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Recent work on the convergence of posterior distributions under

Bayesian updating has established conditions under which the poste-
rior will concentrate on the truth, if the latter has a perfect represen-
tation within the support of the prior, and under various dynamical
assumptions, such as the data being independent and identically dis-
tributed or Markovian. Here I establish sufficient conditions for the
convergence of the posterior distribution in non-parametric problems
even when all of the hypotheses are wrong, and the data-generating
process has a complicated dependence structure. The main dynamical
assumption is the generalized asymptotic equipartition (or “Shannon-
McMillan-Breiman”) property of information theory. I derive a kind
of large deviations principle for the posterior measure, and discuss
the advantages of predicting using a combination of models known
to be wrong. An appendix sketches connections between the present
results and the “replicator dynamics” of evolutionary theory.

1. Introduction. The problem of the convergence and frequentist con-
sistency of Bayesian learning goes as follows. We encounter observations
X1, X2, . . ., which we would like to predict by means of a family Θ of models
or hypotheses (indexed by θ). We begin with a prior probability distribution
Π0 over Θ, and update this using Bayes’s rule, so that our distribution after
seeing X1, X2, . . . Xt ≡ Xt

1 is Πt. If the observations come from a stochas-
tic process with infinite-dimensional distribution P , when does Πt converge
P -almost surely? What is the rate of convergence? Under what conditions
will Bayesian learning be consistent, so that Πt doesn’t just converges but
its limit is P?

Since the Bayesian estimate is the whole posterior probability distribution
Πt rather than a point or set in Θ, we need a special notion of consistency.
The usual approach is to define some sufficiently strong set of neighborhoods
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of P in the space of probability distributions on X∞1 , and say that Πt is con-
sistent when, for each such neighborhood N , limt→∞Πt(N) = 1. When this
holds, the posterior increasingly approximates a delta distribution centered
at the truth.

The greatest importance of these problems, perhaps, is their bearing on
the objectivity and reliability of Bayesian inference; consistency proofs and
convergence rates are, as it were, frequentist licenses for Bayesian practices.
Moreover, if Bayesian learners starting from different priors converge rapidly
on the same posterior distribution, there is less reason to worry about the
subjective or arbitrary element in the choice of priors. (Such “merger of
opinion” results are also important in economics and game theory [8].) Re-
cent years have seen considerable work on these problems, especially in the
non-parametric setting where the model space Θ is infinite-dimensional [24].

Pioneering work by Doob [14], using elegant martingale arguments, estab-
lished that when any consistent estimator exists, and P lies in the support of
Π0, the set of sample paths on which the Bayesian learner fails to converge
to the truth has prior probability zero. (See [9] and [33] for extensions of
this result to non-IID settings, and also the discussion in [16].) This is not,
however, particularly reassuring, since P generally also has prior probabil-
ity zero, and it would be unfortunate if these two measure-zero sets should
happen to coincide. Indeed, Diaconis and Freedman established that the
consistency of Bayesian inference depends crucially on the choice of prior,
and that even very natural priors can lead to inconsistency (see [13] and
references therein).

More recent work has shown that, no matter what the true data-generating
distribution P , Bayesian updating converges along P -almost-all sample paths,
provided that (a) P is contained in Θ, (b) every Kullback-Leibler neighbor-
hood in the Θ has some positive prior probability (the “Kullback-Leibler
property”), and (c) certain restrictions hold on the prior, amounting to
versions of capacity control, as in the method of sieves or structural risk
minimization. These contributions also make (d) certain dynamical assump-
tions about the data-generating process, most often that it is IID [4, 20, 49],
independent non-identically distributed [9, 23], or, in some cases, Markovian
[22, 23]; [21] and [45] in particular discuss rates of convergence (in the IID
setting).

The goal of the present paper is to provide sufficient conditions for the
convergence of the posterior without assuming (a) or (b), and substantially
weakening (c) and (d). Even if one uses non-parametric models, cases where
one knows that the true data generating process is exactly represented by one
of the hypotheses in the model class are scarce. Moreover, while IID data can
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be produced, with some trouble and expense, in the laboratory or in a well-
conducted survey, in many applications the data are not just heterogeneous
and dependent, but their heterogeneity and dependence is precisely what is
of interest. This raises the question of what Bayesian updating does when
the truth is not contained in the support of the prior, and observations are
dependent to boot.

To answer this question, I first weaken the dynamical assumptions to the
asymptotic equipartition property (Shannon-McMillan-Breiman theorem) of
information theory, i.e., for each hypothesis θ, the log-likelihood per unit
time converges almost surely. This log-likelihood per unit time is basically
the growth rate of the Kullback-Leibler divergence between P and θ, h(θ). As
observations accumulate, areas of Θ where h(θ) exceeds its essential infimum
h(Θ) tend to lose posterior probability, which concentrates in divergence-
minimizing regions. Some additional conditions on the prior distribution are
needed to prevent it from putting too much weight initially on hypotheses
with high divergence rates but slow convergence of the log-likelihood. As the
latter assumptions are strengthened, more and more can be said about the
convergence of the posterior.

Using the weakest set of conditions (Assumptions 1–3), the long-run expo-
nential growth rate of the posterior density at θ cannot exceed h(Θ)− h(θ)
(Theorem 1). Adding assumptions 4–6 to provide better control over the
integrated or marginal likelihood establishes (Theorem 2) that the long-run
growth rate of the posterior density is in fact h(Θ) − h(θ). A final extra
assumption (7) then lets us conclude (Theorem 3) that the posterior distri-
bution converges, in the sense that, for any set of hypotheses A, the posterior
probability Πt(A) → 0 unless the essential infimum of h(θ) over A equals
h(Θ). In fact, we then have a kind of large deviations principle for the pos-
terior measure (Theorem 4), as well as a bound on the generalization ability
of the posterior predictive distribution (Theorem 5).

For the convenience of reader, the development uses the usual statistical
vocabulary and machinery. It may be of some interest, however, that the
results were first found via an apparently-novel analogy between Bayesian
updating and the “replicator equation” of evolutionary dynamics, which is
a formalization of the Darwinian idea of natural selection. Individual hy-
potheses play the role of distinct replicators in a population, the posterior
distribution being the population distribution over replicators and fitness
being proportional to likelihood. Appendix A gives details.

2. Preliminaries and Notation. As usual, let (Ω,F , P ) be a proba-
bility space. Let X1, X2, . . ., for short X∞1 , be a sequence of random vari-
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ables, taking values in the measurable space (Ξ,X ), whose infinite-dimensional
distribution is P . The natural filtration of this process is σ

(
Xt

1

)
. The only

dynamical properties are those required for the Shannon-McMillan-Breiman
theorem (Assumption 3); more specific assumptions such as P being a prod-
uct measure, Markovian, exchangeable, etc., are not required. Unless oth-
erwise noted, all probabilities are taken with respect to P , and E [·] always
means expectation under that distribution.

Statistical hypotheses, i.e., distributions of processes adapted to σ
(
Xt

1

)
,

are denoted by Fθ, the index θ taking values in the hypothesis space, a
measurable space (Θ, T ), generally infinite-dimensional. For convenience,
assume that P and all the Fθ are dominated by a common reference measure,
with respective densities p and fθ. I do not assume that P ∈ Θ, and a fortiori
not that P ∈ supp Π0 — i.e., quite possibly all of the available hypotheses
are false.

We will study the evolution of a sequence of probability measures Πt on
(Θ, T ), starting with a non-random prior measure Π0. (A filtration on Θ is
not needed; the measures Πt change but not the σ-field T .) Without loss of
generality, assume all Πt are absolutely continuous with respect to a common
reference measure — Π0 will do, if nothing else — with densities πt.

Let Lt(θ) be the conditional likelihood of xt under θ, i.e., Lt(θ) ≡ fθ(Xt =
xt|Xt−1

1 = xt−1
1 ), and let 〈Lt〉 be conditional integrated likelihood, i.e.,∫

Θ Lt(θ)dΠt(θ). Bayesian updating of course means that, for any A ∈ T ,

Πt+1(A) =
∫
A Lt(θ)dΠt(θ)∫
Θ Lt(θ)dΠt(θ)

=
∫
A Lt(θ)dΠt(θ)
〈Lt〉

or, in terms of the density,

πt+1(θ) =
Lt(θ)πt(θ)
〈Lt〉

It will also be convenient to express Bayesian updating in terms of the
prior and the total likelihood:

Πt(A) =
∫
A dΠ0(θ)fθ(xt1)∫
Θ dΠ0(θ)fθ(xt1)

=

∫
A dΠ0(θ)fθ(xt1)

p(xt1)∫
Θ dΠ0(θ)fθ(xt1)

p(xt1)

=
∫
A dΠ0(θ)Rt(θ)
〈Rt〉

where Rt(θ) ≡
fθ(xt1)

p(xt1)
is the ratio of model likelihood to true likelihood. (Note

that 0 < p(xt1) <∞ for all t P -a.s.) Similarly,

πt(θ) = π0(θ)
Rt(θ)
〈Rt〉
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Remark on the topology of Θ and on T . The hope in studying posterior
convergence is to show that, as t grows, with higher and higher (P ) probabil-
ity, Πt concentrates more and more on sets which come closer and closer to
P . The tricky part here is “closer and closer”: points in Θ represent infinite-
dimensional stochastic process distributions, and the topology of such spaces
is somewhat odd, and irritatingly abrupt, at least under the more common
measures of distance. Any two ergodic measures are either equal or have
completely disjoint supports [25], so that the Kullback-Leibler divergence
between distinct ergodic processes is always infinity (in both directions), and
the total variation and Hellinger distances are likewise maximal. Most pre-
vious work on posterior consistency has restricted itself to models where the
infinite-dimensional process distributions are formed by products of fixed-
dimensional base distributions (IID, Markov, etc.), and in effect transferred
the usual metrics’ topologies from these finite-dimensional distributions to
the processes. It is possible to define metrics for general stochastic processes
[25], and if readers like they may imagine that T is a Borel σ-field under some
such metric. This is not necessary for the results presented here, however.

2.1. Example. The following example will be used to illustrate the as-
sumptions (§2.2.1 and Appendix B), and, later, the conclusions (§3.5).

The data-generating process P is a stationary and ergodic measure on the
space of binary sequences, i.e., Ξ = {0, 1}, and the σ-field X is naturally 2Ξ.
The measure is most easily represented as a function of a two-state Markov
chain S∞1 , with St ∈ {1, 2}. The transition matrix is

T =

[
0.0 1.0
0.5 0.5

]
so that the invariant distribution puts probability 1/3 on state 1 and proba-
bility 2/3 on state 2; take S1 to be distributed accordingly. The observed pro-
cess is a binary function of the latent state transitions, Xt = 0 if St = St+1 =
2 and Xt = 1 otherwise. Figure 1 depicts the transition and observation
structure. Qualitatively,X∞1 consists of blocks of 1s of even length, separated
by blocks of 0s of arbitrary length. Since the joint process {(St, Xt)}1≤t≤∞
is a stationary and ergodic Markov chain, X∞1 is also stationary, ergodic and
mixing.

This stochastic process comes from symbolic dynamics [30, 34], where it
is known as the “even process”, and serves as a basic example of the class of
sofic processes [50], which have finite Markovian representations, as in Figure
1, but are not Markov at any finite order. Despite their simplicity, these
models arise naturally when studying the time series of chaotic dynamical
systems [3, 10, 11, 43].
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Fig 1. State-transition diagram for the “even process”. The legends on the transition
arrows indicate the probability of making the transition, and the observation which occurs
when the transition happens. The observation Xt = 1 when entering or leaving state 1,
otherwise it is 0. This creates blocks of 1s of even length, separated by blocks of 0s of
arbitrary length. The result is a finite-state process which is not a Markov chain of any
order.

Let Θk be the space of all binary Markov chains of order k with strictly
positive transition probabilities and their respective stationary distributions;
each Θk has dimension 2k. (Allowing some transition probabilities to be
zero creates uninteresting technical difficulties.) Since each hypothesis is
equivalent to a function Ξk+1 7→ (0, 1], we can give Θk the topology of
pointwise convergence of functions, and the corresponding Borel σ-field. We
will take Θ =

⋃∞
k=1 Θk, identifying Θk with the appropriate subset of Θk+1.

Thus Θ consists of all strictly-positive stationary binary Markov chains, of
whatever order, and is infinite-dimensional.

As for the prior Π0, it will be specified in more detail below (§2.2.1). At the
very least, however, it needs to have the “Kullback-Leibler rate property”,
i.e., to give positive probability to every ε “neighborhood” Nε(θ) around
every θ ∈ Θ, i.e., the set of hypotheses whose Kullback-Leibler divergence
from θ grows no faster than ε:

Nε(θ) =

{
θ′ : ε ≥ lim

t→∞

1
t

∫
dxt1fθ(x

t
1) log

fθ(xt1)
fθ′(xt1)

}

(The limit exists for all θ, θ′ combinations [26].)
This example is simple, but it is also beyond the scope of existing work

on Bayesian convergence in several ways. First, the data-generating process
P is not even Markov. Second, P 6∈ Θ, so all the hypotheses are wrong, and
the truth is certainly not in the support of the prior. (P can however be
approximated arbitrarily closely by distributions from Θ in various process
metrics.) Third, because P is ergodic, and ergodic distributions are extreme
points in the space of stationary distributions [15], it cannot be represented
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as a mixture of distributions in Θ. This means that the Doob-style theorem
of Ref. [33] does not apply, and even the subjective certainty of convergence
is not assured.

Ref. [38] describes a non-parametric procedure which will adaptively learn
to predict a class of discrete stochastic processes which includes the even
process. Ref. [44] introduces a frequentist algorithm which consistently re-
constructs the hidden-state representation of sofic processes, including the
even process. Ref. [47] considers Bayesian estimation of the even process,
using Dirichlet priors for finite-order Markov chains, and employing Bayes
factors to decide which order of chain to use for prediction.

2.2. Assumptions. The needed assumptions have to do with the dynam-
ical properties of the data generating process P , and with how well the
dynamics meshes both with the class of hypotheses Θ and with the prior
distribution Π0 over those hypotheses.

Assumption 1 The likelihood Rt(θ) is σ
(
Xt

1

)
× T -measurable for all t.

The next two assumptions actually need only hold for Π0-almost-all θ.
But this adds more measure-0 caveats to the results, and it is hard to find
a natural example where it would help.

Assumption 2 For every θ ∈ Θ, the Kullback-Leibler divergence rate from
P ,

h(θ) = lim
t→∞

1
t
E

[
log

p(Xt
1)

fθ(Xt
1)

]
exists (possibly being infinite) and is T -measurable.

As mentioned, any two distinct ergodic measures are mutually singular, so
there is a consistent test which can separate them. ([41] constructs an explicit
but not necessarily optimal test.) One interpretation of the divergence rate
[26] is that it measures the maximum exponential rate at which the power
of such tests approaches 1, with d = 0 and d =∞ indicating sub- and supra-
exponential convergence, respectively.

Assumption 3 For each θ ∈ Θ, the generalized or relative asymptotic
equipartition property holds, and so

(1) lim
1
t

logRt(θ) = −h(θ)

with P -probability 1.

Refs. [1, 26] for give sufficient, but not necessary, conditions sufficient for
Assumption 3 to hold for a given θ. The ordinary, non-relative asymptotic
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equipartition property, also known as the Shannon-McMillan-Breiman the-
orem, is that lim t−1 log p(xt1) = −hP a.s., where hP is the entropy rate of
the data-generating process. (See [26].) If this holds and hP is finite, one
could rephrase Assumption 3 as lim t−1 log fθ(Xt

1) = −hP − h(θ) a.s., and
state results in terms of the likelihood rather than the likelihood ratio. (Cf.
[19, ch. 5].) However, there are otherwise-well-behaved processes for which
hP = −∞, at least in the usual choice of reference measure, so I will restrict
myself to likelihood ratios.

The meaning of Assumption 3 is that, relative to the true distribution, the
likelihood of each θ goes to zero exponentially, the rate being the Kullback-
Leibler divergence rate. Roughly speaking, an integral of exponentially-
shrinking quantities will tend to be dominated by the integrand with the
slowest rate of decay. This suggests that the posterior probability of a set
A ⊆ Θ depends on the smallest divergence rate which can be attained at a
point of prior support within A. Thus, adapting notation from large devia-
tions theory, define

h(A) ≡ ess inf
θ∈A

h(θ)

J(θ) ≡ h(θ)− h(Θ)
J(A) ≡ ess inf

θ∈A
J(θ)

where here and throughout ess inf is the essential infimum with respect to
Π0, i.e., the greatest lower bound which holds with Π0-probability 1.

Our further assumptions are those needed for the “roughly speaking”
and “should” statements of the previous paragraph to be true, so that, for
reasonable sets A ∈ T ,

lim
1
t

log
∫
A
dΠ0(θ)Rt(θ) = −h(A)

Let I ≡ {θ : h(θ) =∞}.

Assumption 4 Π0(I) < 1

If this assumption fails, then every hypothesis in the support of the prior
doesn’t just diverge from the true data-generating distribution, it diverges
so fast that the error rate of a test against the latter distribution goes to zero
faster than any exponential. (One way this can happen is if every hypothesis
has a finite-dimensional distribution assigning probability zero to some event
of positive P -probability.) In these situations of extreme mis-specification,
the methods of this paper seem to be of no use.

Assumption 5 There exists a sequence of sets Gn → Θ such that
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1. Π0(Gn) ≥ 1− α exp {−nβ}, for some α > 0, β > 2h(Θ);
2. The convergence of Eq. 1 is uniform in θ over Gn \ I;
3. h(Gn)→ h(Θ).

Comment: Recall that by Egorov’s theorem [29, Lemma 1.36, p. 18], if a
sequence of finite, measurable functions ft(θ) converges pointwise to a finite,
measurable function f(θ) for Π0-almost-all θ ∈ G, then for each ε > 0, there
is a (possibly empty) B ⊂ G such that Π0(B) ≤ ε, and the convergence is
uniform on G \ B. Thus the first two parts of the assumption really follow
for free from the assumption that likelihoods and divergence rates are mea-
surable in θ. (That β needs to be at least 2h(Θ) becomes apparent in the
proof of Lemma 5, but that could always be arranged.) The extra content
comes in the third part of the assumption, which could fail if the lowest-
divergence hypotheses were also the ones where the convergence was slowest,
consistently falling into the bad sets B allowed by Egorov’s theorem.

For each measurable A ⊆ Θ, for every δ > 0, there exists a natural number
T (A, δ, ω) such that

t−1 log
∫
A
Rt(θ, ω)dΠ0(θ) ≤ δ + lim sup

t
t−1 log

∫
A
Rt(θ, ω)dΠ0(θ)

for all t > T (A, δ, ω), provided the lim sup is finite. (Here I am explicit in the
dependence of the likelihood on the sample path to emphasize that the rate
of convergence may be path-dependent.) We need this random last-entry
time T (A, δ) to state the next assumption.

Assumption 6 The sets Gn of the previous assumption can be chosen so
that, for every δ, the inequality n ≥ T (Gn, δ) holds a.s. for all sufficiently
large n.

The meaning of this is that, fixing δ, we can arrange our sequence of
good sets so that (at least eventually) we start using Gn only after it has
δ-converged.

Finally, to show convergence of the posterior measure, we need to be able
to control the convergence of the log-likelihood on sets smaller than the
whole parameter space.

Assumption 7 The sets Gn of the previous two assumptions can be chosen
so that, for any set A with Π0(A) > 0, h(Gn ∩A)→ h(A).

Assumption 7 could be replaced by the logically-weaker assumption that
for each set A, there exist a sequence of sets Gn,A satisfying the equivalents
of Assumptions 5 and 6 for the prior measure restricted to A. Since the
most straight-forward way to check such an assumption would be to verify
Assumption 7 as stated, the extra generality does not seem worth it.
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2.2.1. Verification of Assumptions for the Example. Since every θ ∈ Θ
is a finite-order Markov chain, and P is stationary and ergodic, Assumption
1 is unproblematic, while Assumptions 2 and 3 hold by virtue of [1].

It is easy to check that infθ∈Θk h(θ) > 0 for each k. (The infimum is not
in general attained by any θ ∈ Θk, though it could be if the chains were
allowed to have some transition probabilities equal to zero.) The infimum
over Θ as a whole, however, is zero. Also, h(θ) < ∞ everywhere (because
none of the hypotheses’ transition probabilities are zero), so the possible set
I of θ with infinite divergence rates is empty, disposing of Assumption 4.

Verifying the remaining assumptions means building a sequence Gn of
increasing subsets of Θ on which the convergence of t−1 logRt is uniform and
sufficiently rapid, and ensuring that the prior probability of these sets grows
fast enough. This will be done by exploiting some finite-sample deviation
bounds for the even process, which in turn rest on its mixing properties
and the method of types. Details are referred to Appendix B. The upshot
is that the sets Gn consist of chains whose order is less than or equal to
logn

2/3+ε − 1, for some ε > 0, and where the absolute logarithm of all the
transition probabilities is bounded by Cnγ , where the positive constant C
is arbitrary but 0 < γ < 2/3+ε/2

2/3+ε . The exponential rate β > 0 for the prior
probability of Gcn can be chosen to be arbitrarily small.

3. Results. I first give the theorems here, without proof. The proofs, in
§§3.1–3.4, are accompanied by re-statements of the theorems, for the reader’s
convenience.

I establish five theorems. The first gives an upper bound on the posterior
density at a given point θ in Θ. The second matches the upper bound on the
posterior density with a lower bound, together providing the growth-rate for
the posterior density. The third is that Πt(A)→ 0 for any set with J(A) > 0,
showing that the posterior concentrates on the divergence-minimizing part
of the hypothesis space. The fourth is a kind of large deviations principle
for the posterior measure. Finally, the fifth bounds the asymptotic Hellinger
and total variation distances between the posterior predictive distribution
and the actual conditional distribution of the next observation.

The first result uses only Assumptions 1–3. (It is not very interesting,
however, unless 4 is also true.) The latter three, however, all depend on
finer control of the integrated likelihood, and so finer control of the prior, as
embodied in Assumptions 5–6. More exactly, those additional assumptions
concern the interplay between the prior and the data-generating process,
restricting the amount of prior probability which can be given to hypotheses
whose log-likelihoods converge excessively slowly under P . I build to the
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first result in the next sub-section, then turn to the control of the integrated
likelihood and its consequences in the next three sub-sections, and then
consider how these results apply to the example.

Theorem 1 Under Assumptions 1–3, with probability 1, for all θ where
π0(θ) > 0,

lim sup
t→∞

1
t

log πt(θ) ≤ −J(θ)

Theorem 2 Making Assumptions 1–6, for all θ ∈ Θ where π0(θ) > 0,

lim
t→∞

1
t

log πt(θ) = −J(θ)

with probability 1.

Theorem 3 Make Assumptions 1–7. Pick any set A ∈ T where Π0(A) > 0
and h(A) > h(Θ). Then Πt(A)→ 0 a.s.

Theorem 4 Under the conditions of Theorem 3, if A ∈ T is such that

− lim sup t−1 log Π0(A ∩Gct) = β′ ≥ 2h(A)

then
lim
t→∞

1
t

log Πt(A) = h(Θ)− h(A)

In particular, this holds whenever 2h(A) < β or A ⊂
⋂∞
k=nGk for some n.

Theorem 5 Under Assumptions 1–7,

lim sup
t→∞

ρ2
H(P t, F tΠ) ≤ h(Θ)

lim sup
t→∞

ρ2
TV (P t, F tΠ) ≤ 4h(Θ)

where ρH and ρTV are, respectively, the Hellinger and total variation met-
rics.

3.1. Upper Bound on the Posterior Density. The primary result of this
section is a pointwise upper bound on the growth rate of the posterior den-
sity. To establish it, I use some subsidiary lemmas, which also recur in later
proofs. Lemma 2 extends the almost-sure convergence of the likelihood (As-
sumption 3) from holding pointwise in Θ to holding on a (possibly random)
set of Π0-measure 1. Lemma 3 shows that the prior-weighted likelihood ra-
tio, 〈Rt〉 tends to be at least exp {−th(Θ)}. (Both assertions are made more
precise in the lemmas themselves.)

Begin with a proposition about exchanging the order of universal quanti-
fiers (with almost-sure caveats).
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Lemma 1 Let Q ⊂ Θ×Ω be jointly measurable, with sections Qθ = {ω : (ω, θ) ∈ Q}
and Qω = {θ : (ω, θ) ∈ Q}. If, for some probability measure P on Ω,

(2) ∀θP (Qθ) = 1

then for any probability measure Π on Θ

(3) P ({ω : Π (Qω) = 1}) = 1

In words, if, for all θ, some property holds a.s., then a.s. the property
holds simultaneously for almost all θ.

Proof: Since Q is measurable, for all ω and θ, the sections are measur-
able, and the measures of the sections, P (Qθ) and Π(Qω), are measurable
functions of θ and ω, respectively. Using Fubini’s theorem,∫

Θ
P (Qθ)dΠ(θ) =

∫
Θ

∫
Ω

1Q(ω, θ)dP (ω)dΠ(θ)

=
∫

Ω

∫
Θ

1Q(ω, θ)dΠ(θ)dP (ω)

=
∫

Ω
Π(Qω)dP (ω)

By hypothesis, however, P (Qθ) = 1 for all θ. Hence it must be the case that
Π(Qω) = 1 for P -almost-all ω. (In fact, the set of ω for which this is true
must be a measurable set.) �

Lemma 2 Under Assumptions 1–3, there exists a set C ⊆ Ξ∞, with P (C) =
1, where, for every y ∈ C, there exists a Qy ∈ T such that, for every θ ∈ Qy,
Eq. 1 holds. Moreover, Π0(Qy) = 1.

Proof: Let the set Q consist of the θ, ω pairs where Eq. 1 holds, i.e., for
which

lim
1
t

logRt(θ, ω) = −h(θ) ,

being explicit about the dependence of the likelihood ratio on ω. Assumption
3 states that ∀θP (Qθ) = 1, so applying Lemma 1 just needs the verifica-
tion that Q is jointly measurable. But, by Assumptions 1 and 2, h(·) is
T -measurable, and Rt(θ) is σ

(
Xt

1

)
× T -measurable for each t, so the set Q

where the convergence holds are σ (X∞1 ) × T -measurable. Everything then
follows from the preceding lemma. �

Remark: Lemma 2 generalizes Lemma 3 in [4]. Lemma 1 is a specializa-
tion of the quantifier-reversal lemma used in [36] to prove PAC-Bayesian
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theorems for learning classifiers. Lemma 1 could be used to extend any of
the results below which hold a.s. for each θ to ones which a.s. hold simul-
taneously almost everywhere in Θ. This may seem too good to be true, like
an alchemist’s recipe for turning the lead of pointwise limits into the gold of
uniform convergence. Fortunately or not, however, the lemma tells us noth-
ing about the rate of convergence, and is compatible with its varying across
Θ from instantaneous to arbitrarily slow, so uniform laws need stronger
assumptions.

Lemma 3 Under Assumptions 1–3, for every ε > 0, it is almost sure that
the ratio between the integrated likelihood and the true probability density
falls below exp {−t(h(Θ) + ε)} only finitely often:

(4) P {x∞1 : 〈Rt〉 ≤ exp {−t(h(Θ) + ε)}, i.o.} = 0

and as a corollary, with probability 1,

(5) lim inf
t→∞

1
t

log 〈Rt〉 ≥ −h(Θ)

Proof: It’s enough to show that Eq. 4 holds for all x∞1 in the set B from
the previous lemma, since that set has probability 1.

Let Nε/2 be the set of all θ in the support of Π0 such that h(θ) ≤ h(Θ) +
ε/2. Since x∞1 ∈ B, the previous lemma tells us there exists a set Qx∞1 of θ
for which Eq. 1 holds under the sequence x∞1 .

exp {t(ε+ h(Θ))} 〈Rt〉 =
∫

Θ
Rt(θ) exp {t(ε+ h(Θ))}dΠ0(θ)

≥
∫
Nε/2∩Qx∞

1

Rt(θ) exp {t(ε+ h(Θ))}dΠ0(θ)

=
∫
Nε/2∩Qx∞

1

exp
{
t

[
ε+ h(Θ) +

logRt(θ)
t

]}
dΠ0(θ)

By Assumption 3,

lim
t→∞

1
t

logRt(θ) = −h(θ)

and for all θ ∈ Nε/2, h(θ) ≤ h(Θ) + ε/2, so

lim inf
t→∞

exp
{
t

[
ε+ h(Θ) +

1
t

logRt(θ)
]}

=∞
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a.s., for all θ ∈ Nε/2 ∩ Qx∞1 . We must have Π0(Nε/2) > 0, otherwise h(Θ)
would not be the essential infimum, and we know from the previous lemma
that Π0(Qx∞1 ) = 1, so Π0(Nε/2 ∩Qx∞1 ) > 0. Thus, Fatou’s lemma gives

lim
t→∞

∫
Nε/2∩Qx∞

1

exp
{
t

[
ε+ h(Θ) +

1
t

logRt(θ)
]}
dΠ0(θ) =∞

so
lim
t→∞

exp {t(ε+ h(Θ))} 〈Rt〉 =∞

and hence

(6) 〈Rt〉 > exp {−t(ε+ h(Θ))}

for all but finitely many t. Since this holds for all x∞1 ∈ B, and P (B) = 1,
Equation 6 holds a.s., as was to be shown. The corollary statement follows
immediately. �

Theorem 1 Under Assumptions 1–3, with probability 1, for all θ where
π0(θ) > 0,

(7) lim sup
t→∞

1
t

log πt(θ) ≤ −J(θ)

Proof: As remarked,

πt(θ) = π0(θ)
Rt(θ)
〈Rt〉

so
1
t

log πt(θ) =
1
t

log π0(θ) +
1
t

logRt(θ)−
1
t

log 〈Rt〉

By Assumption 3, for each ε > 0, it’s almost sure that

1
t

logRt(θ) ≤ −h(θ) + ε/2

for all sufficiently large t, while by Lemma 3, it’s almost sure that

1
t

log 〈Rt〉 ≥ −h(Θ)− ε/2

for all sufficiently large t. Hence, with probability 1,

1
t

log πt(θ) ≤ h(Θ)− h(θ) + ε+
1
t

log π0(θ)
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for all sufficiently large t. Hence

lim sup
t→∞

1
t

log πt(θ) ≤ h(Θ)− h(θ) = −J(θ)

�
Lemma 3 gives a lower bound on the integrated likelihood ratio, showing

that in the long run it has to do roughly as well as exp {−th(Θ))}. (More
precisely, it does significantly worse than that on vanishingly few occasions.)
It does not, however, rule out coming closer. Ideally, we would be able to
match this lower bound with an upper bound of the same form, since h(Θ)
is the best attainable divergence rate, and, by Lemma 2, log likelihood ratios
per unit time are converging to divergence rates for Π0-almost-all θ, so values
of θ for which h(θ) are close to h(Θ) should come to dominate the integral
in 〈Rt〉. It would then be fairly straightforward to show convergence of the
posterior distribution.

Unfortunately, additional assumptions are required for such an upper
bound, because (as earlier remarked) Lemma 2 does not give uniform con-
vergence, merely universal convergence; with a large enough space of hy-
potheses, the slowest pointwise convergence rates can be pushed arbitrarily
low. For instance, let xt1 be the distribution on Ξ∞ which assigns proba-
bility 1 to endless repetitions of xt1; clearly, under this distribution, seeing
Xt

1 = xt1 is almost certain. If such measures fall within the support of Π0,
they will dominate the likelihood, even though h(xt1) =∞ under all but very
special circumstances (e.g., P = xt1). Generically, then, the likelihood and
the posterior weight of xt1 will rapidly plumme. To ensure convergence of
the posterior, overly-flexible measures like the family of xt1’s must be either
excluded from the support of Π0 (possibly because they are excluded from
Θ), or be assigned so little prior weight that they do not end up dominating
the integrated likelihood, or the posterior must stably concentrate on them.

3.2. Convergence of Posterior Density via Control of the Integrated Like-
lihood. The next lemma tells us that sets in Θ of exponentially-small prior
measure make vanishingly small contributions to the integrated likelihood.
It does not require assumptions beyond those used so far, but its application
will.

Lemma 4 Make Assumptions 1–3, and chose a sequence of sets Bn ⊂ Θ
such that, for all sufficiently large n, Π0(Bn) ≤ α exp {−nβ} for some α, β >
0. Then, almost surely,

(8)
∫
Bn
Rn(θ)dΠ0(θ) ≤ exp {−nβ/2}
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for all but finitely many n.

Proof: By Markov’s inequality. First, use Fubini’s theorem and the chain
rule for Radon-Nikodym derivatives to calculate the expectation value of the
ratio.

E
[∫
Bn
Rn(θ)dΠ0(θ)

]
=

∫
Xn

dP (xn1 )
∫
Bn
dΠ0(θ)Rn(θ)

=
∫
Bn
dΠ0(θ)

∫
Xn

dP (xn1 )
dFθ
dP

(xn1 )

=
∫
Bn
dΠ0(θ)

∫
Xn

dFθ(xn1 )

=
∫
Bn
dΠ0(θ)

= Π0(Bn)

Now apply Markov’s inequality:

P

{
xn1 :

∫
Bn
Rn(θ)dΠ0(θ) > exp {−nβ/2}

}
≤ exp {nβ/2}E

[∫
Bn
Rn(θ)dΠ0(θ)

]
= exp {nβ/2}Π0(Bn)
≤ α exp {−nβ/2}

for all sufficiently large n. Since these probabilities are summable, the Borel-
Cantelli lemma implies that, with probability 1, Eq. 8 holds for all but
finitely many n. �

The next lemma asserts that a sequence of exponentially-small sets makes
a (logarithmically) negligible contribution to the integrated likelihood, pro-
vided the exponent is large enough compared to h(Θ).

Lemma 5 Let Bn be as in the previous lemma. If β > 2h(Θ), then

(9)

∫
Bcn
dΠ0(θ)Rn(θ)

〈Rn〉
→ 1

Proof: Begin by looking at the likelihood integrated over Bn rather than
its complement, and apply Lemmas 3 and 4: for any ε > 0∫

Bn
dΠ0(θ)Rn(θ)
〈Rn〉

≤ exp {−nβ/2}
exp {−n(h(Θ) + ε)}

(10)

= exp {n(ε+ h(Θ)− β/2)}(11)
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provided n is sufficiently large. If β > 2h(Θ), this bound can be made to go
to zero as n→∞ by taking ε to be sufficiently small. Since

〈Rn〉 =
∫
Bcn

dΠ0(θ)Rn(θ) +
∫
Bn
dΠ0(θ)Rn(θ)

it follows that ∫
Bcn
dΠ0(θ)Rn(θ)

〈Rn〉
→ 1

�

Lemma 6 Make Assumptions 1–3, and take any set G on which the con-
vergence in Eq. 1 is uniform and where Π0(G) > 0. Then, P -a.s.,

(12) lim sup
t→∞

1
t

log
∫
G
dΠ0(θ)Rt(θ) ≤ −h(G)

Proof: Pick any ε > 0. By the hypothesis of uniform convergence, there
almost surely exists a T (ε) such that, for all t ≥ T (ε) and for all θ ∈ G,
t−1 logRt(θ) ≤ −h(θ) + ε. Hence

t−1 log
∫
G
dΠ0(θ)Rt(θ) = t−1 log

∫
G
dΠ0(θ) exp {logRt(θ)}(13)

≤ t−1 log
∫
G
dΠ0(θ) exp {−t[−h(θ) + ε]}(14)

= ε+ t−1 log
∫
G
dΠ0(θ) exp {−th(θ)}(15)

Let Π0|G denote the probability measure formed by conditioning Π0 to be
in the set G. Then∫

G
dΠ0(θ)z(θ) = Π0(G)

∫
G
dΠ0|G(θ)z(θ)

for any integrable function z. Apply this to the last term from Eq. 15.

log
∫
G
dΠ0(θ) exp {−th(θ)} = log Π0(G) + log

∫
G
dΠ0|G(θ) exp {−th(θ)}

The second term on the right-hand side is the cumulant generating function
of −h(θ) with respect to Π0|G, which turns out to have exactly the right
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behavior as t→∞.

1
t

log
∫
G
dΠ0|G(θ) exp {−th(θ)} =

1
t

log
∫
G
dΠ0|G(θ)|exp {−h(θ)}|t

=
1
t

log

((∫
G
dΠ0|G(θ)|exp {−h(θ)}|t

)1/t
)t

=
1
t

[
t log ‖exp {−h(θ)}‖t,Π0|G

]
= log ‖exp {−h(θ)}‖t,Π0|G

(16)

Since h(θ) ≥ 0, exp {−h(θ)} ≤ 1, and the Lp norm of the latter will grow
towards its L∞ norm as p grows. Hence, for sufficiently large t,

log ‖exp {−h(θ)}‖t,Π0|G
≤ log ‖exp {−h(θ)}‖∞,Π0|G

+ ε

= − ess inf
θ∈G

h(θ) + ε

= −h(G) + ε(17)

where the next-to-last step uses the monotonicity of log and exp.
Putting everything together, we have that, for any ε > 0 and all suffi-

ciently large t,

t−1 log
∫
G
dΠ0(θ)Rt(θ) ≤ −h(G) + 2ε+

log Π0(G)
t

Hence the limit superior of the left-hand side is at most −h(G). �

Lemma 7 Making Assumption 1–6,

(18) lim sup
n→∞

1
n

log 〈Rn〉 ≤ −h(Θ)

Proof: By Lemma 5,

lim
n→∞

∫
ΘRndΠ0(θ)∫
Gn
RndΠ0(θ)

= 1

implying that

lim
n→∞

log
∫

Θ
Rn(θ)dΠ0(θ)− log

∫
Gn
Rn(θ)dΠ0(θ) = 0

so for every ε > 0, for n large enough

log
∫

Θ
Rn(θ)dΠ0(θ) ≤ ε/3 + log

∫
Gn
Rn(θ)dΠ0(θ)
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Consequently, again for large enough n,

1
n

log
∫

Θ
Rn(θ)dΠ0(θ) ≤ ε/3n+

1
n

log
∫
Gn
Rn(θ)dΠ0(θ)

Now, for each Gn, for every ε > 0, if t ≥ T (Gn, ε/3) then

1
t

log
∫
Gn
Rt(θ)dΠ0(θ) ≤ −h(Gn) + ε/3

by Lemma 6. If n ≥ T (Gn, ε/3) (which, by Assumption 6, is true for all
sufficiently large n), then

1
n

log
∫

Θ
Rn(θ)dΠ0(θ) ≤ −h(Gn) + ε/3n+ ε/3

for all ε > 0 and all n sufficiently large. Since, by Assumption 5, h(Gn) →
h(Θ), for every ε > 0, h(Gn) is within ε/3 of h(Θ) for large enough n, so

1
n

log
∫

Θ
Rn(θ)dΠ0(θ) ≤ −h(Θ) + ε/3n+ ε/3 + ε/3

Thus, for every ε > 0, then we have that

1
n

log
∫

Θ
Rn(θ)dΠ0(θ) ≤ −h(Θ) + ε

for large enough n, or, in short,

lim sup
n→∞

1
n

log
∫

Θ
Rn(θ)dΠ0(θ) ≤ −h(Θ)

�

Lemma 8 Making Assumptions 1–6, if Π0(I) = 0, then

(19)
1
t

log 〈Rt〉 → −h(Θ)

almost surely.

Proof: Combining Lemmas 3 and 7,

−h(Θ) ≤ lim inf
t→∞

1
t

log 〈Rt〉 ≤ lim sup
t→∞

1
t

log 〈Rt〉 ≤ −h(Θ)

�
The standard version of Egorov’s theorem concerns sequences of finite

measurable functions converging pointwise to finite measurable limiting func-
tions. However, the proof is easily adapted to the case where the limiting is
infinite.
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Lemma 9 Let ft(θ) be a sequence of finite, measurable functions, converg-
ing to ∞ almost everywhere (Π0) on I. Then for each ε > 0, there exists a
possibly-empty B ⊂ I such that Π0(B) < ε, and the convergence is uniform
on I \B.

Proof: Parallel to the usual proof of Egorov’s theorem. Begin by removing
the measure-zero set of points on which pointwise convergence fails; for
simplicity, keep the name I for the remaining set. For each natural number
t and k, let Bt,k ≡ {θ ∈ I : ft(θ) < k} — the points where the function
fails to be at least k by step t. Since the limit of ft is ∞ everywhere on
I, each θ has a last t such that ft(θ) < k, no matter how big k is. Hence⋂∞
t=1Bt,k = ∅. By continuity of measure, for any δ > 0, there exists an n

such that Π0(Bt,k) < δ if t ≥ n. Fix ε as in the statement of the lemma, and
set δ = ε2−k. Finally, set B =

⋃∞
k=1Bn,k. By the union bound, Π0(B) ≤ ε,

and by construction, the rate of convergence to ∞ is uniform on I \B. �

Lemma 10 The conclusion of Lemma 8 is unchanged if Π0(I) > 0.

Proof: The integrated likelihood ratio can be divided into two parts,
one from integrating over I and one from integrating over its complement.
Previous lemmas have established that the latter is upper bounded, in the
long run, by a quantity which is O(exp {−h(Θ)t}). We can use Lemma 9
to divide I into a sequence of sub-sets, on which the convergence is uni-
form, and hence on which the integrated likelihood shrinks faster than any
exponential function, and remainder sets, of prior measure no more than
α exp {−nβ}, on which the convergence is less than uniform (i.e., slow). If
we ensure that β > 2h(Θ), however, by Lemma 5 the remainder sets’ con-
tributions to the integrated likelihood is negligible in comparison to that
of Θ \ I. Said another way, if there are alternatives which a consistent test
would rule out at a merely exponential rate, those which would be rejected
at a supra-exponential rate end up making vanishingly small contributions
to the integrated likelihood. �

Theorem 2 Making Assumptions 1–6, for all θ ∈ Θ where π0(θ) > 0,

(20) lim
t→∞

1
t

log πt(θ) = −J(θ)

with probability 1.

Proof: Theorem 1 says that, for all θ,

lim sup
t→∞

1
t

log πt(θ) ≤ −J(θ)



DYNAMICS OF BAYESIAN UPDATING 21

a.s., so there just needs to be a matching lim inf. Pick any ε > 0. By As-
sumption 3, it’s almost certain that, for all sufficiently large t,

1
t

logRt(θ) ≥ −h(θ)− ε/2

while by Lemma 10, it’s almost certain that for all sufficiently large t,

1
t

log 〈Rt〉 ≤ −h(Θ) + ε/2

Combining these as in the proof of Theorem 1, it’s almost certain that for
all sufficiently large t

1
t

log πt(θ) ≥ h(Θ)− h(θ)− ε

so
lim inf
t→∞

1
t

log πt(θ) ≥ h(Θ)− h(θ) = −J(θ)

�

3.3. Convergence and Large Deviations of the Posterior Measure. Adding
Assumption 7 to those before it implies that the posterior measure concen-
trates on sets A ⊂ Θ where h(A) = h(Θ).

Theorem 3 Make Assumptions 1–7. Pick any set A ∈ T where Π0(A) > 0
and h(A) > h(Θ). Then Πt(A)→ 0 a.s.

Proof:

Πt(A) = Πt(A ∩Gt) + Πt(A ∩Gct)
≤ Πt(A ∩Gt) + Πt(Gct)

The last term is easy to bound. From Eq. 11 in the proof of Lemma 5,

Πt(Gct) =

∫
Gct
dΠ0(θ)Rt(θ)

〈Rt〉
≤ exp {t(ε+ h(Θ)− β/2}(21)

for any ε > 0, for all sufficiently large t, almost surely. Since β > 2h(Θ), the
whole expression → 0 as t→∞.

To bound Πt(A∩Gt), reasoning as in the proof of Lemma 7, but invoking
Assumption 7, leads to the conclusion that, for any ε > 0, with probability
1,

1
t

log
∫
A∩Gt

dΠ0(θ)Rt(θ) ≤ −h(A) + ε
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for all sufficiently large n. Recall that by Lemma 3, for all ε > 0 it’s almost
sure that

1
t

log 〈Rt〉 ≥ −h(Θ)− ε

for all sufficiently large n. Hence for every ε > 0, it’s almost certain that for
all sufficiently large t,

(22) Πt(A ∩Gt) ≤ exp {t[h(Θ)− h(A) + 2ε]}

Since h(A) > h(Θ), by picking ε small enough the right hand side goes to
zero. �

The proof of the theorem provides an exponential upper bound on the
posterior measure of sets where h(A) > h(Θ). In fact, even without the final
assumption needed for the theorem, there is an exponential lower bound on
that posterior measure.

Lemma 11 Make Assumption 1–6, and pick a set A ∈ T with Π0(A) > 0.
Then

(23) lim inf
t→∞

1
t

log Πt(A) ≥ h(Θ)− h(A)

Proof: Reasoning as in the proof of Lemma 3, it is easy to see that

lim inf
t→∞

1
t

log
∫
A
dΠ0(θ)Rt(θ) ≥ −h(A)

and by Lemma 7,

lim sup
t→∞

1
t

log 〈Rt〉 ≤ −h(Θ)

hence

lim inf
t→∞

1
t

log Πt(A) = lim inf
t→∞

1
t

log
∫
A dΠ0(θ)Rt(θ)
〈Rt〉

≥ −h(A) + h(Θ)

�

Theorem 4 Under the conditions of Theorem 3, if A ∈ T is such that

(24) − lim sup t−1 log Π0(A ∩Gct) = β′ ≥ 2h(A)

then

(25) lim
t→∞

1
t

log Πt(A) = h(Θ)− h(A)

In particular, this holds whenever 2h(A) < β or A ⊂
⋂∞
k=nGk for some n.



DYNAMICS OF BAYESIAN UPDATING 23

Proof: Trivially,

1
t

log Πt(A) =
1
t

log Πt(A ∩Gt) + Π(A ∩Gct)

From Eq. 22 from the proof of Theorem 3, we know that, for any ε > 0,

Πt(A ∩Gt) ≤ exp {t[h(Θ)− h(A) + ε]}

a.s. for sufficiently large t. On the other hand, under the hypothesis of the
theorem, the proof of Eq. 21 can be imitated for Πt(A ∩ Gct), with the
conclusion that, for all ε > 0,

Πt(A ∩Gct) ≤ exp
{
t[h(Θ)− β′/2 + ε]

}
again a.s. for sufficiently large t. Since β′/2 > h(A), Eq. 25 follows.

Finally, to see that this holds for any A where h(A) < β/2, observe that
we can always upper bound Πt(A ∩ Gcn) by Πt(Gcn), and the latter goes to
zero with rate −β/2. �

Remarks: Because h(A) is the essential infimum of h(θ) on the set A, as
the set shrinks h(A) grows. Sets where h(A) is much larger than h(Θ) tend
accordingly to be small. The difficulty is that the sets Gct are also small, and
conceivably overlaps so heavily with A that the integral of the likelihood
over A is dominated by the part coming from A ∩ Gct . Eventually this will
shrink towards zero exponentially, but perhaps only at the comparatively
slow rate h(Θ) − β/2, rather than the faster rate h(Θ) − h(A) attained on
the well-behaved part A ∩Gt.

Theorem 4 is close to, but not quite, a large deviations principle on Θ.
We have shown that the posterior probability of any arbitrary set A where
J(A) > 0 goes to zero with an exponential rate at least equal to

(26) β/2 ∧ ess inf
θ∈A

J(θ) = ess inf
θ∈A

β/2 ∧ J(θ)

But in a true LDP, the rate would have to be an infimum, not just an
essential infimum, of a point-wise rate function. This deficiency could be
removed by means of additional assumptions on Π0 and h(θ).

Ref. [17] obtains proper large and even moderate deviations principles, but
for the location of Πt in the space M1(Θ) of all distributions on Θ, rather
than on Θ itself. Essentially, they use the assumption of IID sampling, which
makes the posterior a function of the empirical distribution, to leverage the
LDP for the latter into an LDP for the former. This strategy may be more
widely applicable but goes beyond the scope of this paper. Papangelou [40],
assuming that Θ consists of discrete-valued Markov chains of arbitrary order
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and P is in the support of the prior, and using methods similar to those in
Appendix B, derives a result which is closely related to Theorem 4. In fact,
fixing the sets Gn as in Appendix B, Theorem 4 implies the theorem of [40].

3.4. Generalization Performance. Lemma 10 shows that, in hindsight,
the Bayesian learner does a good job of matching the data: the log inte-
grated likelihood ratio per time-step approaches −h(Θ), the limit of values
attainable by individual hypotheses within the support of the prior. This
leaves open, however, the question of the prospective or generalization per-
formance.

The one-step-ahead predictive distribution of the hypothesis θ is given
by Fθ

(
Xt|σ

(
Xt−1

1

))
, with the convention that t = 1 gives the marginal

distribution of the first observation. Abbreviate this by F tθ . Similarly, let
P t ≡ P

(
Xt|σ

(
Xt−1

1

))
; this is the best probabilistic prediction we could

make, did we but know P [31]. The posterior predictive distribution is given
by mixing the individual predictive distributions with weights given by the
posterior:

F tΠ ≡
∫

Θ
F tθdΠt(θ)

What we want is for F tΠ to approach P t, but we cannot in general hope
for the convergence to be complete, since our models are mis-specified. The
final theorem uses h(Θ) to put an upper bound on how far the posterior
predictive distribution can remain from the true predictive distribution.

Theorem 5 Under Assumptions 1–7,

lim sup
t→∞

ρ2
H(P t, F tΠ) ≤ h(Θ)(27)

lim sup
t→∞

ρ2
TV (P t, F tΠ) ≤ 4h(Θ)(28)

where ρH and ρTV are, respectively, the Hellinger and total variation met-
rics.

Proof: Recall the well-known inequalities relating Hellinger distance to
to Kullback-Leibler divergence on the one side and to total variation distance
on the other: distributions P and Q:

ρ2
H(P,Q) ≤ D(P‖Q)(29)

ρTV (P,Q) ≤ 2ρH(P,Q)(30)

It’s enough to prove Eq. 27, and Eq. 28 then follows from Eq. 30.
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Abbreviate ρH(P t, F tθ) by ρH(t, θ). Pick any ε > h(Θ), and say that Aε ={
θ : ρ2

H(t, θ) > ε
}
. By convexity and Jensen’s inequality,

ρ2
H(P t, F tΠ) ≤

∫
Θ
ρ2
H(t, θ)dΠn(θ)

=
∫
Acε

ρ2
H(t, θ)dΠn(θ) +

∫
Aε
ρ2
H(t, θ)dΠn(θ)

= εΠt(Acε) +
√

2Πt(Aε)

By Eq. 29, d(θ) > ρ2
H(t, θ). Thus h(Aε) ≥ ε, and ε > h(θ) so, by Theorem

3, Πt(Aε)→ 0 a.s. Hence
ρ2
H(P t, F tΠ) ≤ ε

eventually almost surely. Since this holds for any ε > h(Θ), Eq. 27 follows.
�

Remark: It seems like it should be possible to prove a similar result for
the divergence rate of the predictive distribution, namely that

lim sup
t→∞

h(Πt) ≤ h(Θ)

but it would take a different approach, because h(·) has no upper bound, and
the posterior weight of the high-divergence regions might decay too slowly
to compensate for this.

3.5. Application of the Results to the Example. Because h(Θ) = 0, while
h(θ) > 0 everywhere, the behavior of the posterior is somewhat peculiar.
Every compact set K ⊂ Θ has J(K) > 0, so by Theorem 3, Πt(K) →
0. On the other hand, Πt(Gt) → 1 — the sequence of good sets contains
models of increasingly high order, with increasingly weak constraints on the
transition probabilities, and this lets its posterior weight grow, even though
every individual compact set within it ultimately loses all weight.

In fact, each Gn is a convex set, and h(·) is a convex function, so there
is a unique minimizer of the divergence rate within each good set. Condi-
tional on being within Gn, the posterior probability becomes increasingly
concentrated on neighborhoods of this minimizer, but the minimizer itself
keeps moving, since it can always be improved upon by increasing the or-
der of the chain and reducing some transition probabilities. (Recall that P
gives probability 0 to sequences 010, 01110, etc., where the block of 1’s is
of odd length, but Θ contains only chains with strictly positive transition
probabilities.)

Outside of the good sets, the likelihood is peaked around hypotheses which
provide stationary and smooth approximations to the xt1 distribution that
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endlessly repeats the observed sequence to date. The divergence rates of
these hypotheses are however extremely high, so none of them retains its
high likelihood for very long. (xt1 is a Markov chain of order t, but it is not
in Θ, since it’s neither stationary nor does it have strictly positive transi-
tion probabilities. It can be made stationary, however, by assigning equal
probability to each of its t states; this gives the data likelihood 1/t rather
than 1, but that still is vastly larger than the O(exp {−ct}) likelihoods of
better models. (Recall that even the likelihood of the true distribution is
only O(2−

2
3
t).) Allowing each of the t states to have a probability 0 < ι� 1

of not proceeding to the next state in the periodic sequence is easy and leads
to only an O(ιt) reduction in the likelihood up to time t. In the long run,
however, it means that the likelihood will be O(ιt).) In any case, the total
posterior probability of Gct is going to zero exponentially.

Despite — or rather, because of — of the fact that no point in Θ is the ne
plus ultra around which the posterior concentrates, the conditions of Theo-
rem 5 are met, and since h(Θ) = 0, the posterior predictive distribution con-
verges to the true predictive distribution in the Hellinger and total variation
metrics. That is, the weird gyrations of the posterior do not prevent us from
attaining predictive consistency. This is so even though the posterior always
gives the wrong answer to such basic questions as “Is P (Xt+2

t = 010) > 0?”
— inferences which in this case can be made correctly through non-Bayesian
methods [38, 44].

4. Discussion. The crucial assumptions were 3, 5 and 6. Together,
these amount to assuming that the time-averaged log likelihood ratio con-
verges universally; to fashioning a sieve, successively embracing regions of
Θ where the convergence is increasingly ill-behaved; and the hope that the
prior weight of the remaining bad sets can be bounded exponentially.

Using asymptotic equipartition in place of the law of large numbers is
fairly straightforward. Both results belong to the general family of ergodic
theorems, which allow us to take sufficiently long sample paths as represen-
tative of entire processes. The unique a.s. limit in Eq. 1 can be replaced with
a.s. convergence to a distinct limit in each ergodic component of P . How-
ever, the notation gets ugly, so the reader should regard h(θ) as that random
limit, and treat all subsequent results as relative to the ergodic decomposi-
tion of P . (Cf. [12, 25].) It may be possible to weaken this assumption yet
further, but it is hard to see how Bayesian updating can succeed if the past
performance of the likelihood is not a guide to future results.

A bigger departure from the usual approach to posterior convergence may
be allowing h(Θ) > 0; this rules out posterior consistency, to begin with.
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More subtly, it requires β > 2h(Θ). This means that a prior distribution
which satisfies the assumptions for one value of P may not satisfy them
for another, depending, naturally enough, on just how mis-specified the hy-
potheses are, and how much weight the prior puts on very bad hypotheses.
On the other hand, when h(Θ) = 0, Theorem 5 implies predictive consis-
tency, as in the example.

Assumption 6 is frankly annoying. Its job is to make sure that the log
likelihood ratio doesn’t just converge, but converges quickly, at least on
the good sets, that we can be confident that integrated likelihood of Gn
has converged well by the time we want Gn to start dominating the prior.
Unfortunately, verifying the assumption in its present form means proving
the sub-linear growth rate of sequences of random last entry times, and
these times are not generally convenient to work with. (Cf. Appendix B.) It
would be nice to replace it with a bracketing or metric entropy condition,
as in [4] or (in a non-Bayesian context) [37, 48]. It seems doubtful that a
uniformly consistent test condition, of the kind widely employed in Bayesian
nonparametrics [24, 51] would work when, in fact, the truth is not in the
support of the prior.

These results go some way toward providing a frequentist explanation of
the success of Bayesian methods in many practical problems. Under these
conditions, the posterior is increasingly weighted towards the parts of Θ
which are closest (in the Kullback-Leibler sense) to the data-generating
process P . For a Πt(A) to persistently be much more or much less than
≈ exp {−tJ(A)}, R(θ) must be persistently far from exp {−th(θ)}, not just
for isolated θ ∈ A, but a whole positive-measure subset of them. With a rea-
sonably smooth prior, this requires a run of bad luck amounting almost to
a conspiracy. From this point of view, Bayesian inference amounts to intro-
ducing bias so as to reduce variance, and then relaxing the bias. Experience
with frequentist non-parametric methods shows this can work if the bias
is relaxed sufficiently slowly, which is basically what the assumptions here
do. As the example shows, this can succeed as a predictive tactic without
supporting substantive inferences about the data-generating process.

When h(Θ) > 0 and all the models are more or less wrong, there is an
additional advantage to averaging the models, as is done in the predictive
distribution. (I owe the argument which follows to Scott Page; cf. [39].) With
a convex loss function `, such as squared error, Kullback-Leibler divergence,
Hellinger distance, etc., the loss of the predictive distribution `(Πt) will be
no larger than the posterior-mean loss of the individual models 〈`(θ)〉. For
squared error loss, the difference is equal to the variance of the models’
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predictions [32]. For divergence, a little algebra shows that

(31) h(Πt) = 〈h(θ)〉+
〈
E
[
log

dFθ
dFΠ

]〉
where the second term on the RHS is again an indication of the diversity
of the models; the more different their predictions are, on the kind of data
generated by P , the smaller the error of made by the mixture. Having a
diversity of wrong answers can be as important as reducing the average
error itself. The way to accomplish this is to give more weight to models
which make mostly good predictions, but make different mistakes. This sug-
gests that there may actually be predictive benefits to having the posterior
concentrate on a set containing multiple hypotheses.

Finally, it is worth remarking on the connection between these results
and prediction with “mixtures of experts” [2, 7]. Formally, the role of the
negative log-likelihood and of Bayes’s rule in this paper was to provide a
loss function and a multiplicative scheme for updating the weights. All but
one of the main results (the exception Theorem 5, which uses the connection
between the Kullback-Leibler divergence and Hellinger distance) would carry
over to multiplicative weight training using a different loss function, provided
the accumulated loss per unit time converged.

APPENDIX A: BAYESIAN UPDATING AS REPLICATOR DYNAMICS

Replicator dynamics are one of the fundamental models of evolutionary
biology; they represent the effects of natural selection in large populations,
without (in their simplest form) mutation, sex, or other sources of variation.
[28] provides a thorough discussion. They also arise as approximations to
many other adaptive processes, such as reinforcement learning [5, 6, 42].
In this appendix, I show that Bayesian updating also follows the replicator
equation.

We have a set of replicators — phenotypes, species, reproductive strate-
gies, etc. — indexed by θ ∈ Θ. The population density at type θ is π(θ).
We denote by φt(θ) the fitness of θ at time t, i.e., the average number of
descendants left by each individual of type θ. The fitness of θ may in fact
be a function of πt, in which case it is said to be frequency-dependent. Many
applications assume the fitness function to be deterministic, rather than ran-
dom, and further assume that it is not an explicit function of t, but these
restrictions are inessential.

The discrete-time replicator dynamic [28] is the dynamical system given
by the map

(32) πt(θ) = πt−1(θ)
φt(θ)
〈φt〉
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where 〈φt〉 is the population mean fitness at t, i.e.,

〈φt〉 ≡
∫

Θ
φt(θ)dπt(θ)

The effect of these dynamics is to re-weight the population towards replica-
tors with above-average fitness.

It is immediate that Bayesian updating has the same form as Eq. 32, as
soon as we identify the distribution of replicators with the posterior dis-
tribution, and the fitness with the conditional likelihood. In fact, Bayesian
updating is an extra simple case of the replicator equation, since the fitness
function is frequency-independent, though stochastic. Updating corresponds
to the action of natural selection, without variation, in a fluctuating envi-
ronment. The results in the main text assume (Assumption 3) that, despite
the fluctuations, the long-run fitness is nonetheless a determinate function
of θ. The theorems assert that selection can then be relied upon to drive
the population to the peaks of the long-run fitness function, at the cost of
reducing the diversity of the population, rather as in Fisher’s fundamental
theorem of natural selection [18, 28].

Corollary 1 Define the relative fitness φ̃t(θ) ≡ Lt(θ)/ 〈Lt〉. Under the con-
ditions of Theorem 2, the time average of the log relative fitness converges
a.s.

(33)
1
t

t∑
n=1

log φ̃n(θ)→ −J(θ) + o(1)

Proof: Unrolling Bayes’s rule over multiple observations,

πt(θ) = π0(θ)
t∏

n=1

φ̃n(θ)

Take log of both sides, divide through by t, and invoke Theorem 2. �
Remark: Theorem 2 implies that

Ht ≡ |log πt(θ) + tJ(θ)|

is a.s. o(t). To strengthen Eq. 33 from convergence of the time average or
Cesàro mean to plain convergence requires forcing Ht − Ht−1 to be o(1),
which it generally isn’t.

It is worth noting that Haldane [27] defined the intensity of selection on
a population as, in the present notation,

log
πt(θ̂)
π0(θ̂)
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where θ̂ is the “optimal” (i.e., most selected-for) value of θ. For us, this
intensity of selection is just Rt(θ̂)/ 〈Rt〉 where θ̂ is the (or a) MLE.

APPENDIX B: VERIFICATION OF ASSUMPTIONS 5–7 FOR THE
EXAMPLE

Since the X∞1 process is a function of the S∞1 process, and the latter is
an aperiodic Markov chain, both are ψ-mixing (see [35, 46] for the definition
of ψ-mixing and demonstrations that aperiodic Markov chains and their
functions are ψ-mixing). Let P̂ (k,t) be the empirical distribution of sequences
of length k obtained from xt1. For a Markov chain of order k, the likelihood is

a function of P̂ (k+1,t) alone; we will use this and the ergodic properties of the
data-generating process to construct sets on which the time-averaged log-
likelihood converges uniformly. Doing this will involve constraining both the
order of the Markov chains and their transition probabilities, and gradually
relaxing the constraints.

It will simplify notation if from here on all logarithms are taken to base
2.

Pick ε > 0 and let k(t) be an increasing positive-integer-valued function
of t, k(t) → ∞, subject to the limit k(t) ≤ log t

hP+ε , where hP is the Shan-
non entropy rate of P , which direct calculation shows is 2/3. The ψ-mixing
property of X∞1 implies [46, p. 179] that

(34) P (pTV (P̂ (k(t),t), P (k(t))) > δ) ≤ log t
h+ ε

2(n+ 1)t
γ1 2−nC1δ2

where ρTV is total variation distance, P (k(t)) is the P ’s restriction to se-
quences of length k(t), n = bt/k(t)c− 1, γ1 = (hP + ε/2)/(hP + ε) and C1 is
a positive constant specific to P (the exact value of which is not important).

The log-likelihood per observation of a Markov chain θ ∈ Θk is

t−1 log fθ(xt1) = t−1 log fθ(xk1) +
∑
w∈Ξk

∑
a∈Ξ

P̂ (k+1,t)(wa) log fθ(a|w)

where fθ(a|w) is of course the probability, according to θ, of producing a
after seeing w. By asymptotic equipartition, this is converging a.s. to its
expected value, −hP − h(θ).

Let z(θ) = maxw,a |log fθ(a|w)|. If z(θ) ≤ z0 and ρTV (P̂ (k+1,t), P (k+1)) ≤
δ, then t−1 log fθ(xt1) is within z0δ of −hP − h(θ). Meanwhile, t−1 log p(xt1)
is converging a.s. to −hP , and again [46]

(35) P (|t−1 log p(Xt
1)− hP | > δ) ≤ q(t, δ)2−tC2δ
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for some C2 > 0 and sub-exponential q(t, δ). (The details are unilluminating
in the present context and thus skipped.)

Define G(n, z0) as the set of all Markov models whose order is less than
or equal to k(n)− 1 and whose log transition probabilities do not exceed z0,
in symbols

G(n, z0) = {θ : z(θ) ≤ z0} ∩

k(n)−1⋃
j=1

Θj


Combining the deviation-probability bounds 34 and 35, for all θ ∈ G(n, z0)

(36) P

(∣∣∣∣ logRt(θ)
t

− h(θ)
∣∣∣∣ > δ

)
≤ log t
h+ ε

2(n+ 1)t
γ1 2−

nC1δ
2

4z0 + q(t, δ)2−
tC2δ

2

These probabilities are clearly summable as t→∞, so by the Borel-Cantelli
lemma, we have uniform almost-sure convergence of t−1 logRt(θ) to −h(θ)
for all θ ∈ G(n, z0).

The sets G(n, z0) eventually expand to include Markov models of arbi-
trarily high order, but maintain a constant bound on the transition prob-
abilities. To relax this, let zt be an increasing function of t, z(t) → ∞,
subject to zt ≤ C3t

γ2 for positive γ2 < γ1. Then the deviation probabilities
remain summable, and for each n, the convergence of t−1 logRt(θ) is still
uniform on G(n, zn). Set Gn = G(n, zn), and turn to verifying the remaining
assumptions.

Start with Assumption 5; take its items in reverse order. So far, the only
restriction on the prior Π0 has been that its support should be the whole
of Θ, and that it should have the “Kullback-Leibler rate property”, giving
positive weight to every set Nε = {θ : d(θ) < ε}. This, together with the
fact that limnGn = Θ, means that h(Gn) → h(Θ), which is item (3) of
the assumption. The same argument also delivers Assumption 7. Item (2),
uniform convergence on each Gn, is true by construction. Finally (for this
assumption), since h(Θ) = 0, any β > 0 will do, and there are certainly
probability measures where Π0(Gcn) ≤ α exp {−βn} for some α, β > 0. So,
Assumption 5 is satisfied.

Only Assumption 6 remains. Since Assumptions 1–3 have already been
checked, we can apply Eq. 61 from the proof of Lemma 6 and see that, for
any ε > 0, for all sufficiently large t,

t−1 log
∫
Gn
Rt(θ)dΠ0 ≤ −h(Gn) + ε+ t−1 log Π0(Gn) a.s.

This shows that T (Gn, δ) is almost surely finite for all n and δ, but still leaves
open the question of whether for every δ, n ≥ T (Gn, δ) for all sufficiently
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large n (a.s.). Reformulating a little, the desideratum is that for each δ, with
probability 1, n < T (Gn, δ) only finitely often. By the Borel-Cantelli lemma,
this will happen if

∑
n P (T (Gn, δ) > n) ≤ ∞. However, if T (Gn, δ) > n, it

must be equal to some particular t > n, so there is a union bound:

(37)
∑
n

P (T (Gn, δ) > n) ≤
∑
n

∞∑
t=n+1

P

(
log

∫
Gn
Rt(θ)dΠ0

t
> δ − h(Gn)

)

From the proof of Lemma 6 (specifically from Eqs. 15, 16 and 17), we
can see that by making n large enough, the only way to have the event
t−1 log

∫
Gn
Rt(θ)dΠ0 > δ − h(Gn) is to have

∣∣t−1 logRt(θ)− h(θ)
∣∣ > δ/2 ev-

erywhere on a positive-measure subset of Gn. But we know from Eq. 36 not
only that the inner sum can be made arbitrarily small by taking n suffi-
ciently large, but that the whole double sum is finite. So T (Gn, δ) > n only
finitely often (a.s.).
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[12] Dȩbowski,  Lukasz (2006). Ergodic decomposition of excess entropy and condi-

tional mutual information. Tech. Rep. 993, Institute of Computer Science, Pol-
ish Academy of Sciences (IPI PAN). URL http://www.ipipan.waw.pl/∼ldebowsk/

docs/raporty/ee report.pdf.
[13] Diaconis, Persi and David Freedman (1986). “On the Consistency of Bayes Esti-

mates.” Annals of Statistics, 14: 1–26. URL http://projecteuclid.org/euclid.

aos/1176349830.
[14] Doob, Joseph L. (1949). “Application of the theory of martingales.” In Colloques

Internationaux du Centre National de la Recherche Scientifique, vol. 13, pp. 23–27.
Paris: Centre National de la Recherche Scientifique.

[15] Dynkin, E. B. (1978). “Sufficient statistics and extreme points.” Annals of Probabil-
ity , 6: 705–730. URL http://projecteuclid.org/euclid.aop/1176995424.

[16] Earman, John (1992). Bayes or Bust? A Critical Account of Bayesian Confirmation
Theory . Cambridge, Massachusetts: MIT Press.

[17] Eichelsbacher, Peter and Ayaladi Ganesh (2002). “Moderate Deviations for Bayes
Posteriors.” Scandanavian Journal of Statistics, 29: 153–167. doi:10.1111/1467-
9469.00278.

[18] Fisher, Ronald Aylmer (1958). The Genetical Theory of Natural Selection. New
York: Dover, 2nd edn. First edition published Oxford: Clarendon Press, 1930.

[19] Fraser, Andrew M. (2008). Hidden Markov Models and Dynamical Systems. Philadel-
phia: SIAM Press.

[20] Ghosal, Subhashis, Jayanta K. Ghosh and R. V. Ramamoorthi (1999). “Consistency
issues in Bayesian nonparametrics.” In Asymptotics, Nonparametrics and Time Se-
ries: A Tribute to Madan Lal Puri (Subir Ghosh, ed.), pp. 639–667. Marcel Dekker.
URL http://www4.stat.ncsu.edu/∼sghosal/papers/review.pdf.

[21] Ghosal, Subhashis, Jayanta K. Ghosh and Aad W. van der Vaart (2000). “Conver-
gence Rates of Posterior Distributions.” Annals of Statistics, 28: 500–531. URL
http://projecteuclid.org/euclid.aos/1016218228.

[22] Ghosal, Subhashis and Yongqiang Tang (2006). “Bayesian Consistency for Markov
Processes.” Sankhya, 68: 227–239.

[23] Ghosal, Subhashis and Aad van der Vaart (2007). “Convergence Rates of Poste-
rior Distributions for Non-IID Observations.” Annals of Statistics, 35: 192–223.
doi:10.1214/009053606000001172.

http://dx.doi.org/10.1142/S0219525902000535
http://arxiv.org/abs/0805.3248
http://arxiv.org/abs/0805.3248
http://dx.doi.org/10.1214/074921708000000138
http://www-chaos.engr.utk.edu/abs/abs-rsi2002.html
http://www-chaos.engr.utk.edu/abs/abs-rsi2002.html
http://www.ipipan.waw.pl/~ldebowsk/docs/raporty/ee_report.pdf
http://www.ipipan.waw.pl/~ldebowsk/docs/raporty/ee_report.pdf
http://projecteuclid.org/euclid.aos/1176349830
http://projecteuclid.org/euclid.aos/1176349830
http://projecteuclid.org/euclid.aop/1176995424
http://dx.doi.org/10.1111/1467-9469.00278
http://dx.doi.org/10.1111/1467-9469.00278
http://www4.stat.ncsu.edu/~sghosal/papers/review.pdf
http://projecteuclid.org/euclid.aos/1016218228
http://dx.doi.org/10.1214/009053606000001172


34

[24] Ghosh, J. K. and R. V. Ramamoorthi (2003). Bayesian Nonparametrics. New York:
Springer Verlag.

[25] Gray, Robert M. (1988). Probability, Random Processes, and Ergodic Properties. New
York: Springer-Verlag. URL http://ee.stanford.edu/∼gray/arp.html.

[26] — (1990). Entropy and Information Theory . New York: Springer-Verlag. URL
http://ee.stanford.edu/∼gray/it.html.

[27] Haldane, J. B. S. (1954). “The Measurement of Natural Selection.” In Proceedings
of the 9th International Congress of Genetics, vol. 1, pp. 480–487.

[28] Hofbauer, Josef and Karl Sigmund (1998). Evolutionary Games and Population Dy-
namics. Cambridge, England: Cambridge University Press.

[29] Kallenberg, Olav (2002). Foundations of Modern Probability . New York: Springer-
Verlag, 2nd edn.

[30] Kitchens, Bruce P. (1998). Symbolic Dynamics: One-sided, Two-sided and Countable
State Markov Shifts. Berlin: Springer-Verlag.

[31] Knight, Frank B. (1975). “A Predictive View of Continuous Time Processes.”
Annals of Probability , 3: 573–596. URL http://projecteuclid.org/euclid.aop/

1176996302.
[32] Krogh, Anders and Jesper Vedelsby (1995). “Neural Network Ensembles, Cross Val-

idation, and Active Learning.” In Advances in Neural Information Processing 7
[NIPS 1994] (Gerald Tesauro and David Tourtetsky and Todd Leen, eds.), pp. 231–
238. Cambridge, Massachusetts: MIT Press. URL http://books.nips.cc/papers/

files/nips07/0231.pdf.
[33] Lijoi, Antonio, Igor Prünster and Stephen G. Walker (2007). “Bayesian

Consistency for Stationary Models.” Econometric Theory , 23: 749–759.
doi:10.1017/S0266466607070314.

[34] Lind, Douglas and Brian Marcus (1995). An Introduction to Symbolic Dynamics and
Coding . Cambridge, England: Cambridge University Press.

[35] Marton, Katalin and Paul C. Shields (1994). “Entropy and the Consistent Esti-
mation of Joint Distributions.” Annals of Probability , 22: 960–977. URL http:

//projecteuclid.org/euclid.aop/1176988736. Correction, Annals of Probability,
24 (1996): 541–545.

[36] McAllister, David A. (1999). “Some PAC-Bayesian Theorems.” Machine Learning ,
37: 355–363.

[37] Meir, Ron (2000). “Nonparametric Time Series Prediction Through Adaptive Model
Selection.” Machine Learning , 39: 5–34. URL http://www.ee.technion.ac.il/
∼rmeir/Publications/MeirTimeSeries00.pdf.

[38] Ornstein, Donald S. and Benjamin Weiss (1990). “How Sampling Reveals a Process.”
Annals of Probability , 18: 905–930. URL http://projecteuclid.org/euclid.aop/

1176990729.
[39] Page, Scott E. (2007). The Difference: How the Power of Diveristy Creates Better

Groups, Firms, Schools, and Societies. Princeton, New Jersey: Princeton University
Press.

[40] Papangelou, F. (1996). “Large Deviations and the Bayesian Estimation of Higher-
Order Markov Transition Functions.” Journal of Applied Probability , 33: 18–27. URL
http://www.jstor.org/stable/3215260.

[41] Ryabko, Daniil and Boris Ryabko (2008). “Testing Statistical Hypotheses About
Ergodic Processes.” E-print, arxiv.org, 0804.0510. URL http://arxiv.org/abs/

0804.0510.
[42] Sato, Yuzuru and James P. Crutchfield (2003). “Coupled replicator equations for the

dynamics of learning in multiagent systems.” Physical Review E , 67: 015206. URL

http://ee.stanford.edu/~gray/arp.html
http://ee.stanford.edu/~gray/it.html
http://projecteuclid.org/euclid.aop/1176996302
http://projecteuclid.org/euclid.aop/1176996302
http://books.nips.cc/papers/files/nips07/0231.pdf
http://books.nips.cc/papers/files/nips07/0231.pdf
http://dx.doi.org/10.1017/S0266466607070314
http://projecteuclid.org/euclid.aop/1176988736
http://projecteuclid.org/euclid.aop/1176988736
http://www.ee.technion.ac.il/~rmeir/Publications/MeirTimeSeries00.pdf
http://www.ee.technion.ac.il/~rmeir/Publications/MeirTimeSeries00.pdf
http://projecteuclid.org/euclid.aop/1176990729
http://projecteuclid.org/euclid.aop/1176990729
http://www.jstor.org/stable/3215260
http://arxiv.org/abs/0804.0510
http://arxiv.org/abs/0804.0510


DYNAMICS OF BAYESIAN UPDATING 35

http://arxiv.org/abs/nlin.AO/0204057.
[43] Shalizi, Cosma Rohilla and James P. Crutchfield (2001). “Computational Mechanics:

Pattern and Prediction, Structure and Simplicity.” Journal of Statistical Physics,
104: 817–879. URL http://arxiv.org/abs/cond-mat/9907176.

[44] Shalizi, Cosma Rohilla and Kristina Lisa Klinkner (2004). “Blind Construction of
Optimal Nonlinear Recursive Predictors for Discrete Sequences.” In Uncertainty in
Artificial Intelligence: Proceedings of the Twentieth Conference (UAI 2004) (Max
Chickering and Joseph Y. Halpern, eds.), pp. 504–511. Arlington, Virginia: AUAI
Press. URL http://arxiv.org/abs/cs.LG/0406011.

[45] Shen, Xiaotong and Larry Wasserman (2001). “Rates of convergence of posterior
distributions.” Annals of Statistics, 29: 687–714. URL http://projecteuclid.org/

euclid.aos/1009210686.
[46] Shields, Paul C. (1996). The Ergodic Theory of Discrete Sample Paths. Providence,

Rhode Island: American Mathematical Society.
[47] Strelioff, Christopher C., James P. Crutchfield and Alfred W. Hübler (2007). “In-
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