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Abstract

We study density-based clustering under low-noise conditions. Our framework allows for sharply
defined clusters such as clusters on lower dimensional manifolds. We show that accurate clustering is
possible even in high dimensions. We propose two data-based methods for choosing the bandwidth and
we study the stability properties of density clusters. We show that a simple graph-based algorithm known
as the “friends-of-friends” algorithm successfully approximates the high density clusters.

1 Introduction

It has been observed that classification methods can be very accurate in high dimensional problems, ap-
parently contradicting the curse of dimensionality. A plausible explanation for this phenomenon is the
“low-noise” condition due to Mammen and Tsybakov (1999). When the low noise condition holds, the prob-
ability mass near the decision boundary is low and fast rates of convergence of the classification error are
possible in high dimensions.

Similarly, clustering methods can be very accurate in high dimensional problems. For example, clustering
subjects based on gene profiles and clustering curves are both high dimensional problems where several
methods have worked well despite the high dimensionality. This suggests that there should be a low noise
condition that explains the success of clustering in high dimensional problems.

In this paper we focus on clusters that are defined as the connected components of high density regions
(Cuevas and Fraiman, 1997; Hartigan, 1975). The advantage of density clustering over other methods is
that there is a well-defined population quantity being estimated and density clustering allows the shape of
the clusters to be very general. (A related but somewhat different approach for generally shaped clusters
is spectral clustering; see (von Luxburg, 2007) and (Ng et al., 2002).) Of course, without some conditions,
density estimation is subject to the usual curse of dimensionality. One would hope that an appropriate
low noise condition would obviate the curse of dimensionality. Such assumptions have been proposed by
Polonik (1995), Rigollet (2007), Rigollet and Vert (2006), and others. However, the assumptions used by
these authors rule out the case where the clusters are very sharply defined, which should be the easiest cases,
and, more generally, clusters defined on lower dimensional sets.

The purpose of this paper is to define a notion of low noise clusters that does not rule out the most favor-
able cases and is not limited to sets of full dimension. We study the risk properties of density-based clustering
and its stability properties, and we provide data-based methods for choosing the smoothing parameters.

The following simple example helps to illustrate our motivation. We refer the reader to the next section
for a more rigorous introduction. Suppose that a distribution P is a mixture of finitely many point masses
at distinct points x1, . . . , xk where xj ∈ Rd. Specifically, suppose that P = k−1

∑k
j=1 δj where δj is a point

mass at xj . The clusters are C1 = {x1}, . . . , Ck = {xk}. This is a trivial clustering problem even if the
dimension d is very high. The clusters could not be more sharply defined yet the density does not even exist
in the usual sense. This makes it clear that common assumptions about the density such as smoothness or
even boundedness are not well-suited for density clustering.

Now let ph = dPh/dµ be the Lebesgue density of the measure Ph obtained by convolving P with the
probability measure having Lebesgue density Kh, a kernel with bandwidth h. Unlike the original distribution
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P , Ph has full-dimensional support for each positive h. The “mollified” density ph contains all the information
needed for clustering. Indeed, there exist constants h > 0 and λ ≥ 0 such that the following facts are true:

1. for all 0 < h < h, the level set {x : ph(x) > λ} has disjoint, connected components Ch1 , . . . , C
h
k ;

2. the components Chj contain the true clusters: Cj ⊂ Chj for j = 1, . . . , k;

3. although Chj overestimates the true cluster Cj , this overestimation is inconsequential since P (Chj −Cj) =
0 and hence a new observation will not be misclustered;

4. let p̂h denote the kernel density estimator using Kh with fixed bandwidth 0 < h < h and based on a
i.i.d. sample of size n from P . Then, supx |ph(x)− p̂h(x)| = O(

√
log n/n) almost everywhere P , which

does not depend on the dimension d (see Section 3.1). The bias from using a fixed bandwidth h—
which does not vanish as n→∞— does not adversely affect the clustering.

In summary, we can recover the true clusters using an estimator of the density ph with a large bandwidth
h. It is not necessary to assume that the true density is smooth or that it even exists.

Our contributions in this paper are the following:

1. We develop a notion of low noise clustering that applies to probability distribution that have non-
smooth Lebesgue densities or do not even admit a density.

2. We find the rates of convergence for estimators of these clusters.

3. We study two data-driven methods for choosing the bandwidth.

4. We study the stability properties of density clusters.

5. We show that the depth-first search algorithm on the ρ-nearest neighborhood graph of {p̂h > λ} is
effective at recovering the high-density clusters.

Section 2 contains notation and definitions. Section 3 contains results on rates of convergence. We
give a data-driven method for choosing the bandwidth in Section 4. Section 4.2 contains results on cluster
stability. The validity of the “friends-of-friends” algorithm for approximating the clusters is proved in Section
5. Section 6 contains some examples based on simulated data. Concluding remarks are in Section 7. All
proofs are in the Section 8. Some technical details are in the appendix, Section 9.

Notation. For two sequences {an} and {bn}, we write an = O(bn) and an = Ω(bn) if there exists a
constant C > 0 such that, for all n large enough, |an|/bn ≤ C and |an|/bn ≥ C, respectively. If an = Ω(bn)
and an = O(bn), then we will write an � bn. We denote with P(E) the probability of a generic event E,
whenever the underlying probability measure is implicitly understood from the context. Similarly, for a
random quantity X, P(E|X) indicates the condition probability of the event E given X.

2 Background

We begin with some definitions and the low-noise assumptions.

2.1 Level Set Clusters

In this section we develop a probabilistic framework for the definition of clusters we have adopted. For ease
of readability, the more technical measure-theoretic details are in Section 9.1.

Let P be a probability distribution on Rd whose support S is comprised of an unknown number m of
disjoint compact sets {S1, . . . , Sm} of different integral dimensions. These sets may consist, for example, of
smooth submanifolds or even single points. We define the geometric density of P as the measurable function
p : Rd 7→ R given by

p(x) = lim
h↓0

P (B(x, h))
vdhd

, (1)
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where B(x, ε) is the Euclidean ball of radius h centered at x, µ is the d-dimensional Lebesgue measure and
vd ≡ µ(B(0, 1)). Note that, almost everywhere P , p(x) = ∞ if and only if x belongs to some set Si having
dimension strictly less than d and is positive and finite if and only if x belongs to some d-dimensional set
Si. In general,

∫
Rd p(x)dµ(x) ≤ 1 and, therefore, p is not necessarily a probability density. Nonetheless, p

can be used to recover the support of P , since

S = {x : p(x) > 0},

where for a set A ⊂ Rd, A denotes its closure.
For λ ≥ 0 , define the λ-level set

L ≡ L(λ) =
{
x : p(x) > λ

}
. (2)

Throughout the paper, we will suppose that we are given a fixed value of λ < ‖p‖∞, where ‖p‖∞ ≡
supx∈Rd p(x). Often, λ is chosen so that P (L(λ)) ≈ 1 − α for some given α. In practice, it is advisable to
present the results for a variety of values of λ as we discuss in Section 7.

Remark. Our definition of density clusters does not necessarily lead to a partition of the support of P ,
since P (Lc) is not in general zero. The fact that there may a be a positive probability of observing a point
outside L can be interpreted as a form of noise.

We assume that there are k ≥ 1 disjoint, compact, connected sets C1, . . . , Ck such that

L = C1 ∪ · · · ∪ Ck.

The value of k is not assumed to be known. The sets C1, . . . , Ck are called the λ-clusters of p, or just clusters.
In our setting, the Cj ’s need not be full dimensional. Indeed, Cj might be a lower-dimensional manifold or
even a single point. Furthermore, if Si has dimension smaller than d, then Cj = Si, for some j = 1, . . . , k.
Thus, for any λ ≥ 0, the λ-clusters of p will include all the lower-dimensional components of S. On the other
hand, if Si is full-dimensional, then there may be multiple clusters in it, depending on the value of λ.

We observe an i.i.d. sample X = (X1, . . . , Xn) from P , from which we construct the kernel density
estimator

p̂h(x) =
1
n

n∑
i=1

1
cdhd

K

(
x−Xi

h

)
, ∀x ∈ Rd. (3)

We assume that the kernel K : Rd 7→ R is a smooth, bounded and nonnegative function with compact
support. Further conditions on the kernel K are discussed in Section 3.1. We point out that, while the
compactness assumption for the support of K simplifies our analysis, it is not essential and could be relaxed
at the cost of additional technicalities.

Let ph : Rd 7→ R be the measurable function given by

ph(x) =
∫
S

Kh(x− y)dP (y) = E(p̂h(x)), (4)

where Kh(x) ≡ 1
cdhd

K
(
||x||
h

)
, with cd ≡

∫
K(x)dµ(x). Also, let Khµ be the probability measure given by

Khµ(A) =
∫
A
Kh(x)dµ(x), for any Borel set A ⊆ Rd. Then, ph is the Lebesgue density of the probability

measure Ph obtained by convolving P with Khµ. More precisely, for each measurable set A,

Ph(A) =
∫
A

∫
S

Kh(x− y)dP (y)dµ(x) =
∫
A

ph(x)dµ(x).

Borrowing some terminology from analysis, where the kernel K is referred to as a mollifier, we call the
measure Ph and the density ph as the mollified measure and mollified density, respectively. For each h, the
mollification of P by K yields that
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1. the mollified measure Ph has full-dimensional support S + B(0, h) and is absolutely continuous with
respect to µ; here, for two set A and B in Rd, A+B ≡ {x+ y, : x ∈ A, y ∈ B} denotes its Minkowski
sum;

2. the mollified density ph is of class Cα whenever K is of class Cα, with α ∈ N+ ∪ {∞}.

Thus, mollifying P makes it better behaved. At the same time, Ph and ph can be seen as approximations
of the original measure P and the geometric density, respectively, in a sense made precise by the following
result.

Lemma 2.1. As h→ 0, Ph converges weakly to P and limh→0 ph(x) = p(x), almost everywhere P .

To estimate the λ-clusters of p, we use the connected components of L̂, i.e. the λ-clusters of p̂h. That is,
we estimate L with

L̂ = L̂h =
{
x : p̂h(x) > λ

}
. (5)

In practice, finding the estimated clusters is computationally difficult. Indeed, to see if two points Xi

and Xj are in the same cluster, we need to check every possible path connecting Xi and Xj . If the minimum
of p̂h along at least one such path is larger than λ then Xi and Xj are in the same cluster. We discuss an
algorithm for approximating the clusters in Section 5. Until then, we ignore the computational problems
and assume that the λ-clusters of p̂h can be computed exactly.

2.2 Risk

We consider three different risk functions.

• The level set risk is defined to be RL(p, p̂h) = E(ρ†P (p, p̂)), where

ρ†P (r, q) =
∫
{r>λ}∆{q>λ}

dP (x), (6)

and A∆B = (A ∩Bc) ∪ (Ac ∩B) is the symmetric set difference.

• Define the excess mass functional as

E(A) = P (A)− λµ(A), (7)

for any measurable set A ⊂ Rd. This functional is maximized by the true level set L; see Mueller and
Sawitzki (1991) and Polonik (1995). We can use the excess mass functional as a risk function except,
of course, that we maximize it rather than minimize it. Given an estimate L̂ of L we will then be
interested in making the excess mass risk

RM (p, p̂h) = E(L)− E(E(L̂)) (8)

as small as possible. Furthermore, simple algebra reveals that maximizing E(A) is equivalent to mini-
mizing, ∫

A∆L

|p− λ|dµ

which is the loss function used by Willett and Nowak (2007).

• The Modified Rand risk is defined as follows. For an extended real valued non-negative function r
(which may take on the value ∞), we write x r∼ y if there exists a path γ on the graph of r between
r(x) and r(y) such that either r−1(γ) ⊂ L(λ) or r−1(γ) ⊂ L(λ)c. The modified Rand risk is defined as

RR(p, p̂h) = E (ρP (p, p̂h)) , (9)

4



where
ρP (r, q) = P

(
Mr(Z1, Z2) 6= Mq(Z1, Z2)

)
,

the pair (Z1, Z2) is an i.i.d. sample from P , and

Mr(x, y) =

 1 if r(x) > λ and r(y) > λ and x
r∼ y

0 if r(x) < λ and r(y) < λ and x
r∼ y

∗ otherwise.

Notice that in equation (9) the expectation is with respect to the joint distribution of the observed
sample X and of the pair (Z1, Z2).

2.3 Low Noise Conditions

Throughout our analysis we assume the following low noise conditions.

(LN1) There exist positive constants γ, C1 and ε such that

P
(
|p(X)− λ| < ε

)
≤ C1ε

γ , ∀ε ∈ [0, ε).

(LN2) There exist positive constants h, C2, C3, ξ ≥ d and a permutation σ of {1, . . . , k} such that, for all
0 < h < h and all λ′ ∈ (λ− ε, λ+ ε), Lh(λ′) =

⋃k
j=1 C

h
j where

(a) Chi ∩ Chj = ∅ for 1 ≤ i < j ≤ k;

(b) Cj ⊆ Chσ(j), for all 1 ≤ j ≤ k;

(c) P(Chσ(j) − Cj) ≤ C2h
ξ;

(d) µ(L(λ− ε) +B(0, h)) ≤ C3h
d for all 0 ≤ ε ≤ ε.

2.4 Remarks on The Low Noise Conditions

Condition (LN1), first introduced in Polonik (1995), provides a way to relate the stochastic fluctuations of p̂h
around its mean ph to the clustering risk. Indeed, the larger γ, the smaller the effects of these fluctuations,
and the easier it is to obtain good clusters from noisy estimates of ph, for any h < h. Conditions (LN2) (a)
- (c) offer instead a way of controlling the approximation error (bias) we incur by estimating ph instead of
p, locally in a neighborhood of λ. Notice that we do not require p to satisfy any smoothness condition. See
Section 3.4 for revised (LN2) conditions in case of smooth densities.

Conditions (LN2) (a) and (b), though quite mild, are particularly important, as they directly imply that
the estimated density p̂h can be used quite effectively for clustering purposes, for a range of bandwidth
values. This is is shown in the next, simple result. Let N(λ), Nh(λ) and N̂h(λ) denote the number of
λ-clusters for p, ph and p̂h, respectively.

Lemma 2.2. Under conditions (LN2) (a)-(b) and for all ε ∈ (0, ε) and h ∈ (0, h), on the event Eh,ε ≡
{‖p̂h − ph‖∞ < ε},

N(λ) = Nh(λ) = N̂h(λ) = k.

Condition (LN2) (c) is quite weak. When P has full-dimensional support and the boundary of L has small
curvature or h is small enough, ξ is typically d. If Cj has dimension smaller than d, then P(Chσ(j)−Cj) = 0.
In particular, ξ =∞ occurs when L = S, which is the most favorable case.

Condition (LN2) (d) is technical and needed in Theorem 3.5 to obtain consistency rates for the excess
mass risk. It is also very mild, as it holds, for example, if the boundary of L is smooth or even if L is a lower
dimensional smooth manifold with bounded curvature.
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Although the rates are not affected by the constants, in practice, they can have a significant effect on the
results, since they may very well depend on d. This is especially true of C1, as illustrated in Example 2.6
below.

We conclude this section with some comments on the parameter γ appearing in condition (LN1), whose
value affects in a crucial way the consistency rates, with faster rates arising from larger values of γ. If S
has dimension smaller than d, then, clearly, γ =∞, thus throughout this subsection we assume that P is a
probability measure on Rd having Lebesgue density p.

First, a fairly general sufficient condition for assumption (LN1) to hold with γ = 1 at λ can be easily
obtained using probabilistic arguments as follows. Let G denote the distribution of the random variable
Y = p(X) and suppose G has a Lebesgue density g which is bounded away from 0 and infinity on (λ−ε, λ+ε).
Then, by the mean value theorem, for any ε < ε,

P(λ− ε ≤ p(X) ≤ λ+ ε) = G({y : y ∈ (λ+ ε, λ− ε)}) = εg(λ+ η),

for some η ∈ (−ε, ε). Thus, (LN1) holds with γ = 1 at λ. See also Example 2.6 below. A more refined result
based on analytic conditions is given next. Below Hd−1 denotes the (d− 1)-dimensional Hausdorff measure
in Rd. See Section 9.1 for the definition of Hausdorff measure.

Lemma 2.3. Suppose that P is a probability measure on Rd having Lipschiz density p. Assume that, almost
everywhere µ, ‖∇p(x)‖ > 0 and that Hd−1({x : p(x) = λ}) < ∞ for any λ ∈ (0, ‖p‖∞). Then, (LN1) holds
with γ = 1 for each λ ∈ (0, ‖p‖∞) outside of a set of Lebesgue measure 0.

A further point of interest is to characterize the set of λ values for which, given a class of densities,
condition (LN1) holds with γ 6= 1. Clearly, if p has a jump discontinuity, then (LN1) is verified with γ =∞,
for all values of λ in some interval. On the other hand, on the account of the previous result, if ‖∇p‖ is
bounded away from 0 and ∞ in a neighborhood of p−1(λ), then γ = 1. Thus one could expect a value of γ
different than 1 when ∇p does not exist or when ‖∇p‖ is infinity or vanishes in p−1(λ). See the example on
page 7 in Rigollet and Vert (2006), where (LN1) holds with γ < 1 if q > d and γ > 1 if q < d, the former
case corresponding to ‖∇p(x0)‖ = 0 and the latter to limx→x0 ‖∇p(x)‖ = ∞. However, this would seem to
indicate that, if p is sufficiently regular, the values of λ for which γ 6= 1 form a negligible set of R. Lemma 2.3
above already shows that this set has Lebesgue measure zero if p is Lipschitz with non-vanishing gradient.
Under stronger assumptions, it can be verified that this set is in fact finite.

Corollary 2.4. Under the assumption of Lemma 2.3, if p is of class C1 and has compact support, then the
set of λ such that (LN1) holds with γ 6= 1 is finite.

Example 2.5. Sharp Clusters. Suppose that p = dP
dµ =

∑m
i=1 πjpj where pi is a density with support on a

compact, connected set Si,
∑
i πi = 1 and mini πi > 0. Moreover suppose that

min
s6=t

d(Cs, Ct) > 0

where d(A,B) = infx∈A,y∈B ||x− y||. Finally suppose that

min
j

inf
x∈Cj

πjp(x) > λ.

Sharp clusters of this type were considered by Singh et al. (2009), for example. It is easy to see that (LN1) and
(LN2) hold with γ = ξ =∞. A more general example in which one of the mixture component is supported
on a lower dimensional set is shown in Figure 1. Here, the true distribution is P = (1/3)Unif(−5.5,−4.5) +
(1/3)Unif(4.5, 5.5) + (1/3)δ0. The geometric density and the mollified density based on h = .04 are shown in
the top plot. The point mass at 0 is indicated with a vertical bar. The bottom plot shows the true clusters
and the mollified clusters based on ph with λ = .04. The clusters based on ph contain the true clusters and
the difference between them is a set of zero probability.
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Figure 1: Sharp clusters. Top: the density of P = (1/3)Unif(−5.5,−4.5) + (1/3)Unif(4.5, 5.5) + (1/3)δ0 and
the mollified density ph for h = .04. The point mass at 0 is indicated with a vertical bar. Bottom: the true
clusters and the mollified clusters of ph with λ = .04.
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Figure 2: Noise exponent for Gaussians. Each curve shows P(|p(X)−λ| < ε) versus ε for α = 1/2. The plots
are nearly linear since γ = 1 in this case.

Example 2.6. Normal Distributions. Suppose that X ∼ Nd(0,Σ), with Σ positive definite. Set σ = |Σ|1/2.

Then, (LN1) holds for any 0 ≤ λ ≤
(
σ
(√

2π
)d)−1

with γ = 1 and C1 = Cd2σ
(√

2π
)d

, where the constant

Cd depends on d. For simplicity, we prove the claim only for λ = α
(
σ
(√

2π
)d)−1

, where α ∈ (0, 1). Cases

in which α = 1 or α = 0 can be dealt with similarly. Let W ∼ χ2
d and notice that X>Σ−1X

d= W . For all
ε > 0 smaller than

min

{
α

σ
(√

2π
)d , (1− α)

σ
(√

2π
)d
}
, (10)

simple algebra yields

P (|φσ(X)− λ| < ε) = P
(

2 log 1

α−εσ(
√

2π)d
≤W ≤ 2 log 1

α+εσ(
√

2π)d

)
= 2

(
log 1

α−ε(σ
√

2π)d
− log 1

α+ησ(
√

2π)d

)
pd

(
log 1

α+ησ(
√

2π)d

)
,

for some η ∈ (−ε, ε) where pd denotes the density of a χ2
d distribution and the second equality holds in virtue

of the mean value theorem. By a first order Taylor expansion, for ε ↓ 0, the first term on the right hand side
of the previous display can be written as

2εσ
(√

2π
)d( 1

α− εσ
(√

2π
)d +

1

α+ εσ
(√

2π
)d
)

+ o(ε2).

Since
(

1

α−εσ(
√

2π)d
+ 1

α+εσ(
√

2π)d

)
pd

(
log 1

α+ησ(
√

2π)d

)
� 1 for any ε ≥ 0 bounded by (10), the claim is

proved. See Figure 2.
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3 Rates of Convergence

In this section we study the rates of convergence in the three distances using deterministic bandwidths. We
defer the discussion of random (data driven) bandwidths until Section 4.

3.1 Preliminaries

Before establishing consistency rates for the different risk measures described above, we discuss some neces-
sary preliminaries.

In our analysis we require the event

Eh,ε ≡ {||p̂h − ph||∞ ≤ ε} , ε > 0, h > 0, (11)

to hold with high probability, for all n large enough. In fact, some control over Eh,ε provides a means of
bounding the clustering risks, as shown in the following result.

Lemma 3.1. Let ε ∈ (0, ε) and h ∈ (0, h) be such that the conditions (LN1) and (LN2) (a)-(c) are satisfied.
Then, on the event Eh,ε,

L(λ+ ε) ⊆ L̂h(λ) ⊆ L(λ+ ε) ∪A ∪B

where
A = L(λ− ε)− L(λ+ ε)

and
B = Lh(λ− ε)− L(λ− ε).

Therefore, on Eh,ε,
P
(
L̂h(λ)∆L(λ)

)
≤ C1ε

γ + C2h
ξ. (12)

In order to bound P(Ech,ε), we study the properties of the kernel estimator p̂h. We will impose the following
condition on the kernel K, due to Nolan and Pollard (1987).

(K) The kernel K is a bounded, squared integrable function on Rd in the linear span of nonnegative real-
valued functions k on Rd such that the subgraph of k, {(s, u) ∈ Rd×R : k(s) ≥ u}, can be represented
as a finite number of Boolean operations among sets of the form {(s, u) ∈ Rd × R : p(s, u) ≥ ψ(u)},
where p is a polynomial on Rd × R and ψ an arbitrary real-valued function. The number A and v are
called the VC characteristics of K.

If property (K) holds, then, for any h > 0, the class of functions

Fh =
{
K

(
x− ·
h

)
, x ∈ Rd

}
(13)

satisfies

sup
P
N(Fh, L2(P ), ε‖Fh‖L2(P )) ≤

(
A

ε

)v
,

where N(T, d, ε) denotes the ε-covering number of the metric space (T, d), Fh is the envelope function of Fh
and the supremum is taken over the set of all probability measures on Rd. See Giné and Guillou (2002).

Using condition (K), we can establish the following finite sample bound for P (‖p̂h − ph‖infty > ε), which
is obtained as a direct application of results in Giné and Guillou (2002). Throughout the paper, we will
assume that the conditions in the next Proposition are satisfied.

Proposition 3.2 (Gine and Guillon). Assume that the kernel satisfies the property (K) and that

sup
t∈Rd

sup
h>0

∫
Rd
K2
h(t− x)dP (x) < D <∞. (14)
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1. Let h be fixed. Then, there exist constants L > 0 and C > 0, which depend only on the VC character-
istics of K, such that, for any c1 ≥ C and 0 < ε ≤ c1D

‖K‖∞ , there exists an n0 > 0, which depends on ε,
D, ‖K‖∞ and the VC characteristics of K, such that, for all n ≥ n0,

P
{

sup
x∈Rd

|p̂h(x)− ph(x)| > 2ε
}
≤ L exp

{
− 1
L

log(1 + c1/(4L))
c1

nhdε2

D

}
. (15)

2. Let hn → 0 as n→∞ in such a way that nhdn
| log hdn|

→∞. If {εn} is a sequence such that

εn = Ω

(√
log rn
nhdn

)
, (16)

where rn = Ω
(
h
−d/2
n

)
, then, for all n large enough, (15) holds with h and ε replaced by hn and εn,

respectively. In particular, the term on the right hand side of (15) vanishes at the rate O
(
r−1
n

)
.

The above theorem imposes minimal assumptions on the kernel K and, more importantly, on the prob-
ability distribution P , whose density is not required to be bounded or smooth, and, in fact, may not even
exist. Finally, we remark that, for fixed h, setting εn =

√
2 logn
hdnCK

for an appropriate constant CK (depending

on K), an application of the Borel-Cantelli Lemma yields that, as n→∞, ‖ph− p̂h‖∞ = O

(√
logn
n

)
almost

everywhere P . See also Einmahl and Mason (2005) for a uniform version of this claim, which also relies on
assumption (K).

3.2 Rates of Convergence

We now derive the converge rates for the clustering risks defined in Section 2.2. Below we will write CK
for a constant whose value depends only on the VC characteristic of the kernel K and on the constant D
appearing in (14).

Theorem 3.3. (Level Set Risk.) Suppose that (LN1) and (LN2) (a)-(c) hold. For any h ∈ (0, h) and
ε ∈ (0, ε),

RL(p, p̂h) = O
(
εγ + hξ + e−CKnh

dε2
)
. (17)

In particular, setting

hn =
(

log n
n

)γ/(2ξ+dγ)

and εn =

√
log n
CKnhdn

we obtain

RL(p, p̂h) = O

(
max

{(
log n
n

) γξ
2ξ+dγ

,
1
n

})
. (18)

According to the theorem, if ξ ≥ dγ/2 then

E(ρ†(p, p̂h, P )) = O

(
max

{(
log n
n

)γ/4
,

1
n

})
.

In particular, fast rates (including a log n term) arise when

γξ

2ξ + dγ
>

1
2
,

10



which holds provided that γ > ξ
ξ−d/2 . If ξ = d, this is satisfied when γ > 2. If ξ = d, the risk is of large order

(log n/n)
γ
γ+2 , which for γ = 1, becomes of large order (log n/n)1/3. Note that these rates do not depend on

the dimension d.
As a corollary, we can show that the expected proportion of sample points that are incorrectly assigned

as clusters or noise vanishes at the same rate.

Corollary 3.4. Let f̂h = |bIh|
n , where

Îh = {i : sign(p̂h(Xi)− λ) 6= sign(p(Xi)− λ)}.

Then, E(f̂h) ≤ O
(
εγ + hξ + e−CKnh

dε2
)
.

We now turn to the excess mass risk.

Theorem 3.5. (Excess Mass.) Suppose that (LN1) and (LN2) hold. Then, for any h ∈ (0, h), ε ∈ (0, ε)
and λ > ε,

RM (p, p̂h) = O
(
εγ+1 + hd + (1 + λCS)e−nCKε

2hd
)
,

where CS is a constant independent of ε and h. Thus, setting

hn =
(

log n
n

) γ+1
d(γ+3)

and εn =

√
log(n/(1 + λCS))

CKnhdn
,

we obtain

RM (p, p̂h) = O

(
max

{(
log n
n

) γ+1
γ+3

,
1
n

})
(19)

We remark that the rates we obtain are all faster then (log /n)1/3 and dimension independent.
In our last result, we show that the modified rand risk satisfies the same upper bound (17) established

for the level set risk, and, therefore, vanishes at the same rate.

Theorem 3.6. (Rand Distance) Suppose that (LN1) and (LN2) (a) - (c) hold and let h ∈ (0, h) and
ε ∈ (0, ε0). Then, RR(p, p̂h) = O

(
εγ + hξ + e−CKnh

dε2
)

, and the same rates of Theorem 3.3 hold.

Remark. Our proofs rely in a fundamental way on Proposition 3.2, which holds with virtually almost no
conditions on the probability P . On the other hand, this yields the additional log n term in our results. Such
term can be eliminated by assuming smoothness conditions on p. See Section 3.4 below.

3.3 Biased Clusters

In some cases, we might be content with estimating the level set Lh(λ), which is a biased version of L(λ).
That is, the fringe Lh(λ) − L(λ) may not be of great practical concern. In that case we have the following
result, which gives faster, dimension independent rates. The proof is similar to the proofs of the previous
results and is omitted.

Theorem 3.7. Let h ∈ (0, h) be fixed. Under (LN1) and (LN2) (a)-(b), RL(p, p̂h) and RR(p, p̂h) are

O

(
max

{(
logn
n

)γ/2
, 1
n

})
. If, in addition, (LN2) (d) is satisfied, then

RM (p, p̂h) = O

(
max

{(
log n
n

) 1+γ
2

,
1
n

})
. (20)

11



3.4 Some Special Cases

The case γ = ∞. Then, the sequence {εn} does not need to vanish. Thus, setting hn =
(

logn
n

)1/d

, since

ξ ≥ d, it is immediate to see that the three clustering risks vanish at a rate that is at least O
(

logn
n

)
.

The case γ = ξ =∞. This is the most favorable case for clustering, corresponding for example, to sharp
clusters. The rate O(1/n) is achieved with any fixed positive bandwidth smaller than h.

The smooth case. If P has full-dimensional support and the Lebesgue density p is smooth, different
results are possible. For example, using the same settings of Rigollet and Vert (2006), if p is β-times Hölder
differentiable, then the bias condition (LN2) is superfluous, as

‖ph − p‖∞ ≤ Chβ , (21)

for some constant C which depends only on the kernel K. Choosing h such that Chβ < ε, on the event Eh,ε,
the triangle inequality yields ‖p̂h − p‖∞ < 2ε. Thus, for each ε < ε

2 and each h such that Chβ < ε, on Eh,ε,
instead of (12), one obtains

P
(
L̂h(λ)∆L(λ)

)
≤ C12γεγ .

Then, setting hn = (log n/n)
1

2β+d and εn = Ω((log n/n))
β

2β+d ), we see that both RL(p, p̂h) and RR(p, p̂h) are
of order O((log n/n)

γβ
2d+β ), while RM (p, p̂h) is of order O((log n/n)

(γ+1)β
2d+β ). These, are, up to an extra loga-

rithmic factor, the minimax rates established by Rigollet and Vert (2006). In fact, under these smoothness
assumptions, and since the bias can be uniformly controlled as in (21), then, by a combination of Fubini’s
theorem and of a peeling argument as in Audibert and Tsybakov (2007) and Rigollet and Vert (2006), the
exponential term O

(
e−CKnh

dε2
)

becomes redundant and one obtains rates without the extra logarithmic
term.

4 Choosing the Bandwidth

In this section we discuss two data-driven method for choosing the bandwidth. Before we explain the details,
we point out that L2 cross-validation is not appropriate for this problem. In fact, we are allowing for the
case where P may have atoms, in which case it is well known that cross-validation chooses h = 0.

4.1 Excess Mass

We propose choosing h by splitting the data and maximizing an empirical estimate of the excess mass
functional. Polonik (1995) used this approach to choose a level set from among a fixed class L of level sets.
Here, we are choosing a bandwidth, or, in other words, we are choosing a level set from a random class of
level sets L = {{p̂h > λ} : h > 0} depending on the observed sample X. The steps are in Table 1.
Remarks.

1. To implement the method, we need to compute µ(Lh). In practice µ(Lh) can be approximated by

1
M

M∑
i=1

I(p̂h(Ui) > λ)
g(Ui)

where U1, . . . , UM is a sample from a convenient density g. In particular, one can choose g = p̂H for
some large bandwidth H. Choosing M ≈ n2 ensures that the extra error this importance sampling
estimator is O(1/n) which is negligible. We ignore this error in what follows.

2. Technically, the method only applies for λ > 0, at least in terms of the theory that we derive. In
practice, it can be used for λ = 0. In this case, Ê(h) becomes 1 when h is large. We then take ĥ to be
the smallest h for which Ê(h) = 1.

12



1. Split the data into two halves which we denote by X = (X1, . . . , Xn) and Z =
(Z1, . . . , Zn).

2. Let H be a finite set of bandwidths. Using X, construct kernel density estimators
{p̂h : h ∈ H}. Let Lh = {x : p̂h(x) > λ}.

3. Using Z, estimate the excess mass functional

Ê(h) =
1
n

n∑
i=1

I(Zi ∈ Lh)− λµ(Lh).

4. Let ĥ be the maximizer of Ê(h) and set L̂ = Lbh.

Table 1: Selecting the bandwidth using the excess mass risk.

Below we use the notation EX(·) instead of E(·) to indicate that the excess mass functional (7) is evaluated
at a random set depending on the training set X. Accordingly, with some abuse of notation, for a h > 0, we
will write EX(h) = E(Lh), with Lh the λ-level set of p̂h. Below H is a countable subset of [0, h]. The next
result is closely related to Theorem 7.1 of Györfi et al. (2002).

Theorem 4.1. Let h∗ = armaxh∈HEX(h). For any δ > 0,

E(EX(h∗))− E(EX(ĥ)) ≤ d(δ, κ)
1 + log 2

n
(22)

where the expectation is with respect to the joint distribution of the training and test set, d(δ, κ) = 2
κδ(1 +

δ)
(
16γ2 + δ(7 + 16γ2)

)
, with κ = 2 + λµ(S +B(0, h)) and γ2 = 7

4

(
e4/7 − 1

)
.

Now we construct a grid Hn of size depending on n that is guaranteed to ensure that optimizing over
Hn implies we are adapting over γ.

Theorem 4.2. Suppose (LN1) and (LN2) hold. Let

δn =
9

4Ln

(
log n
n

)2/3

where Ln = log n − log log n. Let Gn = {γ1, . . . , γN} where γj = (j − 1)δn and N is the smallest integer
greater than or equal to

2Ln(Ln − log 2)
9 log 2

(
n

log n

)2/3

.

Let Hn = {hn(γ) γ ∈ Gn} where hn(γ) = (logn/n)(γ+1)/(d(3+γ)). Then

E(L)− E(E(L̂)) ≤ O
(

log n
n

) γ+1
γ+3

.

Remarks.

1. We are choosing the bandwidth from a single split of the data. An alternative is to split the data many
times and combines the estimates over multiple splits.

2. When µ(L) = 0, we have that h∗ = 0. The above theorems are still valid in this case. Thus the case
where P is atomic is included while it is ruled out for L2 cross-validation.
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4.2 Stability

Another method for selecting the bandwidth is to choose the value for h that produces stable clusters, in a
sense defined below. The use of stability has gained much popularity in clustering; see Ben-Hur et al. (2002)
and Lange et al. (2004) for example. In the context of k-means clustering and related methods, Ben-David
et al. (2006) showed that minimizing instability leads to poor clustering. Here we investigate the use of
stability for density clustering.

Given three independent samples X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn), we define
the instability be

Ξ(h) = ρ(p̂h, q̂h, P̂Z) (23)

where p̂h is constructed from X, q̂h is constructed from Y and P̂Z is the empirical distribution based on Z.
(In practice, we split the data into three subsets.)

Rather than study stability in generality, we consider a special case involving the following extra condi-
tions:

1. Sharp Clusters. Assume that P =
∑m
j=1 πjPj where

∑
j πj = 1, and Pj is uniform on the compact

set Cj of full dimension d. Thus, p(z) =
∑
j ∆jI(z ∈ Cj) where ∆j = πj/µ(Cj). Let ∆ = minj ∆j > 0

and let ∆ = maxj ∆j .

2. Spherical Kernel. We use a spherical kernel so that

p̂h(z) =
1
nhd

n∑
i=1

I(||z −Xi|| ≤ h)
vd

=
P̂ (B(x, h))

hdvd

where vd = πd/2/Γ(d/2 + 1) denotes the volume of the unit ball and P̂ is the empirical measure.

3. S is a standard set. Assume that there exists a δ ∈ (0, 1) such that

µ(B(z, h) ∩ L) ≥ δµ(B(z, h)) for all z ∈ S, and all h < diam(S),

where diam(S) = sup(x,y)⊂S ‖x− y‖ indicates the diameter of the set S. The notion of a standard set
was originally introduced by Cuevas and Fraiman (1997).

4. Choice of λ. We take λ = 0.

We will focus on the level set distance ρ†(r, q, P ) =
∫
{r>λ}∆{q>λ} dP (x). The level set instability is

Ξ(h) = ρ†(p̂, q̂, P̂Z). (24)

Under these settings, the graph Ξ(h) is typically unimodal with Ξ(0) = Ξ(∞) = 0. Hence, it makes no
sense to minimize Ξ. Instead, we will fix a constant α and choose

ĥ = inf

{
h : sup

t>h
Ξ(t) ≤ α

}
. (25)

Theorem 4.3. Let h∗ = diam(L). Under conditions 1-4,

1. Ξ(0) = 0 and Ξ(h) = 0, for all h ≥ h∗;

2. sup0<h<h∗ E(Ξ(h)) ≤ 1/2;

3. As h→ 0, E(Ξ(h)) � hd;
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4. for each h ∈ (0, h∗),

C3(h∗ − h)d(n+1)Cn4 ≤ E(Ξ(h)) ≤ 2C1(h∗ − h)n+1Cn2

where

C1 =
πd/2hd−1

∗
2dΓ((d/2) + 1)

, C2 =
πd/2hd−1

∗
Γ((d/2) + 1)

C3 =
δ∆πd/2

Γ((d/2) + 1)
, C4 =

∆δπd/2

Γ(d/2 + 1)
.

To see the implication of Theorem 4.3, we proceed as follows. Consider a grid of values H ⊂ (0, h∗) of
cardinality nβ , for some 0 < β < 1. By Hoeffding’s inequality, with probability at least 1− 1

n , we have that

sup
h∈H
|Ξ(h)− E(Ξ(h))| ≤ wn ≡

√
2 log(2n)(1− β)

n
.

Replacing E(Ξ(h)) by Ξ(h) + wn and Ξ(h)− wn in the upper and lower bounds of part 4. of Theorem 4.3,
respectively, setting them both equal to α and then finally solving for h, we conclude that the selected ĥ is
upper bounded by

h∗ −
(
α− wn

2C1

)1/(n+1)

C
− n
n+1

2

and lower bounded by

h∗ −
(
α+ wn
C3

)1/(d(n+1))

C
− n
d(n+1)

4

with probability larger than 1− 1
n . Thus, as n→∞, the resulting bandwidth does not tend to 0. Hence, the

stability based method leads to bandwidths that are quite different than the method in the previous section.
Our explanation for this finding is that the stability criterion is essentially aimed at reducing the variability
of the clustering solution, but it is virtually unaffected by the bias caused by large bandwidths.

In the analysis above we assumed for simplicity that λ = 0. When λ > 0, the instability Ξ(h) can have
some large peaks for very large h. This occurs when h is large enough so that some mode of ph(x) is close
to λ. Choosing h according to (25) will then lead to serious oversmoothing. Instead, we can choose ĥ as
follows. Let h0 = argmaxhΞ(h) and define

ĥ = inf

{
h : h ≥ h0, Ξ(h) ≤ α

}
. (26)

We will revisit this issue in Section 6. A theoretical analysis of this modified procedure is tedious and, in
the interest of space, we shall not pursue it here.

5 Approximating the Clusters

In this section we study a graph-based algorithm, which is often called the “friends-of-friends” algorithm, for
finding the connected components of L̂h and for estimating the number of λ clusters N(λ) that is based on
the ρ-nearest neighborhood graph of {Xi : p̂h(Xi) > λ}. The “friends-of-friends” algorithm and its variants
have been used by Devroy and Wise (1980) and Tsybakov and Korostelev (1993) for support estimation and,
more recently, by Cuevas et al. (2000) and Biau et al. (2007) for estimating the number of λ-clusters. Our
results offer similar guarantees but hold under more general settings.

Lemma 2.2 shows that, under mild, conditions and when the sample size is large enough, N(λ) = N̂h(λ)
uniformly over h ∈ (0, h) with high probability. However, computing the number of connected components
of L̂h(λ) exactly is computationally difficult, especially if d is large. The “friends-of-friends” algorithm is
instead fast and easy to implement. The algorithm proceeds as follows. For some h ∈ (0, h and given λ ≥ 0,
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1. Compute the kernel density estimate p̂h;

2. compute the ρ-nearest neighborhood graph of {Xi : p̂h(Xi) > λ}, that is the graph Gh,n on {Xi : p̂h(Xi) >
λ} where there is an edge between any two nodes if and only if they both belong to a ball of radius ρ;

3. compute the connected components of Gh,n using a depth-first search.

We will show that, if ρ is chosen appropriately,y then, with high probability as n→∞,

1. the number of connected components of Gh,n, N̂G
h (λ), matches the number of true clusters, N(λ) = k;

2. there exists a permutation of {1, . . . , k} such that, for each j and j′,

Chj ⊆
⋃

x∈Cσ(j)

B(x, ρ) and

 ⋃
x∈Cσ(j)

B(x, ρ)

 ∩
 ⋃
x∈Cσ(j′)

B(x, ρ)

 = ∅, (27)

where C1, . . . , Ck are the connected components of Gh,n.

We will assume the following regularity condition on the densities ph, which is satisfied if the kernel K
is of class C1 and P is not flat in a neighborhood of λ:

(G) There exist constants ε1 > 0 and Cg > 0 such that for each h ∈ (0, h), ph is of class C1 on {x : |ph(x)−
λ| < ε1} and

inf
h∈(0,h)

inf
x∈{|ph(x)−λ|<ε1}

‖∇ph(x)‖ > Cg. (28)

Let δh = mini6=j dist(Chi , C
h
j ) and set δ = infh∈(0,h) δh. Notice that, under (LN2) (b), δ > 0. Finally, let

Oh,n denote the event in equation (27), which clearly implies the event {N̂G
h (λ) = k}.

Theorem 5.1. Assume conditions (G) and (LN2) (a)-(b) and let d∗ = dim(L). Assume further that there
exists a constant C such that, for every r ≤ δ/2 and for P -almost all x ∈ S ∩ L,

P (B(x, r)) > Crdi , (29)

where di = dim(Si), with x ∈ Si. Then, there exists positive constants ρ and M , depending on d∗ and L
such that, for every ρ < min{δ/2, ρ}, there exists a number ε(ρ) such that, for any ε < η(ρ),

P
(
Och,n

)
≤ P(Ech,ε) +Mρ−d

∗
e−Cnρ

d∗

,

uniformly in h ∈ (0, h).

The previous result deserves few comments. First, the constants ρ, M and C depend on d∗. Secondly,
assumption (29) is a generalization to lower dimensional sets of the standardness assumption introduced
in Cuevas and Fraiman (1997). It is clearly true for components Pi of full-dimensional support that are
absolutely continuous with respect to the Lebesgue measure. Finally, in view of Lemma 8.1 (and, specifically,
of the way ε(ρ, τ) is defined), Theorem 5.1 holds for sequences {εn}, {hn} and {ρn} such that

1. εn = o(1),

2. supn hn ≤ h;

3. supn ρn < min{δ/2, ρd} and εn = o(ρn).

In particular, if hn = o(1), then, following Proposition 3.2, the term P(Echn,εn) vanishes if nhdn
| log hdn|

→ ∞
Interestingly enough, condition (LN1) plays no role in Theorem 5.1.

We now consider a bootstrap extension of the previous algorithm, as suggested in Cuevas et al. (2000).
For any h, let X∗ = (X∗1 , . . . , X

∗
N ) denote a bootstrap sample from p̂h conditionally on {p̂h > λ} and let

G∗n,h denote the ρ-neighborhood graph with node set X∗. Finally, let O∗h,n be the event given in equation
(27), except that C1, . . . , Ck are now the connected components of G∗h,n.
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Theorem 5.2. Assume conditions (LN2) (a)-(b) and (G). Suppose that there exist positive constants C and
ρ such that

inf
h∈(0,h)

∫
Ah∩Lh(λ)

phdµ > Cρd. (30)

for any ball Ah of radius ρ < ρ and center in Lh(λ). Then, for any ρ ≤ min{δ/2, ρ}, there exists a positive
number ε(ρ) such that, for each ε < ε(ρ),

P
(
(O∗h,n)c

)
≤ P(Ech,ε) +Mρ−de−NCρ

d

,

2 uniformly in h ∈ (0, h), where M and C are positive constants independent of h and ρ.

The constants C, C, ρ and M depend on both d and S +B(0, h). In our settings, condition (30) clearly
holds if P has full-dimensional support. In the Appendix 9.2 we derive sufficient conditions for (30) to hold
with lower dimensional level sets, based (29). They are verified if, for example, the boundary of Lh has
bounded condition number (see Niyogi et al., 2008), uniformly in h ∈ (0, h). Just like with Theorem 5.1,
using Lemma 8.1, it can be verified that the theorem holds if one consider sequences of parameters depending
on the sample size such that εn = o(1), εn = o(ρn), supn ρn < max{δ/2, ρ} and supn hn < h, provided that
the conditions of Proposition 3.2 are met.

Despite the similar form for the error bounds of Theorems 5.1 and 5.2, there are some marked differences.
In fact, in Theorem 5.1 the performance of the algorithm depends directly on the sample size n and, in
particular, on the actual dimension d∗ ≤ d of the support of P , with smaller values of d∗ yielding better
guarantees. In contrast, besides n, the performance of the algorithm based on the bootstrap sample depends
on the ambient dimension d, regardless of d∗, and on the bootstrap sample size N . By choosing N very
large, the expression P(Ech,ε) becomes the leading term in the upper bound of the probability of the event
(O∗h,n)c.

6 Examples

In this section we consider a few examples to illustrate the methods.

6.1 A One Dimensional Example

In Section 4.2 we pointed out that when λ > 0 and large, it is safer to use the modified rule ĥ = inf{h : h ≥
h0, Ξ(h) ≤ α} where h0 = argmaxhΞ(h), in place of the original rule ĥ = inf{h : supt>h Ξ(t) ≤ α}. We
illustrate this with a simple one dimensional example.

Figure 3 shows an example based on n = 200 points from the density p that is uniform on [0, 1] ∪ [5, 6].
When λ = 0 (top) the original rule works fine. (We use α = 0.05.) The selected bandwidth is small leading
to the very wiggly density estimator in the top right plot. However, this estimator correctly estimates the
level set and the clusters. In the bottom we have λ = .3. When h is large, there is a blip in the instability
curve corresponding to the fact that the modes of ph(x) are close to λ. The original rule corresponds to the
second vertical line in the bottom left plot. The resulting density estimator shown in the bottom right plot
is oversmoothed and leads to no points being in the set p̂h > λ. The modified rule corresponds to the first
vertical line in the bottom left plot. This bandwidth works fine.

Figure 4 compares the instability method (top) with the excess mass method (bottom). Both methods
recover the level set and the clusters. We took λ = .3 in both cases. Because λ is very large, the excess mass
becomes undefined for large h since ph(x) < λ for all x, which we denoted by setting the risk to 0 in the
bottom left plot.

6.2 Fuzzy Stick With Spiral

Figure 5 shows data from a fuzzy stick with a spiral. The stick has noise while the spiral is supported on
a lower dimensional curve. Figure 6 shows the clusterings from the instability method and the excess risk
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Figure 3: The left plots show the instability as a function of log bandwidth. The horizontal line shows
α = 0.05. The right plots show the true density and the kernel density estimator based on the selected
bandwidth h. In the top plots, λ = 0. In the bottom plots, λ = .3.
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Figure 4: The top left plot shows the instability as a function of log bandwidth. The top right plot shows
the true density and the kernel density estimator based on the selected bandwidth h using the modified rule.
The bottom left plot shows the estimated excess mass risk as a function of log bandwidth. The top right
plot shows the true density and the kernel density estimator based on the selected bandwidth h obtained
by maximizing the excess mass. In both bottom plots, λ = .3. Both methods recover the level set and the
clusters.
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method with λ = 0. Both recover the clusters perfectly. Note that the excess risk is necessarily equal to 1
for large h. In this case we take ĥ to be the smallest h of all bandwidths that maximize the excess mass.
We see that both methods recover the clusters.

6.3 Two Moons

This is a 20 dimensional example. The data lie on two half-moons embedded in R20. The results are shown
in Figure 7. Only the first two coordinates of the data are plotted. Again we see that both methods recover
the clusters.

7 Discussion

As is common in density clustering, we have assumed a fixed, given value of λ. In practice, we recommend
that the results should be computed for a range of values of λ (see, e.g., Stuetzle and Nugent, 2009, and
references therein). It is important to choose a different bandwidth for each λ. Indeed, inspection of the
proof of Theorem 3.5 shows that the optimal bandwidth, as a function of λ, has the form,

h(λ) �
(

log n

nλ
2
γ+1

) γ+1
(d(γ+3))

for λ large enough. Hence, h(λ)→ 0 as λ increases. Further research on data-dependent methods to choose
λ and ρ (the parameter in the friends-of-friends algorithm) would be very useful.

We discussed the idea of using stability to choose a bandwidth. We saw that the behavior of the selected
bandwidth is quite different than with the excess mass method. This method seems to work well for density
clustering unlike what happens for k-means clustering (Ben-David et al., 2006). We believe that the stability
method deserves more scrutiny. In particular, it would be helpful to understand the behavior of the stability
measure under more general conditions. Also, the detailed theoretical properties of the modified method for
selecting h based on stability should be explored.

Finally, we note that there is growing interest in spectral clustering methods (von Luxburg (2007)). We
believe there are connections between the work reported here and spectral methods. We will report on this
connection in the future.

8 Proofs

Proof of Lemma 2.1. The weak convergence follows from the fact that P is a Radon measure (see, e.g.,
Leoni and Fonseca, 2007, Theorem 2.79). As for the second part, if x ∈ Si, where Si has Hausdorff dimension
d, then p(x) = πipi(x), with pi a Lebesgue density, and the result follows directly from Leoni and Fonseca
(2007, Theorem 2.73, part (ii)). On the other hand if di < d, then it is necessary to modify the arguments
as follows. Since K is smooth and supported on B(0, 1), there exists a η such that K

(
x−y
h

)
> η, for each h,

if ‖x− y‖ < ηh. Set C = ηdi+1cdi
cd

. Then,

ph(x) = 1
cdhd

∫
Si∩B(x,h)

K
(
x−y
h

)
dP (y)

≥ 1
cdhd

η
∫
Si∩B(x,ηh)

dP (y)

= ηdi+1cdi
cdhd−di

1
cdi (ηh)di

Pi(B(x, η, h))

= C
h(d−di)

Pi(B(x,η,h))
µ(B(x,η,h)) .

By (38), Pi(B(x,η,h))
µ(B(x,η,h)) → pi(x) <∞, almost everywhere Hdi , while C

h(d−di)
→∞ as h→ 0, thus showing that

limh→0 ph(x) =∞. �
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Figure 5: 500 data points from a fuzzy stick plus a spiral.
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Figure 6: Clusters obtained from instability (top) and excess mass (bottom).

22



−8 −6 −4 −2 0

0.
00

0.
10

0.
20

0.
30

Log Bandwidth

In
st

ab
ili

ty

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●●

● ●
●

●

●●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●●

●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

−1.0 0.0 1.0 2.0

−
0.

5
0.

0
0.

5
1.

0
X[, 1]

X
[, 

2]

−8 −6 −4 −2 0

0.
0

0.
4

0.
8

Log Bandwidth

R
is

k

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●●

● ●
●

●

●●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●●

●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

−1.0 0.0 1.0 2.0

−
0.

5
0.

0
0.

5
1.

0

X[, 1]

X
[, 

2]

Figure 7: Clusters obtained from instability (top) and excess mass (bottom). The data are in R20 but only
the first two components are plotted.
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Proof of Lemma 2.2. By assumptions (LN2) (a) and (b), for any 0 ≤ ε < ε and 0 < h < h,

Nh(λ− ε) = Nh(λ) = Nh(λ+ ε) = N(λ) = k.

On the event Eh,ε it holds that

Lh(λ+ ‖ph − p̂h‖∞) ⊆ L̂h(λ) ⊆ Lh(λ− ‖ph − p̂h‖∞),

which implies that, on the same event,

k = Nh(λ+ ‖ph − p̂h‖∞) ≤ N̂h(λ) ≤ Nh(λ− ‖ph − p̂h‖∞) = k.

�

Proof of Lemma 2.3. Since p is Lipschitz and integrable, p−1(λ) is Hd−1-measurable, so the integral
Hd−1({x : p(x) = λ}) is well defined for λ ∈ (0, ‖p‖∞), where Hd−1 denote the (d−1)-dimensional Hausdorff
measure in Rd. Furthermore, we can use the coarea formula. See Evans and Gariepy (1992) and Ambrosio
et al. (2000) for backgrounds on Hausdorff measures and the coarea formula. By the Rademacher Theorem,
the set E1 of points where p is not differentiable has Lebesgue measure zero. By Lemma 2.96 in Ambrosio
et al. (2000), the set E2 = {x : ‖∇p(x)‖ = 0} is such that Hd−1{p−1(λ) ∩ E2} = 0, for all λ ∈ (0, ‖p‖∞)
outside of a set E3 ⊂ R of Lebesgue measure 0. Without loss of generality, below we may assume that E1

and E2 are empty. Thus, we can assume that, for any λ ∈ (0, ‖p‖∞) ∩ Ec3, there exists positive numbers ε,
C and M such that

(i) infx∈{x : |p(x)−λ|<ε} ‖∇p(x)‖ > C, almost everywhere-µ;

(ii) supη∈(−ε,ε)Hd−1({x : p(x) = λ+ η}) < M .

Then, for each ε ∈ (0, ε),

P ({x : |p(x)− λ| < ε}) =
∫
p(x)1{|p(x)−λ|<ε}dµ(x)

=
∫ p(x)
‖∇p(x)‖1{|p(x)−λ|<ε}‖∇p(x)‖dµ(x)

=
∫ +ε

−ε
∫
{p−1(λ+u)}

p(x)
‖∇p(x)‖dH

n−1(x)du
=

∫ +ε

−ε (λ+ u)
∫
{p−1(λ+u)} (‖∇p(x)‖)−1

dHn−1(x)du
≤ 2λM

C ε,

where the second equality holds because ‖∇p(x)‖ is bounded away from 0 on {x : |p(x)− λ| < ε} by (i), the
third equality is a direct application of the coarea formula (see, e.g., Proposition 3 page 118 in Evans and
Gariepy, 1992) and the last inequality follows from (i) and (ii). �

Proof of Corollary 2.4. Following the proof of Lemma 2.3 and using our additional assumption that p is
of class C1, without any loss of generality, below we can assume that the set E1 and E2 are empty and we
recall that E3 has Lebesgue measure 0. Let λ 6∈ E3 be such that

inf
x∈p−1(λ)

‖∇p(x)‖ > 0.

We now claim that there exists a non-empty neighborhood U of λ for which

inf
λ∈U

inf
x∈p−1(λ)

‖∇p(x)‖ > 0.

Indeed, arguing by contradiction, suppose that the previous display were not verified for any neighborhood
U of λ. Then, there exist sequences {λn} ⊂ R and {xn} ⊂ S such that limn λn = λ, and xn ∈ p−1(λn) and
∇p(xn) = 0 for each n. By compactness, it is possible to extract a subsequence {xnk} of {xn} such that
xnk → x, for some x ∈ p−1(λ). Since p is of class C1, this implies that ∇p(xnk)→ ∇p(x) as well. However,
∇p(xnk) = 0 for each k by construction, while ∇p(x) 6= 0. This produces a contradiction. Thus, for each λ
that is not a critical point, one can find a neighborhood of positive length containing it and, by Lemma 2.3,
LN1 holds at λ with γ = 1. Since, using compactness again, ‖p‖∞ <∞, this implies that there can only be
a finite number of critical points for which γ may differ from 1. �
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Proof of Lemma 3.1. Since ε < ε and h < h, in virtue of (LN2) (b) it holds that, on Eh,ε,

L̂h(λ) ⊇ Lh(λ+ ε) ⊇ L(λ+ ε),

and
L̂h(λ) ⊆ Lh(λ− ε) = L(λ− ε) ∪ (Lh(λ− ε)− L(λ− ε)) .

Because L(λ+ ε) ⊆ L(λ) ⊆ L(λ− ε), the above inclusions imply, still on Eh,ε, that

L̂h(λ)∆L(λ) ⊆ (L(λ− ε)− L(λ+ ε)) ∪ (Lh(λ− ε)− L(λ− ε))
= A ∪B,

where it is clear that the sets A and B are disjoint. Taking expectation with respect to P of the indicators
of the sets L̂h(λ)∆L(λ), A and B and using conditions (LN1) and (LN2) (c) yield (12). �

Proof of Proposition 3.2. The claimed results are a direct consequence of Corollary 2.2 in Giné and
Guillou (2002). We outline the details below. We use the function class (13) to rewrite the left hand side of
(14) as

P


∥∥∥∥∥
n∑
i=1

f(Xi)− E[f(X1)]

∥∥∥∥∥
Fh

> 2εnhd


and then proceed to apply Giné and Guillou (2002, Corollary 2.2). Following their notation, we set t = nhdε
and, since,

sup
f∈Fh

Var[f ] ≤ sup
z

∫
Rd
K2

(
z − x
h

)
dP (x) ≤ hdD,

we can further take σ2 = hdD and U = C‖K‖∞, where C is a positive constant, depending on h, such
that σ < U/2. Then, conditions (2.4) (2.5) and (2.6) of Giné and Guillou (2002) are satisfied for all n
bigger than some finite n0, which depends on the VC characteristics of K, D, ‖K‖∞, C and ε. Part 2 is
proved in a very similar way. In this case, we set σ2

n = hdnD and U = ‖K‖∞. For all n large enough,
condition (2.5) is trivially satisfied because hn = o(1), while equations (2.4) and (2.6) hold true in virtue of
(16). The unspecified constants now depend on the specific sequences {hn} and {εn}, as well as on the VC
characteristics of K, D, and ‖K‖∞. �

Proof of Theorem 3.3. We can write

E(ρ†(p, p̂h, P )) = E
(∫bLh(λ)∆L(λ)

dP ; Eh,ε
)

+ E
(∫bLh(λ)∆L(λ)

dP ; Ech,ε
)

≤ C1ε
γ + C2h

ξ + E
(∫bLh(λ)∆L(λ)

dP ; Ech,ε
)

≤ C1ε
γ + C2h

ξ + P
(
Ech,ε

)
≤ C1ε

γ + C2h
ξ + Le−nCKh

de2 ,

where the first inequality stems from (12), the second from the fact that
∫bLh(λ)∆L(λ)

dP ≤ 1 with probability
one and the third from Proposition 3.2. The claimed rates are established using simple algebra. Notice that
the choice of the sequence {εn} does not violate condition (16). �

Proof of Corollary 3.4. For each i ∈ {1, . . . , n},

P
(
i ∈ Îh|Eh

)
≤ P

(
Xi ∈ L̂h∆L|Eh,ε

)
≤ C(εγ + hξ)

1
P(Eh,ε)

where C = C1 + C2 and the last inequality is due to Lemma 3.1. Thus,

E(|Îh|) ≤
∑n
i=1 P

(
i ∈ Î|Eh,ε

)
P(Eh,ε) + nP(Ech)

≤ n
(
C(εγ + hξ) + P(Ech)

)
.

�
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Proof of Theorem 3.5. On the event Eh,ε, we obtain, in virtue of Lemma 3.1,∫
{bLh(λ)∆L(λ)}

|p− λ|dµ ≤
∫
L(λ−ε)−L(λ+ε)

|p− λ|dµ+
∫
Lh(λ−ε)−L(λ−ε)

|p− λ|dµ. (31)

The first term on the right hand side of (31) can be bounded as follows.∫
L(λ−ε)−L(λ+ε)

|p− λ|dµ(x) =
∫
{x : |p(x)−λ|<ε} |p− λ|dµ(x)

≤ ε
∫
{x : |p(x)−λ|<ε} dµ(x)

= ε
λ−ε

∫
{x : |p(x)−λ|<ε}(λ− ε)dµ

≤ ε
λ−ε

∫
{x : |p(x)−λ|<ε} p(x)dµ(x)

≤ C1
λ−εε

γ+1.

where in the last inequality is due to condition LN1. As for the second term of the right hand side of (31),
we obtain ∫

Lh(λ−ε)−L(λ−ε)
|p− λ|dµ ≤ λ

∫
Lh(λ−ε)−L(λ−ε)

dµ,

since, for x ∈ Lh(λ− ε)−L(λ− ε), p(x) < λ− ε We now claim that Lh(λ− ε)−L(λ− ε) ⊆ L(λ− ε)+B(0, h).
In fact, if w 6∈ L(λ− ε) +B(0, h), then either p(w) > λ− ε or, for every z ∈ B(w, h), p(z) < λ− ε. Since the
kernel K has compact support, the former case implies that ph(w) < λ− ε as well. Therefore,

w ∈ {x : p(x) > λ− ε} ∪ {x : ph(x) < λ− ε}
= {x : p(x) < λ− ε, ph(x) > λ− ε}c
= (Lh(λ− ε)− L(λ− ε))c .

Thus, invoking (LN2) (d),∫
Lh(λ−ε)−L(λ−ε)

|p− λ|dµ ≤ λµ(L(λ− ε) +B(0, h)) = O(hd).

We conclude that

E

(∫
{bLh(λ)∆L(λ)}

|p− λ|dµ; Eh,ε

)
= O

(
εγ+1 + hd

)
.

Next, by compactness of S,

E

(∫
{bLh(λ)∆L(λ)}

|p− λ|dµ; Ech

)
≤ 1 + λµ(S +B(0, h)) ≤ (1 + λ)CS ,

for some positive constant CS , uniformly in h < h. Thus, recalling that E(L)−E(E(L̂)) = E
(∫
{bLh(λ)∆L(λ)} |p− λ|dµ

)
,

the result follows. �

Proof of Theorem 3.6. By Lemma 2.2, on the event Eh,ε, Ĉh(λ) = K. For each i = 1 . . . ,K, denote
with Ci(λ), Chi (λ) and Ĉi(λ) the λ-clusters of p, phn and p̂hn , respectively, ordered in such a way that
Ci(λ) ⊆ Chi (λ) for all i. Assumptions (LN2) and the arguments used in the proof of Lemma 2.2 show that,
for all i, Ci(λ) ⊆ Chi (λ − ε) and Ĉσ(i)(λ) ⊆ Chi (λ − ε), for some permutation σ of {1, . . . ,K}. Since, by
assumption (LN2), Chi (λ− ε) ∩ Chj (λ− ε) = ∅ for all i 6= j, we conclude that

(
Ci(λ) ∪ Ĉσ(i)(λ)

)⋂⋃
j 6=i

(Cj(λ) ∪ Ĉσ(j)(λ))

 = ∅, (32)
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for every i = 1, . . . ,K. Next, set Aε,h = {x ∈ Rd : ‖ph − p̂h‖∞ < ε} and

Bh,ε = {z ∈ R : z 6∈ (L(λ− ε)− L(λ+ ε)) ∪ (Lh(λ− ε)− L(λ− ε))} .

We claim that, for any (x, z1, z2) ∈ Aε,h×Bh,ε×Bh,ε, Mbph(z1, z2) = Mp(z1, z2). First observe that equation
(32) implies that, for any x ∈ Aε,h and for each z1, z2 ∈ L, the set of all pairs (z1, z2) such that Mbph(z1, z2) = 1
and Mp(z1, z2) = 0 or Mbph(z1, z2) = 0 and Mp(z1, z2) = 1 is empty. Thus, it is sufficient to show that, for
each such triple (x, z1, z2), it is not possible for Mbph(z1, z2),Mp(z1, z2) to be equal to any of the remaining
four patterns (0, ∗), (1, ∗), (∗, 0), (∗, 1). Indeed, for any x ∈ Aε,h, should any such pattern occurs, then
because of (32), z1 or z2 (possibly both) would have to belong to L(λ)∆L̂h(L), which by Lemma 3.1 is a
subset of (L(λ− ε)− L(λ+ ε)) ∪ (Lh(λ− ε)− L(λ− ε)) = Bcε,h. This gives a contradiction, so the claim is
proved true. By independence, the probability that (x, z1, z2) 6∈ Aε,h ×Bh,ε ×Bh,ε is bounded by

P
(
Ech,ε

)
+ 2

(∫
L(λ−ε)−L(λ+ε)

dP +
∫
Lh(λ−ε)−L(λ−ε)

dP

)
= O(εγ + hξ + e−Cnh

dε2),

with the last identity stemming from Proposition 3.2 and assumptions (LN1) and (LN2) (a) - (c). �

Proof of Theorem 4.1. This follows by combining the version of Talagrand’s inequality for empirical pro-
cesses as given in Massart (2007) with a straightforward adaptation of the proof of Theorem 7.1 of Györfi
et al. (2002). For completeness, we provide the details.

Define ĥ = argsuph∈HÊ(Lh), where

Ê(Lh) =
1
n

n∑
i=1

I(Zi ∈ Lh)− λµ(Lh).

and h∗ = argsuph∈HEX(Lh). Set Γ(h) = EX(Lh∗) − EX(Lh), where h ∈ H. Recall that both Lh∗ and
Lh = {x : p̂h > λ}, are random sets depending on the training set X. We will bound E(Γ(ĥ)), where the
expectation is over the joint distribution of X and Y .

We can write
E(Γ(ĥ)|X) = E(Γ(ĥ)|X)− (1 + δ)Γ̂(ĥ)︸ ︷︷ ︸

T1

+ (1 + δ)Γ̂(ĥ)︸ ︷︷ ︸
T2

where Γ̂(h) = Ê(Lh∗)− Ê(Lh). Note that

Γ̂(ĥ) = Ê(Lbh)− Ê(Lh∗) ≤ Ê(Lh∗)− Ê(Lh∗) = 0.

Thus, E(T2|X) ≤ 0. We conclude that

E(Γ(ĥ)) = E(E(Γ(ĥ)|X)) = E(E(T1|X)) + E(E(T2|X)) ≤ E(E(T1|X)). (33)

Now we bound E(T1|X). Consider the empirical process

Z = sup
h∈H

Γ̂(h),

so that Z = Γ̂(ĥ) and E(Γ(ĥ)|X) = E(Z|X). We have

P(T1 ≥ s|X) = P

(
E(Z|X)− (1 + δ)Z) ≥ s

∣∣∣∣∣ X
)

= P

(
E(Z|X)− Z ≥ s+ δE(Z|X)

1 + δ

∣∣∣∣∣ X
)
.
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Notice that, conditionally on X, Z = 1
n suph∈H

∑n
i=1 fh(Yi), where, for each h ∈ H, fh : Rd 7→ R is the

function given by
fh(x) = I(x ∈ Lh∗)− λµ(Lh∗)− (I(x ∈ Lh)− λµ(Lh)) .

with ‖fh‖∞ < κ. Let σ2 ≡ E( 1
n suph∈H

∑n
i=1 f

2
h(Yi)|X) and notice that σ2 ≤ κE(suph Γ̂(h)|X) = κE(Z|X).

Thus,

P(T1 ≥ s|X) ≤ P

(
E(Z|X)− Z ≥ s+ δσ2/κ

1 + δ

∣∣∣∣∣ X
)
,

which, by Corollary 13 in Massart (2007), is upper bounded by

2 exp

−
n
(
s+δσ2/κ

1+δ

)2

4(4γ2σ2 + 7
4κε)

 .

Then, some algebra (see Problem 7.1 in Györfi et al., 2002) yields the final bound

P(T1 ≥ s|X) ≤ 2 exp
{
−ns
d(δ, κ)

}
,

where d(δ, κ) is given the in the statement of the theorem.
Set u = d(δ,κ)

n log 2. Then,

E(T1|X) =
∫ ∞

0

P(T1 > s|X)ds ≤ u+
∫ ∞
u

P(T1 > s|X)ds

= u+
2d(δ, κ)

n
exp

{
− nu

d(δ, κ)

}
= d(δ, κ)

1 + log 2
n

.

From (33) we conclude that

E(Γ(ĥ)) ≤ d(δ, κ)
1 + log 2

n
.

and so
E(M(ĥ)) ≤ E(M(h∗)) + d(δ, κ)

1 + log 2
n

which implies that

E(E(ĥ)) ≥ E(E(h∗))− d(δ, κ)
1 + log 2

n
.

This shows (22).

Proof of Theorem 4.2. Let γ be as defined in (LN1). Define rn(s) =
(

logn
n

) s+1
s+3

. Let Υn = 2(Ln −
log 2)/ log 2 where Ln = log n− log log n. Note that rn(s) is decreasing in s and that

rn(Υn) ≤ 2rn(∞).

Hence, infs∈[0,Υn] r(s) ≤ 2 infs≥0 r(s). Now |r′(s)| ≤ 2Lnr(0)/9 for all s. Therefore, for each j, r(γj) =
r(jδn+ δn) ≥ r(jδn)− δn supγ |r′(γ)| ≥ r(γj)−2δnLnr(0)/9 ≥ r(γj)/2. Let hn ≡ (log n/n)(γ+1)/(d(3+γ)). By
Theorem 3.5, RM (p, p̂hn) = O((log n/n)(γ+1)/(γ+3)). Let h∗ ∈ Hn minimize RM (p, p̂h) for h ∈ Hn. Thus,
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RM (p, p̂h∗) ≤ 2RM (p, p̂hn). So,

RM (p, p̂bh) ≤ d(δ, κ)
1 + log 2

n
+RM (p, p̂h∗)

≤ d(δ, κ)
1 + log 2

n
+ 2RM (p, p̂hn)

= d(δ, κ)
1 + log 2

n
+ 2r(γ)

= O

(
log n
n

) γ+1
γ+3

.

�

Proof of Theorem 4.3. (1) When h = 0, {p̂h > λ} = X and {q̂h > λ} = Y so that {p̂h > λ}∆{q̂h > λ} =
(X,Y ). Since P has a Lebesgue density, with probability one, dP̂Z puts no mass on (X,Y ) and, therefore,
Ξ(0) = 0. By compactness of S, if h ≥ diam(S), then ‖p̂h‖∞ = ‖q̂h‖∞ = 1

hdvd
, with the supremum attained

by any z ∈ S. Thus, as h→∞, ‖p̂h − q̂h‖∞ → 0 and consequently, Ξ(∞)→ 0.
(2) Note that

Ξ(h) = ρ†(p̂h, q̂h, P̂Z) =
∫
{bph>λ}∆{bqh>λ} dP̂Z(z)

=
∫
I(p̂h(z) > λ, q̂h(z) ≤ λ)dP̂Z(z) +

∫
I(p̂h(z) ≤ λ, q̂h(z) > λ)dP̂Z(z).

Define ξ(h) = E(Ξ(h)|X,Y ). Then,

ξ(h) = ρ†(p̂h, q̂h, P )

=
∫
I(p̂h(z) > λ, q̂h(z) ≤ λ)dP (z) +

∫
I(p̂h(z) ≤ λ, q̂h(z) > λ)dP (z)

d= 2
∫
I(p̂h(z) > λ, q̂h(z) ≤ λ)dP (z),

where d= denotes identity in distribution. Let πh(z) = P(p̂h(z) ≤ λ) = P(q̂h(z) ≤ λ). By Fubini’s theorem
and independence,

E(Ξ(h)) = E(ξ(h))

= 2
∫

Rd
P(p̂h(z) > λ, q̂h(z) ≤ λ)dP (z)

= 2
∫

Rd
P(p̂h(z) > λ)P(q̂h(z) ≤ λ)dP (z)

= 2
∫

Rd
πh(z)(1− πh(z))dP (z). (34)

Since πh(z)(1− πh(z)) ≤ 1/4 for all n, h and z, (2) follows.
(3) Let W = (X,Y ) be the 2n-dimensional vector obtained by concatenating X and Y and define the

event
Ah = {B(Wi, h) ∩B(Wj , h) = ∅,∀i 6= j} .

Let h be small enough such that λnhdvd < 1 (trivially satisfied if λ = 0). Then, for any realization w of the
vector W for which the event Ah occurs,∫

I(p̂h(z) > λ, q̂h(z) ≤ λ)dP (z) =
2n∑
i=1

P (B(wi, h)).
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By our assumptions,

2nδhdvd ≤
2n∑
i=1

P (B(wi, h)) ≤ 2n∆hdvd.

Using the union bound, we also have

P (Ach) ≤
(

2n
2

)
(2h)dvd∆.

Thus it follows that, for fixed n, E (ξ(h))→ 0 as h→ 0 according to

2nδhdvd ≤ E (ξ(h)) ≤ hdvd2∆ max
{

2dn(2n− 1), 2n
}
.

(4) By the same arguments used in the proof of point (1), for all h ≥ h∗, ξ(h) = 0 almost everywhere with
respect to the joint distribution of X and Y , and, therefore, E(ξ(h)) = 0. Thus, we need only to consider
the case 0 < h ≤ h∗.

Set pz,h = P (B(z, h)) and denote with Xz,h a random variable with distribution Bin(n, pz,h). Then,

P(p̂h(z) = 0) = P(Xz,h = 0) = (1− pz,h)n .

For each z ∈ S, set D(z, h) = {z′ ∈ S : ‖z − z′‖ < h} and Sh = {z : D(z, h) 6= S}. Furthermore, set
ph,max = supz∈Sh{pz,h} and ph,min = infz∈Sh{pz,h}. Then, the expected instability cam be written as

E (Ξ(h)) = 2
∫
Sh

πh(z)(1− πh(z))dP (z)

so that Ah,n ≤ E (Ξ(h)) ≤ Bh,n, where

Ah,n ≡ 2P (Sh)(1− ph,max)n (1− (1− ph,min)n) ,
Bh,n ≡ 2P (Sh)(1− ph,min)n (1− (1− ph,max)n) .

We will now upper bound Bh,n/2. For the first term we proceed as follows. There exists a sphere
E = B(z0, h∗/2) such that S ⊂ E. (For example, choose any two points z, z′ such that ||z − z′|| = h∗. Set
z0 = (z + z′)/2.) Let A = B(z0, h∗/2) − B(z0, (h∗ − h)/2). We claim that Sh ⊂ A. This follows since if
z ∈ Ac ∩S then z ∈ B(z0, h/2) and then supz′∈S ||z− z′|| =≤ supz∈B(z0,h/2),z′∈B(z0,h∗/2) ||z− z′|| = h. Thus
if z ∈ Sh then z ∈ A ∩ S ⊂ A. Hence

P (Sh) ≤ P (A) ≤ ∆µ(A) = ∆
((h∗/2)d − (h/2)d)πd/2

Γ((d/2) + 1)
≤ C1(h∗ − h)

where

C1 =
πd/2hd−1

∗
2dΓ((d/2) + 1)

.

For the second term, let z0 = argminzpz,h. Then,

1− ph,min = 1− P (B(z0, h)) = P (B(z, h∗))− P (B(z0, h))
= P (B(z, h∗)−B(z0, h)) ≤ ∆µ(B(z, h∗)−B(z0, h))

≤ ∆
(hd∗ − hd)πd/2

Γ((d/2) + 1)
= C2(h∗ − h)

where C2 = πd/2hd−1
∗

Γ((d/2)+1) . The third term is bounded above by 1. Hence, Bn ≤ C1C
n
2 (h∗ − h)n+1.
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Now we lower bound Ah,n/2. First we claim that Sh contains the intersection of a sphere of radius r/2
where r = h∗− h, with S. Indeed, let z ∈ Sh. Then there exists z′ ∈ S such that ||z− z′|| ≤ h∗ = h+ r. Let
w ∈ B(z′, r/2). By the triangle inequality, ||w − z|| ≥ h+ r/2. So B(z′, r/2) ∩ S ⊂ Sh. Therefore,

P (Sh) ≥ P (B(z′, r/2) ∩ S) ≥ ∆µ(B(z′, r/2) ∩ S)
≥ δ∆µ(B(z′, r/2)) = C3(h∗ − h)d

where C3 = δ∆πd/2

Γ((d/2)+1) .

To lower bound the second term, Let z0 = argmaxzpz,h. Then,

1− ph,max = 1− P (B(z0, h)) = P (B(z, h∗))− P (B(z0, h))
= P (B(z, h∗)−B(z0, h)) ≥ ∆µ((B(z, h∗)−B(z0, h)) ∩ S)

≥ ∆δµ((B(z, h∗)−B(z0, h))) = ∆δ
(h∗ − h)dπd/2

Γ(d/2 + 1)

= C4(h∗ − h)d

where C4 = ∆δπd/2

Γ(d/2+1) . Thus, (1 − phmax)n ≥ Cn4 (h∗ − h)nd. For the third term, argue as above that
1 − ph,min ≤ C2(h∗ − h) so the third term is larger than 1/2 when h is close enough to h∗. Hence, An ≥
C3
2 C

n
4 (h∗ − h)d(n+1). �

Proof of Theorem 5.1. By our assumptions (see Section 2.1),

0 < lim
r→0

P (B(x, r))
rdi

<∞

where di = dim(Si), for any x outside of a set of Pi measure zero. By Theorem 5.7 in Mattila (1999), di is
also the box-counting dimension of Si. Thus, d∗ = maxi di. Combined with (29) this implies that, without
loss of generality, we can assume that there exist constants C > 0 and ρ > 0 such that for every ball B of
radius ρ < ρ and center in L(λ), P (B) > Cρd

∗
.

Let A be a covering of L(λ) with balls of radius ρ/2 and centers in L(λ), with ρ < ρ. By compactness of
L, |A| ≤Mρ−d

∗
, where M depends on d∗ and L(λ) but not on ρ.

Next, by Lemma 2.2, on the event Eh,ε = {‖ph − p̂h‖∞ < ε}, the set L̂h consists of k disjoint connected
sets. Since ρ < δ/2, this implies, on the same event, that N̂G

h (λ) ≥ k. Thus, on the event Eh,ε, for some
ε < ε1 to be specified below, a sufficient condition for the event Oh,n to be verified is that every A ∈ A
contains at least one point from the set Ĵh ≡ {i : p̂h(Xi) > λ} (similar arguments are used also in Cuevas
et al., 2000; Biau et al., 2007). We conclude that the probability of Och,n is bounded from above by

P(Ech,ε) +Mρ−d
∗

sup
A∈Ah

P
({
Xi 6∈ A,∀i ∈ Ĵh

}
∩ Eh,ε

)
.

Since, on the event Eh,ε the set Jhn = {i : phn(Xi) > λ+ ε} is contained in Ĵh, we further have that, for each
A ∈ Ah,

P
({
Xi 6∈ A,∀i ∈ Ĵh

}
∩ Eh,ε

)
≤ (1− P (A ∩ {ph > λ+ ε}))n , (35)

where the inequality stems from the identity among events

{Xi 6∈ A,∀i ∈ Jh} =
⋂
i

{{phn(Xi) > λ+ ε} ∩Ac} ∪ {phn(Xi) < λ+ ε}} ,

and the independence of the Xi’s. By Lemma 8.1, for any fixed 0 < τ < 1/2, there exists a point y ∈
L(λ) ∩ Lh(λ+ ε) such that B

(
y, τρ2

)
⊂ A ∩ Lh(λ+ ε), for all ε < ε(ρ, τ). Thus,

P (A ∩ Lh(λ+ ε)) ≥ P
(
B
(
y,
τρ

2

))
≥ C

(τρ
2

)d∗
,
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for all ε < ε(ρ, τ), where the second inequality is verified since ρτ
2 < ρ. Set ε(ρ) = min{ε1, ε(ρ, τ)}. The result

now follows from collecting all the terms and the inequality (1− x)n ≤ e−nx, valid for all 0 ≤ x ≤ 1. �

Proof of Theorem 5.2. Let Ah be a covering of Lh(λ) by balls of radius ρ/2 and centers in Lh(λ). By
the same arguments used in the proof of the theorem 5.1, the probability of the event (O∗h,n)c is bounded by

P(Ech,ε) +Mρ−d sup
A∈Ah

P
({
X∗j 6∈ A,∀j

}
∩ Eh,ε

)
,

where the probability is over the original sample X = (X1, . . . , Xn) and the bootstrap sample X∗ =
(X∗1 , . . . , X

∗
N ). Here the value of ε < ε1 used in the definition of the event Eh,ε is to be specified below.

Because of compactness of the support of P , M is a constant depending only d and S +B(0, h).
For a set S ⊆ Rd, we denote with S⊗n the n−fold Cartesian product of S and with PhX∗|X=x the

conditional distribution of the bootstrap sample X∗ given X = x, with x = (x1, . . . , xn). Let En = {x ∈
S⊗n : ‖ph − p̂h‖∞ ≤ ε}, where p̂h is the kernel density estimate based on x. Then, for each A ∈ Ah,

P
({
X∗j 6∈ A,∀j

}
∩ Eh,ε

)
= EX

(
PX∗|X

(
(Ac)⊗n

)
; En
)
,

where, if X ∼ P , EX(f(X); E) ≡
∫
{x∈E} f(x)dP (x). For every x ∈ En, by the conditional independence of

X∗ given X = x,

PX∗|X=x ((Ac)⊗n) =
(

1−
R
A∩Lh(λ) bph(v)dvR
{bph>λ} bph(v)dv

)N
≤

(
1−

R
A∩Lh(λ+ε)(ph−ε)dµ

V (h,ε)

)N
.

where the inequality is due to the fact that x ∈ En and with

V (h, ε) =
∫
Lh(max{λ−ε,0})

(ph + ε)dµ.

By Lemma 8.1, for any fixed τ < 1/2 and each h, there exists a point y ∈ Lh(λ) ∩ Lh(λ + ε) such that
B
(
y, τρ2

)
⊂ A ∩ Lh(λ+ ε), for all ε < ε(ρ, τ). Thus,∫

A∩Lh(λ+ε)

(ph − ε)dµ ≥
∫
B(y, τρ2 )

(ph − ε)dµ =
∫
B(y, τρ2 )

phdµ− εµ
(
B
(
y,
τρ

2

))
.

Next,

V (h, ε) =
∫
Lh(λ)

phdµ+ εµ (Lh(max{λ− ε, 0})) +
∫
Lh(λ)−Lh(max{λ−ε,0})

phdµ.

Following the proof of Lemma 8.1, one can verify that, because of assumption (G), infh∈(0,h) µ (Lh(λ)− Lh(max{λ− ε, 0}))→
0, as ε→ 0. Thus, ∫

A∩Lh(λ+ε)
(ph − ε)dµ

V (h, ε)
≥

∫
B(y, τρ2 ) phdµ∫
Lh(λ)

phdµ
(1 + o(1)),

as ε → 0. Then, using (30) and the facts τ < 1/2 and
∫
Lh(λ)

phdµ ≤ 1 for each h, we conclude that there
exists a ε(ρ, τ) such that ∫

A∩Lh(λ+ε)
(ph − ε)dµ

V (h, ε)
≥ Cρd

for all 0 < ε < ε(ρ, τ) and for some appropriate constant C, independent of ρ and h. Thus,

PX∗|X=x

(
(Ac)⊗n

)
≤ e−NCρ

d

and the results now follows by setting ε(ρ) = min{ε1, ε(ρ, τ)}. �
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Lemma 8.1. Assume conditions (LN2) (a) and (b) and condition (G). Then, for any 0 < τ < 1 and ρ > 0,
there exists a positive number ε(ρ, τ) such that, for all ε < ε(ρ, τ),

sup
h∈(0,h)

sup
x∈L(λ)

dist(x, Lh(λ+ ε)) < τρ. (36)

Proof of Lemma 8.1. The claim follows by minor modifications of the arguments used in the Appendix of
Biau et al. (2007). We provide some details for completeness and refer to Lee (2003) for background. Because
of assumption (G) and in virtue of the regular level set theorem (see, e.g. Lee, 2003, Corollary 8.10), for any
ε ∈ (0, ε1) and h ∈ (0, h), the set {x : ph(x) = λ + ε} is a closed embedded submanifold of Rd. Let r(ε, h)
be the maximal radius of the tubular neighborhood around {x : ph(x) = λ+ ε}. Set rh = infε<ε1 r(ε, h) and
notice that rh > 0 is positive for each h ∈ (0, h). Then, following the proof of Biau et al. (2007, Proposition
A.2), if ε < ε1, for any h ∈ (0, h),

sup
x∈∂Lh(λ)

dist (x, Lh(λ+ ε)) ≤ C−1
g ε, (37)

where Cg in the same constant appearing in (28) (see Equation (A.1) in Biau et al., 2007). In fact, since Cg
does not depend on h, (37) holds uniformly over h ∈ (0, h). Set ε(ρ, τ) = sup{ε ∈ (0, ε1) : Cε < τρ}. Then,
as L(λ) ⊆ Lh(λ) by (LN2) (b), (36) is verified for each ε < ε(ρ, τ). �

9 Appendix

9.1 The Geometric Density

In this section we describe in detail our assumptions on the unknown distribution P . For the sake of
completeness, we provide the basic definitions of Hausdorff measure, Hausdorff dimension and rectifiability.
We refer the reader to Evans and Gariepy (1992), Mattila (1999), Ambrosio et al. (2000) and Federer (1969)
for all the relevant geometric and measure theoretic background.

Let k ∈ [0,∞). The k-dimensional Hausdorff measure of a set E in Rd is defined asHk(E) ≡ limδ↓0Hkδ (E),
where, for δ ∈ (0,∞],

Hkδ (E) =
vk
2k

inf

{∑
i∈I

(diam(Ei))k : diam(Ei) < δ

}
where the infimum is over all the countable covers {Ei}i∈I of E, with the convention diam(∅) = 0. The
Hausdorff dimension of a set E ⊂ Rd is

inf
{
k ≥ 0: Hk(E) = 0

}
.

Note that H0 is the counting measure, while Hd coincides with the (outer) Lebesgue measure. When
1 ≤ k < d is an integer, Hk(E) coincides with the k-dimensional area of E, if E is contained in a C1

k-dimensional manifold embedded in Rd.
The set E is said to be Hk-rectifiable if Hk(E) <∞ and there exists countably many Lipschitz functions

fi : Rk 7→ Rd such that

Hk
(
E −

∞⋃
i=0

fi(Rk)

)
.

A Radon measure ν in Rd is said to be k-rectifiable if there exists a Hk-rectifiable set S and a Borel function
f : S 7→ Rd such that

ν(A) =
∫
A∩S

f(x)dHk(x),

for each measurable set A ⊆ Rd.
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Throughout this article, we assume that P is a finite mixture of probability measures supported on
disjoint compact sets of possibly different integral dimensions. Formally, for each Borel set A ⊆ Rd and for
some integer m,

P (A) =
m∑
i=1

πiPi(A),

where π is a point in the interior of the (m− 1)-dimensional standard simplex and each Pi is a di-rectifiable
Radon measure with compact and connected support Si, where di ∈ {0, 1, . . . , d} and Si ∩ Sj = ∅, for each
i 6= j. By Theorem 3.2.18 in Federer (1969), each of the lower dimensional rectifiable sets comprising the
support of P , can be represented as the union of C1 embedded submanifolds, almost every everywhere P .
Thus, we are essentially allowing P to be a mixture of distributions supported on disjoint submanifolds of
different dimensions and finite sets.

Our assumptions imply that, for every mixture component Pi, there exists a measurable real valued
function pi vanishing outside Si such that

pi(x) = lim
h→0

Pi (B(x, h))
vdih

di
, ∀x ∈ Si, (38)

where vdi is the volume of the unit Euclidean ball in Rdi . Furthermore, for any measurable set A,

Pi(A) =
∫
A∩Si

pi(x)dHdi(x),

whereHdi denotes the di-dimensional Hausdorff measure on Rd. Notice that we also have maxiHdi(Si) <∞.
We do not assume any knowledge of the probability measures comprising the mixture P , of their number,

supports and dimensions, nor of the vector of mixing probabilities π.
In virtue of (38), p(x) = ∞ if and only if pi(x) > 0 for some i such that di < d, which implies that

p(x) = ∞ if and only if x ∈ Si with di < d, almost everywhere P . Similarly, Si has Hausdorff dimension d
if and only if p(x) = πipi(x) for each x ∈ Si, almost everywhere µ. Furthermore, if x 6∈ S, then p(x) = 0.
Notice that, since µ ({x : p(x) =∞}) = 0, the geometric density p needs not be a probability density because,
in general,

∫
Rd p(x)dµ(x) ≤ 1. Nonetheless,

S = {x : p(x) > 0}.

As a final remark, even though the geometric density p is very different from the mixture densities pi, for
our clustering purposes, we need only to concern ourselves with estimating the level sets of p.

9.2 On condition (30)

In this section we show that condition (G), (29) and condition (T), given below, imply (30). We focus only
on the case in which L has dimensional smaller than d. If L is full-dimensional, then it is easy to see that
(30) holds.

For each h, let d(h) ≡ infx∈L,y∈∂Lh ‖x− y‖. Notice that 0 < dh ≤ h. Let 1 < D < 2. For any c ∈ (0, 1)
define h1(c) to be the infimum of all h < h such that for every ball of radius ρ no smaller than Dd(h) and
center in Lh(λ) there exists a ball B ⊂ A∩Lh of radius cρ. Set h1(c) =∞ when the infimum does not exist.
Let c∗ = sup{c ∈ (0, 1) : h1(c) <∞} > 0. It can be seen that, for any c < c∗, h1(c) <∞ and that h1(c)→ 0
as c ↓ 0.

Next, let Ar be a ball of radius r and center in L. Then, P (∂Ar) = 0 for all r ∈ (0, δ/2) − R, where
R ⊂ (0, δ/2) is finite (possible empty). Thus, by Theorem 4.2 in Rao (1962), for any 0 < U < 1 there exists
a h2(U) such that, for every h < h2(U),

Ph(Ar)
P (Ar)

> U,
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uniformly over the set of balls Ar with center in L and radius r ∈ (0, δ/2) − R. Furthermore, since
supx∈L,y∈Lh ‖x− y‖ → 0 as h→ 0, we can choose U and h1(U) such that Ph(Ar∩Lh)

P (Ar) > U , for all h < h1(U),
uniformly over the balls Ar. Therefore, by choosing an appropriate c and U , we may then assume that
h1(c) ≤ h2(U). Set h∗ = (h2(U)− h1(c))/2.

Let ρ < ρ be given. We consider 3 cases

1. ρ ≥ Dd(h∗) and h ≥ h∗.
In this simple case, we immediately obtain

Ph(Ah ∩ Lh) ≥ λµ(B) = λvdc
dρd. (39)

2. ρ ≥ Dd(h∗) and h < h∗.
By the definition of d(h∗), there exists a ball B of radius (D−1)ρ and center in L contained in A∩Lh.
Thus,

Ph(Ah ∩ Lh) ≥ Ph(B) ≥ UP (B) > UC((D − 1)ρ)d
∗
, (40)

where the last inequality stems from (29).

3. ρ < Dd(h∗).
First suppose that Ah is centered in L. If h ≥ h∗, then the ball B having the same center as Ah and
radius min{ρ, d(h∗)} is entirely contained in Lh. Thus, Ph(Ah ∩ Lh) ≥ Ph(B), and Ph(B) at least
λvdρ

d if ρ < d(h∗) and at least λ
Dvdρ

d if d(h∗) ≤ ρ ≤ Dd(h∗). If h < h∗, then

Ph(Ah ∩ Lh) ≥ UP (Ah) > UCρd
∗
, (41)

We now consider the other case of Ah centered in Lh − L. If ρ ≥ Dd(h), then the same arguments as
in case 2. above applies. Thus we only need to consider the case ρ < Dd(h). Actually, since D > 1,
analyzing the case ρ < d(h) will be enough. In fact, we will show that there exists a ball B of radius
cτρ such that B ⊂ Ah ∩ Lh, where τ is the constant in assumption (T); this will imply that

Ph(Ah ∩ Lh) ≥ Ph(B) ≥ λvd(τc)dρd. (42)

To prove the claim, first observe that, for each ball Ah of any radius and center in Lh, there exists a
ball A1 with the same radius and center in ∂Lh such that

µ(A) ≥ µ(A1).

Thus, without loss of generality, we can assume that Ah is centered in ∂Lh. Next, by assumption (G),
for each h, ∂Lh is a (d−1)-dimensional closed embedded submanifold of Rd. Thus, by a straightforward
adaptation of Proposition A.1 in Biau et al. (2007), there exists a ρ(h) such that for each r < ρ(h) and
each ball Ah of radius r and center in ∂Lh, there exists a ball B of radius cr such that B ⊂ Ah ∩ Lh.
Suppose that the following condition holds:

(T) there exists a constant 0 < τ < 1 such that

inf
0<h<h

d(h)
ρ(h)

> τ.

Thus, there exists a ball B ⊂ Ah ∩ Lh of radius τcρ if if ρ(h) < ρ < d(h) and of radius cρ if ρ < ρ(h).
Since τ < 1, (42) is verified.

The claim follows from taking the minimal value of the constants in (39), (40) , (41) and (42).
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