The weighted estimate under non-informative sampling is biased low,

as expected from the simulations from Bertolet (2009) simulation set 4. This underestimation of the

random error variance is seen in all sampling schemes in Figure 3. The unweighted estimates of σ2
ψ

are similar across all sampling schemes (as discussed with Figure 1). The weighted estimates produce

largest bias in the non-informative sampling scheme, and least bias in the informative individual

sampling scheme. The weighted estimates of Var(Uk) Stratum 1 are larger than the unweighted

estimates. This is due to the small intra-class correlation (icc= 0.04
0.25 = 0.1). This overestimation of

the random intercept was also seen simulation set 4 of Bertolet (2009). The weighted estimates of

Var(Uk) Stratum 2 are also larger than the corresponding unweighted estimates. The reason for

this is not known. In simulation Set 12 of Bertolet (2009) there was also positive bias of the scaled

2 weights on the estimate of the random intercept, σ2
0k, when the intra-class correlation was not

very small (icc≈ 5
20 = 0.25).
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Figure 3: Weighted versus Unweighted GoM Results of Sampling Design Parameters (GoM Scores) when
λ is Fixed
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6.4 Results of Sampling Design Parameters (GoM Scores) when λ has

an Informative Prior

Figure 4 compares the unweighted and wEP weighted estimates of the sampling design

parameters (GoM scores) when λ is unconstrained with an informative prior.

First consider the fixed-effects or β estimates. The general trend of the unweighted

estimates is as expected, as noted in the description of Figure 1. When there is informative

cluster or individual sampling, the weighted estimates correctly compensate in the correct

direction. For the estimate of β1 in the non-informative sampling scheme, the unweighted

estimates produce negative bias. However, for the estimates of β2 under non-informative

sampling, the weighted and unweighted estimates have similar means. As expected the

weighted estimates have larger posterior spread than the unweighted estimates.

Next consider the variance components. The behavior of the weighted and unweighted

estimates of σ2
ψ is similar to the behavior when λ is fixed as seen in Figure 3. The behavior

of the estimates of Var(Uk) in Stratum 1 and Stratum 2 is also the same as when λ is fixed

as seen in Figure 3, however the posterior spreads are larger than in the fixed λ case.
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Figure 4: Weighted versus Unweighted GoM Results of Sampling Design Parameters (GoM Scores) with
an Informative Prior on λ
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6.5 Comparison of Weighted versus Unweighted Estimates of λ

Figure 5 compares the unweighted and wEP weighted estimates of λ. The scale on all the graphs

is 0 to 1 as the λ parameters are probabilities.

The main feature of Figure 5 is the consistency of the means regardless of sampling scheme or

type of weighting (unweighted or wEP weighted). I next highlight the estimates whose 0.025 and

0.975 quantiles either do not include the true value, or barely include it. These estimates include

the unweighted and weighted estimates of λ1,4 under the informative individual sampling scheme,

the weighted estimate of λ2,3 under the informative individual sampling scheme, and the weighted

estimate of λ2,4 under the informative cluster sampling scheme.
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Figure 5: Weighted versus Unweighted Estimates of λ
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7 Summary

The goals of this report are to 1) modify the GoM model to incorporate the sampling design, 2)

insert weights into the modified GoM model and 3) analyze the performance of the new unweighted

and weighted GoM model through a simulation study. A number of new contributions were made

in supporting these three goals.

The original Dirichlet prior GoM model was modified to use a polytomous logistic mixed-effects

regression prior. This prior allows incorporation of the dependencies in the GoM scores induced by

the sampling design. Another advantage to this prior, as discussed in the future work, is that it

can also easily analyze dependencies of longitudinal data.

The insertion of sampling weights expanded upon the PML method from Pfeffermann et al.

(1998) and Rabe-Hesketh and Skrondal (2006). In addition, the new method, weighted based on

the estimated parameter, introduced a principled type of weighting for complex analyses.

Lastly, the simulation study characterizes the performance of the new polytomous logistic

mixed-effects regression prior and the weighting based on the estimated parameter. The simu-

lations indicate that the effect of the sampling design and the effect of adding weights to the

analysis strongly parallel the results from the LME simulation study in Bertolet (2009).
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8 Appendices

8.1 PML Weighting of the GoM Model

The weighting method of Pfeffermann et al. (1998) inserts the weights in the process of solving

for the estimators. Using the Bayesian modeling and estimation techniques that are different from

those used by Pfeffermann et al. (1998), it is difficult to update their method for use on the GoM

model. The weighting method of Rabe-Hesketh and Skrondal (2006) creates a weighted likelihood,

which is easily incorporated into the Bayesian GoM model structure.

A slight re-parameterization of the prior on the U ’s is needed to incorporate the Rabe-Hesketh

and Skrondal (2006) weighting. The variance structure of Ω is described in Searle et al. (1992).

The model from the GoM description above assumes that the elements of U are ordered according

to random effect. To incorporate the weighting of Rabe-Hesketh and Skrondal (2006), change the

ordering of the Z and U matrices to be according to cluster instead of element. Allowing Uk to be

the random effects corresponding to cluster k, the prior on Ukc for the GoM model becomes

Ukc ∼ Normal(0,O), , c = 1, · · · , C − 1 (9)

Uk1c ⊥ Uk2c

where Equation 9 is a prior on each cluster for class c, c = 1, ..., C − 1 and O is the corresponding

covariance matrix.

Consider the census joint distribution defined in Equation 7. Estimate the census joint distri-
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bution with the sample weighted joint distribution. Let

pw(y,m, ψ, λ, β, U, σ2
ψ, X, Z) ∝ exp

{
−1

2

C∑
c=1

(βc − µβ)TΣ−1
β (βc − µβ)

}

× (σ2
ψ)−( ν2 +1) exp

{
−
νs2ψ
2σ2

ψ

} C∏
c=1

J∏
j=1

λ
η1cj−1
cj (1− λcj)η2cj−1


×

Ks∏
k=1

nk∏
i=1

J∏
j=1

C∏
c=1

[
exp(ψkic)∑C

c1=1 exp(ψkic1)
λ
ykij
cj (1− λcj)1−ykij

]mkijcwki

×
Ks∏
k=1

[
nk∏
i=1

(
C−1∏
c=1

(σ2
ψ)−

1
2 exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
})wi|k

× exp
{
−1

2
UTkcO−1Ukc

}]wk
(10)

where Ks is the number of sampled clusters and nk is the number of sampled individuals in cluster

k. The weights are not inserted on the prior distributions of β, σ2
ψ or λ and are inserted in the

likelihood conditional distributions of yki|mkijc,λcj and mkijc|ψkic. The weighting of the ψ’s mimics

the Rabe-Hesketh and Skrondal (2006) weighting, which weights both the ψkic|β, U, σ2
psi and U

distributions. The incorporation of sampling weights on the prior of U is reasonable if the prior on

U only contains priors on the random effects for the sampled clusters. This weighting of the sample

joint density propagates to the complete conditionals corresponding to the polytomous regression
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parameters as follows:

pw(βc|−) ∝ exp
{
−1

2
(βc − µc)TΣ−1

β (βc − µc)
} Ks∏
k=1

nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}wki

∼ Normal(µ1,Σ1)

µ1 =

(
Σ−1
β +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
kiXki

)−1(
Σ−1
β µc +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
ki(ψkic − ZkiUc)

)

Σ1 =

(
Σ−1
β +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
kiXki

)−1

pw(Uc|−) ∝
K∏
k=1

[
nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUkc)2
}wi|k

exp
{
−1

2
UTkcO−1Ukc

}]wk
∼ Normal(µ2,Σ2)

µ2 =

(
K∑
k=1

wkO−1 +
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
kiZki

)−1(
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
ki(ψkic −Xkiβc)

)

Σ2 =

(
K∑
k=1

wkO−1 +
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
kiZki

)−1

pw(σ2
ψ|−) ∝ (σ2

ψ)−( ν2 +1) exp

{
−
νs2ψ
2σ2

ψ

}
Kw∏
k=1

nk∏
i=1

C−1∏
c=1

(σ2
ψ)−

1
2 exp

{
− 1

2σ2
ψ

(ψkc −Xkβc − ZkUc)2
}wki

∼ Scaled Inv χ2

Ks∑
k=1

nk∑
i=1

wki(C − 1) + ν,

(∑Ks
k=1

∑nk
i=1

∑C−1
c=1 wki(ψkic −Xkiβc − ZkiUc)2

)
+ νs2ψ∑Ks

k=1

∑nk
i=1 wki(C − 1) + ν


The complete conditionals for the augmented data and the pure response probabilities are,

pw(λcj |−) ∝
Ks∏
k=1

nk∏
i=1

[
λ
ykij
cj (1− λcj)(1−ykij)

]mkijcwki
λ
η1cj−1
cj (1− λcj)η2cj−1

∼ Beta

(
Ks∑
k=1

nk∑
i=1

ykijmkijcwki + η1cj ,

Ks∑
k=1

nk∑
i=1

(1− ykij)mkijcwki + η2cj

)

pw(mkij |−) ∝
C∏
c=1

[
exp{ψkic}∑C

c1=1 exp{ψkic1}
λ
ykij
cj (1− λcj)(1−ykij)

]mkijcwki

∼ Multinomial

(
1,

[
exp{ψki1}∑C

c1=1 exp{ψkic1}
λ
ykij
1j (1− λ1j)1−ykij

]wki
, · · · ,[

exp{ψkiC}∑C
c1=1 exp{ψkic1}

λ
ykij
Cj (1− λCj)1−ykij

]wki)
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Finally, a Metropolis step is needed for ψ,

pw(ψkic|−) ∝
C∏
c=1

J∏
j=1

[
exp {ψkic}∑C

c1=1 exp {ψkic1}

]mkijcwki

× exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}

Let the Jumping distribution be Normally distributed, with the mean at the previous MCMC value

and a variance of σ2
ψjmp. The acceptance ratio is

r(w)ψkic =
pw(ψ∗kic|−)

pw(ψ(r)
kic|−)

=
C∏
c=1

J∏
j=1

[
exp{ψ∗kic}∑C

c1=1 exp{ψ∗kic1}

∑C
c1=1 exp{ψ(r)

kic1
}

exp{ψ(r)
kic}

]mkijcwki

× exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}

=
C∏
c=1

[
g∗kic

g
(r)
kic

]PJ
j=1mkijcwki

exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}

where gkic = exp{ψic}PC
c1=1 ψkic1

where ψkiC = 0. These complete conditionals and Metropolis-Hasting

steps are implemented using MCMC algorithms.
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8.2 Complete Conditional Weighting

To add weights to the complete conditionals, take the census complete conditionals from the un-

weighted GoM derivation, and add sampling weights to estimate them with sample complete condi-

tionals. The subscript wCC below denotes the result from weighting the complete conditionals. The

weighted complete conditionals for the polytomous regression parameters are the same as above,

pwCC(βc|−) ∝ exp
{
−1

2
(βc − µc)TΣ−1

β (βc − µc)
} Ks∏
k=1

nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}wki

∼ Normal(µ1,Σ1)

µ1 =

(
Σ−1
β +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
kiXki

)−1(
Σ−1
β µc +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
ki(ψkic − ZkiUc)

)

Σ1 =

(
Σ−1
β +

1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiX
T
kiXki

)−1

pwCC(Uc|−) ∝
K∏
k=1

[
nk∏
i=1

exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUkc)2
}wi|k

exp
{
−1

2
UTkcO−1Ukc

}]wk
∼ Normal(µ2,Σ2)

µ2 =

(
K∑
k=1

wkO−1 +
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
kiZki

)−1(
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
ki(ψkic −Xkiβc)

)

Σ2 =

(
K∑
k=1

wkO−1 +
1
σ2
ψ

Ks∑
k=1

nk∑
i=1

wkiZ
T
kiZki

)−1

pwCC(σ2
ψ|−) ∝ (σ2

ψ)−( ν2 +1) exp

{
−
νs2ψ
2σ2

ψ

}
Kw∏
k=1

nk∏
i=1

C−1∏
c=1

(σ2
ψ)−

1
2 exp

{
− 1

2σ2
ψ

(ψkc −Xkβc − ZkUc)2
}wki

∼ Scaled Inv χ2
(
ν1, s

2
1

)
ν1 =

Ks∑
k=1

nk∑
i=1

wki(C − 1) + ν

s21 =

(∑Ks
k=1

∑nk
i=1

∑C−1
c=1 wki(ψkic −Xkiβc − ZkiUc)2

)
+ νs2ψ∑Ks

k=1

∑nk
i=1 wki(C − 1) + ν
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The complete conditional for λcj remains the same, and the complete conditional for mkijc changes

as described above,

pwCC(λcj |−) ∝
Ks∏
k=1

nk∏
i=1

[
λ
ykij
cj (1− λcj)(1−ykij)

]mkijcwki
λ
η1cj−1
cj (1− λcj)η2cj−1

∼ Beta

(
Ks∑
k=1

nk∑
i=1

ykijmkijcwki + η1cj ,

Ks∑
k=1

nk∑
i=1

(1− ykij)mkijcwki + η2cj

)

pwCC(mkij |−) ∝
C∏
c=1

[
exp{ψkic}∑C

c1=1 exp{ψkic1}
λ
ykij
cj (1− λcj)(1−ykij)

]mkijc

∼ Multinomial

(
1,

exp{ψki1}∑C
c1=1 exp{ψkic1}

λ
ykij
1j (1− λ1j)1−ykij , · · · ,

exp{ψkiC}∑C
c1=1 exp{ψkic1}

λ
ykij
Cj (1− λCj)1−ykij

)

The Metropolis-Hastings step for ψkic is the same as the unweighted case,

pwCC(ψkic|−) ∝
C∏
c=1

J∏
j=1

[
exp {ψkic}∑C

c1=1 exp {ψkic1}

]mkijc

× exp

{
− 1

2σ2
ψ

(ψkic −Xkiβc − ZkiUc)2
}

Let the Jumping distribution be Normally distributed, with the mean at the previous MCMC value

and a variance of σ2
ψjmp. The acceptance ratio is

r(wCC)ψkic =
p(ψ∗kic|−)

p(ψ(r)
kic|−)

=
C∏
c=1

J∏
j=1

[
exp{ψ∗kic}∑C

c1=1 exp{ψ∗kic1}

∑C
c1=1 exp{ψ(r)

kic1
}

exp{ψ(r)
kic}

]mkijc

× exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}

=
C∏
c=1

[
g∗kic

g
(r)
kic

]PJ
j=1mkijc

exp

{
− 1

2σ2
ψ

[
(ψ∗kic −Xkiβc − ZkiUc)2 − (ψ(r)

kic −Xkiβc − ZkiUc)2
]}

By construction, these complete conditionals and Metropolis-Hastings steps insert weights only

when using sample quantities to estimate finite population quantities.

One problem with this wCC weighting that some components to the posterior (or log likeli-
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hood times the prior) are treated differently in different complete conditionals. For example, in

pwCC(λcj |−), the
[
λ
ykij
cj (1− λcj)1−ykij )

]
term from the posterior is weighted. However, the same

term in pwCC(mkij |−) is not weighted. Treating a component from the posterior differently in

different complete conditionals appears unprincipled.
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8.3 Computer Code

The GoM code used for the results of this report started with the code from Elena Erosheva’s

thesis, see Erosheva (2002), and was modified by Cyrille Joutard. I then modified that code to

include the polytomous logistic random-effects prior and the wEP weighting scheme. This code

may be found at http://stat.cmu.edu under the Recent PhD Theses link. The c-code uses the

VMR library, downloaded from http://www.stat.cmu.edu/~hseltman/. It is in the Computer

Programming, C/C++ section. The code uses the IMSL library, available from Visual Numerics at

http://www.vni.com for a fee. The compilation instructions are commented in the beginning of

the code. Along with the ode are sample input files and the corresponding output file.
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