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Abstract

We introduce a Bayesian semiparametric methodology for joint
quantile regression with linearity and piecewise linearity constraints.
We develop a probability model for all quantile curves in a continuum
that define a coherent sampling distribution of the response variable.
We provide a detailed illustration of model fitting and inference by
analyzing wind speed trends of tropical cyclones in the North Atlantic.

Keywords: Bayesian inference, Gaussian process, Tropical cyclones,
Change points, Markov chain Monte Carlo.

1 Introduction

In many real-world applications, interest focuses on how an explana-
tory variable x ∈ X affects the tails of the conditional distribution
of a response y ∈ Y. For example, in studying the effect of various
demographic factors on birthweight (Abrevaya 2001) one might put
special emphasis on the variations in the lower tail. Similarly, in ana-
lyzing the time trend of hurricane intensity (Elsner et al. 2008), one
might pay extra attention to how the upper tail of the distribution of
hurricane speeds changes over time. Such tail dependencies are impos-
sible to capture through the traditional mean-regression models, such
as the linear regression or the kernel regression. Quantile regression
(Koenker and Bassett 1978), on the other hand, provides a natural
platform for such analysis. In quantile regression, one models a given
quantile of the conditional distribution as a function of the explana-
tory variable. An appropriate choice of the quantile point leads to a

1



direct inference on the tails. Unsurprisingly, the scientific literature on
quantile regression has witnessed a steady growth in the last couple of
decades, see, for example, Koenker (2005), Lancaster and Jun (2009)
and Gelfand and Kottas (2003).

For almost all of the existing quantile regression methods, infer-
ence is done by specifying a separate model for each candidate value
of the quantile. In some applications, a unique quantile of interest
presents itself, e.g., the median for dealing with residual survival time
(Gelfand and Kottas 2001). But in most cases, one can narrow down
the choice of quantiles only to a well interpreted short range. Focus-
ing on the bottom 10% tail of birth-weights, or the top 25% tail of
hurricane speeds sounds reasonable from the point of view of a sci-
entific investigation. But working only with the 0.1 quantile point or
the 0.75 quantile point appears ad-hoc for these studies. In typical
applications one chooses a number of representative points from the
range of interest and presents the resulting analysis side by side (see
Elsner et al. 2008 for an example). Such ensemble treatments, how-
ever, grossly overlook the fact that quantiles are closely intertwined
in specifying a single distribution for the response. This allows the
absurd possibility that the estimated quantiles can violate their nat-
ural ordering. More importantly, it is not at all clear how to combine
these separate analysis to form a coherent single view of the effect of
the explanatory variable on the response.

In this paper we introduce a novel framework for a joint regression
analysis of all quantiles within a given range of interest. Our approach
mirrors Bayesian density regression (see Dunson et al. 2007) where one
specifies a family of conditional densities θ = {f(y | x), x ∈ X , y ∈ Y}
as the model parameter. Inference about functionals of θ is based
on the posterior distribution p(θ | data) ∝

∏n
i=1 f(yi | xi)p(θ) where

(xi, yi)ni=1 are the observed data. Note that any quantile point of the
conditional distribution can be expressed as a functional of θ (and x)
– and hence density regression can be used for quantile regression as
well. In this approach, however, the functional relationship between
a quantile and x usually has a complicated nonparametric form. This
makes this approach less appealing when one is mainly interested in
inference about the trends of the quantile with respects to x.

To meet this goal, we directly specify as the model parameter
a family of conditional quantiles θ = {q(x, τ), x ∈ X , τ ∈ [0, 1]}.
The quantity q(x, τ) is to be interpreted as the number q for which
Pr(y ≤ q | x) = τ . This is uniquely defined whenever the condi-
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tional distribution of y given x admits a density – a condition that
we assume throughout the paper. For a coherent definition, we re-
quire for every x ∈ X , q(x, τ1) < q(x, τ2) whenever τ1 < τ2 with
q(x, 0) = ymin := inf Y and q(x, 1) = ymax := supY. An exact spec-
ification of θ that meets these requirements is discussed in the next
section (see also Dunson and Taylor 2005 for an approximate Bayesian
inference on a finite collection of quantiles based on a pseudo-likelihood
function). The advantage of specifying θ in terms of q(x, τ) is that we
can impose any desired structure on the functional form of the map
qτ (x) : x 7→ q(x, τ). For trend analysis, the most suitable form is a
linear structure on qτ (x) – and this is discussed in detail in Section 2.
Section 3 illustrates an analysis of the tropical cyclone data (Elsner
et al. 2008) with the proposed model. In Section 4, we discuss the
case when a linear structure on qτ (x) is imposed for only a specified
range of τ values with a weak structure used for the rest. In Section
5 we relax the definition of qτ (x) to a continuous, piecewise linear
form. In these sections, we restrict our focus to a one-dimensional
x for a clearer development of our nonparametric model. A simple
multivariate extension is discussed in Section 6.

2 A Joint Model for Linear Quantile

Regression

We begin with the case where linearity is desired for qτ (x) for all
τ ∈ [0, 1]. We shall restrict our focus to X given by a compact subset
of an Euclidean space. For clarity of exposition we shall assume x
to be one-dimensional and take X = [0, 1] by applying a suitable
location and scale change to the original explanatory variable. We
further assume Y to be bounded as well – and transform it to [0, 1].
This assumption is not binding for most real-world data, it is perhaps
quite reasonable to state that birthweight of human babies cannot
exceed 20lb, or that the maximum wind speed of a North Atlantic
hurricane must be under 200 nautical miles (nm) per hour.

Under these assumptions, q(x, τ) must satisfy

q(x, τ) = (1− x)q(0, τ) + xq(1, τ) (1)

with q(0, τ) and q(1, τ) defining monotonically increasing functions in
τ with q(0, 0) = q(1, 0) = 0 and q(0, 1) = q(1, 1) = 1. In other words
q(0, τ) and q(1, τ) define two cumulative distribution functions (CDF)
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on τ ∈ [0, 1]. For ease of discussion, we introduce the conditional
quantile functions Qx : τ 7→ q(x, τ) and re-express (1) as

Qx = (1− x)Q0 + xQ1. (2)

In fact, with Q0 and Q1 as CDFs on [0, 1], (2) gives a complete char-
acterization of θ = {q(x, τ), x ∈ [0, 1], τ ∈ [0, 1]} with linearity con-
straints on qτ . Because we assumed that the conditional distribution
of y given x admits a density f(y | x), Q0 and Q1 must also be differ-
entiable and satisfy

f(y | x) =
1

Q′x(Q−1
x (y)

. (3)

Thus a Bayesian analysis of θ given observations (xi, yi), 1 ≤ i ≤ n
can be based on the posterior distribution

p(Q0, Q1 | data) ∝
[ n∏
j=1

1
Q′xj (Q

−1
xj (yj))

]
p(Q0, Q1)

by specifying a suitable prior distribution p(Q0, Q1) on Q0 and Q1.
To specify p(Q0, Q1), we consider a random family of CDFs on

[0, 1], Φ = {φx(·) | x ∈ [0, 1]} for which x 7→ φx is smooth (almost
surely) and equate Q0(τ) = φ0(τ) and Q1(τ) = φ1(τ). Such an em-
bedding allows us to model the covariance between Q0 and Q1 – a
quantity that directly relates to the slopes of the lines qτ (x). In ac-
tual model fitting, however, only the extreme members φ0 and φ1 of
Φ play a role. We define Φ through an appropriate transformation of
a smooth sieve-Gaussian process (sGP) as discussed below.

For a real valued smooth function η(x, τ) on x ∈ [0, 1] and τ ∈ [0, 1]

φx(τ) =

∫ τ
0 e

η(x,t)dt∫ 1
0 e

η(x,t)dt
, x ∈ [0, 1], τ ∈ [0, 1]

defines a CDF φx on [0, 1] that varies smoothly with x. Therefore
a random Φ can be constructed simply by taking η to be a smooth
Gaussian process (GP) on [0, 1]× [0, 1]. This choice, however, leads to
an intractable posterior computation. A more useful choice is given
by

η(x, τ) = E[ω(x, τ) | ω(x∗1, τ
∗
1 ), · · · , ω(x∗K , τ

∗
K)]

where ω is a smooth GP on [0, 1]×[0, 1] andN = {(x∗1, τ∗1 ), · · · , (x∗K , τ∗K)}
is a finite set of points from [0, 1] × [0, 1]. The process η(x, τ), which
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we call a sieve-Gaussian Process (sGP), provides an interpolation type
approximation to ω but is completely determined through the K di-
mensional random vector ωN = (ω(x∗1, τ

∗
1 ), · · · , ω(x∗K , τ

∗
K))′.

We take ω to be a mean-zero GP with its covariance function given
by the square-exponential kernel Cov(ω(x1, τ1), ω(x2, τ2)) = σ2 exp[−β2

x(x1−
x2)2 − β2

τ (τ1 − τ2)2]. The corresponding η(x, τ) can be written as

η(x, τ) =
K∑
k=1

ξk exp[−β2
x(x− x∗k)2 − β2

τ (τ − τ∗k )2]

where ξ = (ξ1, · · · , ξK)′ = Σ−1ωN ∼ Normal(0,Σ−1) with the (k, l)-th
of element of Σ given by σ2 exp[−β2

x(x∗k−x∗l )2−β2
τ (τ∗k − τ∗l )2]. We fix

N as

N = {(0, 0), (0, δ), (0, 2δ), · · · , (0, 1), (1, 0), (1, δ), (1, 2δ), · · · , (1, 1)}

for some small δ (such as δ = 0.1). This choice places two equi-spaced
grids on the (x, τ)-space, one for x = 0 and the other for x = 1 ,
each covering the entire range of τ . This is a reasonable choice since
our model for θ is based only on η(0, τ) and η(1, τ). In Section 5 we
discuss the case where N is modeled with a uniform distribution.

The parameters βx, βτ and σ2 all exert control over the variation
of η(x, τ). Among these, βx has the biggest impact on the slopes
Q1(τ) − Q0(τ) of the regression lines qτ (x). For the limiting case
βx = 0, the two curves Q0 and Q1 are identical, and when βx → ∞,
these become independent of each other. Similarly, βτ , which affects
the covariance between η(τ1, x) and η(τ2, x), determines how each of
Q0 and Q1 increases from 0 at τ = 0 to 1 at τ = 1. A small value
of βτ ensures that this increase is close to linear in τ and hence the
conditional density of y given x is approximately uniform. A very
large value of βτ allows Q0 and Q1 to increase through a series of
short bursts, making the conditional densities possibly multimodal.
A range of different types of increase are entertained for values in
between. The overall variation of η(x, τ), and consequently of Q0, Q1

as well as Q1 −Q0, is controlled by σ2.
We use thin-tail priors on βτ and βx and a rather diffuse inverse-

chisquare prior on σ2:

p(βx, βτ , σ2) = ExGam(βx | νx, µx)×ExGam(βτ | ντ , µτ )×Inv-χ2(σ2 | νσ, σ2
0).

Here β ∼ ExGam(ν, µ) – the extreme-gamma distribution with shape
ν and scale µ – means that β = µ log(1 + γ) where γ follows a gamma

5



distribution with shape ν and unit scale. And σ2 ∼ Inv-χ2(ν, σ2
0)

means that κ = 1/σ2 follows a gamma distribution with shape ν/2
and scale 2/(νσ2

0). Notice that the right tail of ExGam(ν, µ) de-
creases extremely fast. If β ∼ ExGam(ν, 1), then Pr(β > b) =
O(exp(− exp(b))).

3 Illustration: Trends of Tropical Cy-

clones

Elsner et al. (2008) argued that tropical cyclones (TCs) in the North
Atlantic basin are getting stronger over the years. Figure 1 shows a
scatter plot of the maximum wind speed (WmaxST, derived from satel-
lite images) of all North Atlantic tropical cyclones between 1981 and
2006 against their year of occurrence (Year). We analyzed this data
with our proposed joint linear quantile regression model on WmaxST
with Year as the explanatory variable. We took WmaxST to be bounded
between 0 and 200, whereas the range of interest for the explanatory
variable was taken to be [1981, 2006]. These bounds were used to
transform these two variables into the interval [0, 1]. However, all
results presented here are shown in the original scale.

We fixed the prior parameters at: ν0 = 3, σ2
0 = 1, ντ = 2, µτ = 5,

νx = 2 and µx = 2. The corresponding prior distribution on the slope
sτ of the quantile line qτ is summarized in Figure 2 over a grid of τ
values in [0, 1]. The top left panel of this figure shows the point-wise
medians (black beads connected by a line), equal-tail 50% intervals
(mesh of dark grey vertical lines) and equal-tail 95% intervals (mesh of
light grey vertical lines in the background) for all τ in {0, 0.01, · · · , 1}.
The same is repeated in the bottom left panel but only for τ values
larger than or equal to 0.75 – the range of interest for this analysis.
Other choices of the prior parameters led to similar posterior inference
and are not reported here.

For posterior inference, we used a Markov chain sampler to draw
(ωN , β2

x, β
2
τ ) from their joint posterior distribution given the data.

The variance parameter σ2 was integrated out by using the conjugacy
property of the normal distribution on ωN and the inverse chi-square
distribution on σ2. Each coordinate of ωN was updated through a
symmetric Metropolis move generated from a t distribution, whereas
β2
x and β2

τ were updated through asymmetric Metropolis-Hastings
moves generated from log-normal distributions. The likelihood com-
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Figure 1: Tropical cyclone data form North Atlantic basin (Elsner et al.
2008). Scatter plot of maximum wind speed (in nautical miles per hour)
versus year of occurrence. The light grey lines in the background show the
quantile lines qτ (x) from one iteration of our MCMC for fitting the joint
linear quantile regression model.
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Figure 2: Prior and posterior credible intervals for slopes of quantile regres-
sion lines for the analysis of Tropical Cyclone data from Elsner et al. (2008).
The top row shows slopes for a grid of τ covering the entire interval [0, 1]
with mesh size 0.01. The bottom row shows an enlargement of the upper
tail: τ ∈ [0.85, 1]. Note the drastic rescaling of the y-axis between the prior
(left) and the posterior (right).
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putation was carried out by evaluating η(0, τ) and η(1, τ) at τ ∈
{0.00, 0.01, 0.02, · · · , 1.00} and approximating

∫ τ
0 e

η(x, t)dt on this grid
points by the trapezoid rule. The resulting discretized version of Qx
was then used to approximate the density evaluations f(yj | xj) =
1/Q′xj [Q

−1
xj (yj)].

We ran four separate chains of the sampler, over-dispersed with
respect to the initial value of ωN . This ensured over-dispersion with
respect to the slopes sτ . Each chain was run for 100,000 iterations.
The chains converged rapidly with respect to sτ (see Figure 3) and
other parameters, as per the potential scale reduction factor check of
Gelman and Rubin (1992). The first 10,000 iterations were removed
from each chain, and the remaining iterations were thinned and pooled
together to give a sample of size 10,000.

The grey lines in the background of Figure 1 represent the ac-
tual qτ lines derived from a single draw in our Markov chain sample
(MCS). The top and bottom right panels of Figure 2 show point-
wise medians and equal-tail 50% and 95% intervals of the posterior
distribution of sτ , as approximated by our MCS. Table 1 reports
the approximated posterior probabilities of the events {sτ > 0} for
τ ∈ {0.85, 0.9, 0.95, 0.975, 0.99}.

Our summary in Table 1 supports the claim by Elsner et al. (2008)
that the strongest North Atlantic TCs have gotten stronger over the
last couple of decades. However, we notice a greater cohesion between
the posterior probabilities in Table 1 as compared to the P-values
reported in Table 1 of Elsner et al. (2008) where it appears that while
sτ is significantly different from zero for τ = 0.9 and τ = 0.975, it is
not for τ = 0.95!

A closer look at Figure 2 reveals that an increasing trend persists
across the whole range of τ – a finding that differs from the conclu-
sions drawn by Elsner et al. (2008). However, the magnitude of this
increase is more dramatic in the upper tail. These findings have poten-
tial implications for the current debate on global warming (Trenberth
2005).

4 Linear model on a subinterval of τ

Next we consider the case when a joint linear model for qτ is desired
only for τ within a subinterval of [0, 1]. For ease of exposition we fix
this subinterval to be [τ , 1] for some 0 < τ < 1. We pursue a simple

9



0e+00 4e+04 8e+04

0
1

2
3

tau =  0.1

Iteration

s_
ta
u

0e+00 4e+04 8e+04

-2
0

2
4

tau =  0.5

Iteration
s_
ta
u

0e+00 4e+04 8e+04

0
1

2
3

tau =  0.9

Iteration

s_
ta
u

Figure 3: Trace plots of sτ for τ = 0.1, 0.5, 0.9 from four parallel, thinned
out chains.

North Atlantic Basin
τ 0.85 0.90 0.95 0.975 0.99

Pr(slope of qτ > 0 | data) 0.989 0.980 0.960 0.942 0.921

Table 1: Posterior probability that a quantile line qτ has a positive slope, for
chosen values of τ from the upper tail of WmaxST.

extension of the model described in Section 2 and specify a very weak
structure on the conditional behavior of yj given yj < qτ (xj). First, a
linear model is specified on the boundary line qτ through

qτ (x) = (1− x)Q
0

+ xQ
1

where (Q
0
, Q

1
) ∈ (0, 1)2. Next the quantile lines qτ (x) = Qx(τ) for

τ > τ are defined as Qx(τ) = (1− x)Q0(τ) + xQ1(τ) with

Q`(τ) = Q
`

+ (1−Q
`
)φ`

(
τ − τ
1− τ

)
, ` = 0, 1

where φx are as in Section 2. Then the conditional density f(yj | xj)
at an observation point 1 ≤ j ≤ n can be split as

f(yj | xj) = τfj(yj | xj) + I(yj ≥ qτ (xj))
1

Q′xj (Q
−1
xj (yj))

with fj(y | xj) defining a probability density function with support
[0, qτ (xj)].
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Figure 4: Prior and posterior credible intervals for slopes of quantile regres-
sion lines for the analysis of Tropical Cyclone data from Elsner et al. (2008).
Only qτ for τ > 0.8 were modeled.

We take Q
`

= 1/(1 + exp(−λ`)), ` = 0, 1 where (λ0, λ1) is taken
to be a bivariate normal vector, independent of η, with each com-
ponent having mean logit(τ) and variance σ2

λ and their correlation
given by exp(−β2

x). We specify prior distributions on βx, βτ and σ2

as in Section 2, possibly with different hyper-parameters, and set σ2
λ

fixed. We model fj ’s, j = 1, · · · , n as conditionally independent given
η, q0, q1 with E[fj(y | xj)] = Uniform(y | 0, qτ (xj)). This assumption
of conditional independence across j allows us to marginalize over fj ’s
producing the integrated likelihood of (η,Q

0
, Q

1
) as

n∏
j=1

[(
τ

qτ (xj)

)I(yj<qτ (xj))( 1
Q′xj (Q

−1
xj (yj))

)I(yj≥qτ (xj))]
.

Therefore, for posterior inference on qτ , τ ≥ τ , we do not require to
explicitly model fj except for specifying its mean. As a consequence,
the posterior computation remains very similar to the one required
for the model in Section 2. One must remember, however, that this
model offers no learning and prediction for the conditional quantiles
of y at τ < τ .

Figure 4 shows a graphical summary of an analysis of the North
Atlantic tropical cyclone data with the new model with τ = 0.8. As
before, likelihood computation was carried out on a grid of τ values
spanning (τ , 1) with an increment of 0.01. The hyper-parameters on
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βx, βτ and σ2 were chosen as in Section 3 and σ2
λ was fixed at 2. The

left panel of Figure 4 shows the median and 50% and 95% credible
intervals from the prior distribution of sτ , the slope of qτ on a grid of τ
values. The right panel shows the same summaries from the posterior
distribution of sτ . We approximated the posterior intervals through
a Markov chain sampler as in Section 3, only with an additional step
per iteration for a symmetric Metropolis update of λ. We ran four
parallel chains, each for 100,000 iterations of which the first 10,000
iterations were discarded as burn-in, and the remaining 90,000 iter-
ations were evenly thinned to a total of 2,500 draws per chain. The
chains converged rapidly – they were initialized with over-dispersed
starting values for sτ . The thinned chains passed the potential scale
reduction factor check for convergence. They were then combined to
form a Markov chain sample of size 10,000.

The posterior summary of sτ , τ > 0.8, under the new model is
quite similar to the one obtained in Section 3, the only difference
being a slight upward movement and widening of the credible inter-
vals under the new model. The posterior probability of {sτ > 0} for
τ ∈ {0.85, 0.9, 0.95, 0.975, 0.99} were approximated to be 0.990, 0.976,
0.942, 0.919 and 0.892, respectively.

5 Piecewise linear joint quantile regres-

sion

For trend analysis we argue in Section 2 that linear quantile lines are
much more interpretable than arbitrary smooth curves derived from
a non-parameteric density regression model. It is however possible to
capture much of the flexibility of the latter by constructing a piecewise
linear model on the quantiles that retains some of the interpretability
of a simple linear model. In this section we discuss a straightforward
extension of our joint linear model of Section 2 to a piecewise linear
one. The same can be applied to the restricted model of Section 4,
but we omit the details.

The basic premise of our extension is that the same set of change
points apply to all quantile lines in determining their piecewise linear-
ity. That is, X = [0, 1] can be split into to subintervals [bm−1, bm] with
0 = b0 < b1 < · · · < bM = 1, so that within each subinterval qτ (x) are
linear in x for all τ . This essentially postulates possible global regime
changes in the conditional behavior of the response, but within any
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regime a single linear model on the quantiles suffices to explain the
dependence of y on x. We also restrict these changes to be continuity
preserving, so that each qτ (x) remains continuous over the whole of
x ∈ [0, 1]. Such a model on qτ (x) = Qx(τ) can be constructed as

Qx(τ) =
(bm − x)Qbm−1(τ) + (x− bm−1)Qbm(τ)

bm − bm−1
for x ∈ (bm−1, bm],

where Qbm defines a CDF on τ ∈ [0, 1] for m = 0, 1, · · · ,M . Now con-
sider Φ = {φ(x, τ)} – a random family of CDFs on τ ∈ [0, 1] which vary
smoothly with respect to x ∈ [0, 1]. Then we can put a joint model on
Qbm , 0 ≤ m ≤M by setting Qbm(τ) = φ(bm, τ). Our choice of Φ from
Section 2, namely φ(x, τ) =

∫ τ
0 exp(η(x, t))dt/

∫ 1
0 exp(η(x, t))dt where

η(x, τ) is a sieve-GP, fits in perfectly with this framework. The node
set N however requires an expansion to the whole of X = [0, 1], and
we shall do this by considering the elements (x∗k, τ

∗
k ) of N as model pa-

rameters and take them to be uniformly distributed over [0, 1]× [0, 1].
To specify a prior on the change points, first define the interval

lengths γm = bm− bm−1, m = 1, · · · ,M . The vector γ = (γ1, · · · , γM )
defines a probability vector of length M . One can thus proceed by
defining a prior p(M) on M and then model p(γ | M) = Dir(γ |
αM,1, · · · , αM,M ). We arrive at such a model through a slightly round-
about way in order to facilitate computation as well as the choice of the
parameters αM,m. We first choose an upper bound Mmax on M . Next
introduce λl ∈ {1, · · · ,Mmax}, 1 ≤ l ≤Mmax and χ = (χ1, · · · , χMmax)
– a probability vector – and define

γm =
∑
l

I(λl = m)χl, for m = 1, · · · ,Mmax.

This defines Mmax disjoint intervals (bm−1, bm] covering (0, 1] where
bm = γ1 + · · ·+ γm. Some of these intervals, however, could be empty
– (bm−1, bm] has length zero whenever there is no λl that equals m.
Therefore the number of non-empty intervals defined as above can
vary from M = 1 to M = Mmax depending on the ties within the
vector λ = (λ1, · · · , λMmax).

We induce ties within λ by specifying

p(λ) =
ck−1

∏k
l=1(Nl − 1)!∏Mmax

l=1 (c+ l)

where k denotes the number of distinct elements in λ and N1, · · · , Nk

denote the sizes of the k clusters formed by partitioning λ accord-
ing to its ties, and c is a fixed positive number. This formulation is
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exactly similar to the clustering distribution induced by a Dirichlet
process prior (see Escobar and West 1995). We model χ as p(χ) =
Dir(χ|a, · · · , a) where a > 0 is a fixed number.

The above specification has two advantages. First the conditional
distribution of interval lengths can be written as p(γ | λ) = Dir(aK1, · · · , aKMmax)
whereKm = #{l : λl = m}. This allows a greater flexibility in how the
intervals can vary from each other in length, although, marginalized
over λ, they remain exchangeable. Second, the models corresponding
to two consecutive choices of M , say M = m and M = m+ 1, are not
entirely isolated. One can move from one model to another through a
series of small changes in the ties of λ.

This new model can be fitted with the help of a Markov chain
sampler similar to the one described in Section 2, but with additional
updates for λ and χ. To update χ given λ and other parameters,
we reparametrize the model in terms of γm =

∑
l I(λl = m)χl and

χ∗(m) = vector({χl : λl = m})/γm, 1 ≤ m ≤ Mmax where vector(S)
denotes the vector formed by the elements of a set S (placed in
any arbitrary order). The conditional prior distribution on (γ =
(γ1, · · · , γMmax), χ∗(1), · · · , χ

∗
(Mmax)), given λ and other parameters, is

Dir(γ | n1a, n2a, · · · , nMmaxa)
Mmax∏
m=1

Dir(χ∗(m) | a, · · · , a)

where nm =
∑Mmax

l=1 I(λl = m). We update γ through a Metropolis-
Hastings move and update χ∗(m)’s by sampling these vectors from
their conditional posterior distributions which are simply identical
to their conditional prior distributions described above. To update
λm, we propose a new value for it by sampling from the conditional
prior p(λm | {λl : l 6= m}) and then accept or reject it accord-
ing to the Metropolis-Hastings acceptance formula. This conditional
prior distribution on λm can be represented by a probability vector
π(m) = (π(m)

1 , · · · , π(m)
Mmax

) on {1, · · · ,Mmax} with π
(m)
l ∝ n−l when

n−l =
∑

j 6=m I(λj = l) > 0 and π(m)
l ∝ c/(Mmax − k) otherwise, where

k =
∑Mmax

l=1 I(n−l > 0).
Figure 5 shows a summary of our analysis of the cyclone data with

the proposed piecewise linear model. The top panel shows snapshots
of qτ curves from two iterations of our MCMC. We used the same ν0,
σ2

0, ντ and µτ as in Section 3 but fixed νx = 5 and µx = 5. This change
allows the prior distribution on βx to shift to the right, entertaining
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Prior probabilities for piecewise linear model
# Subintervals 1 2 3 4 5
Prior probability 0.039 0.147 0.249 0.253 0.175
# Subintervals 6 7 8 9 10
Prior probability 0.089 0.034 0.010 0.003 0.000

Table 2: Prior probability distribution of number of subintervals

more variability in φ(x, ·) across x in anticipation of breaks in linearity.
We took Mmax = 25 – the total duration (in years) of the observation
period 1981-2006. We fixed the precision constant c = 1, the induced
prior distribution on the number of subintervals is reported in Table
2. We used a = 0.5, allowing the marginal density of each χl to peak
at zero. Such a choice allows more rapid trades of λl between different
subintervals, since each such change creates a small perturbation in
the likelihood function.

The left bottom panel of Figure 5 shows the posterior distribution
of the number of subintervals. This summary alone may not suffice to
make inference on the actual breaks in linearity. Our model is prone
to maintaining short subintervals that move rapidly in order to assist
bridging configurations with different number of change points. For
this reason, we provide another summary of the change points in the
right bottom panel of Figure 5. Here we show the posterior probabil-
ity (color coded in grey scale) that each of the time bins 1981-1982,
1982-1983 and so on, contains a boundary of at least one non-empty
subinterval. It appears that apart from the two boundary bins (1981-
1982 and 2005-2006) the other bins have negligible posterior proba-
bilities (≤ 0.10) of containing any change point. The boundary bins
(0.38 and 0.47 respectively) have moderate probabilities of containing
one. Inference at boundaries, however, should always be done with
more caution!

6 Multivariate extension

In Sections 2 and 4, we discussed our joint linear quantile regression
models only in the context of a univariate x. These models can be
easily extended to the multivariate case, but some additional compu-
tations are required. We shall describe this only for the model from
Section 2, where a linear model is sought for all τ ∈ [0, 1]. When
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Figure 5: Analysis of cyclone data with piecewise linear joint quantile re-
gression model. The top row shows snapshots of qτ curves from two separate
iterations of our MCMC. The bottom row shows two summaries of the subin-
terval formation. The left plot shows the posterior distribution on the number
of subintervals. The right plot shows the posterior probability for each time
bin (1981-1982), (1982-1983) and so on, to contain at least one change point.
These posterior probabilities are color coded in a grey scale with darker bins
having a higher posterior probability of containing a change point. No change
points are apparent except for the two bins at the boundary.
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x = (x1, · · · , xd) ∈ [0, 1]d, one needs d + 1 many CDFs, Q0, Q1, · · · ,
Qd, to define the quantile curves qτ (x) as

qτ (x) = (1− x1 − x2 − · · · − xd)Q0(τ) + x1Q1(τ) + · · ·+ xdQd(τ).

However, for d > 1, such a definition would not guarantee that qτ1(x) <
qτ2(x) for all x ∈ [0, 1]d whenever τ1 < τ2. Therefore, one needs to
restrict the model Q0, · · · , Qd to the set for which qτ defined as above
obeys these quantile orderings. One can still use the sieve-Gaussian
process construction: Qj(τ) = φ(ej , τ) with φ(x, τ) =

∫ τ
0 exp(η(x, t))dt/

∫ 1
0 exp(η(x, t))dt,

where η(x, τ) defines a sieve-GP on [0, 1]d × [0, 1] and ej denotes the
j-th canonical vector in Rd with all zeros except for a one at its j-th
coordinate. The Markov chain exploration of this model now must
begin with an η for which qτ is correctly ordered at every x ∈ [0, 1]d,
and the subsequent updates must reject all proposals that would lead
to violation of this property. The ordering checks are easy to per-
form once we restrict ourselves to a grid of τ values {0, δ, 2δ, · · · , 1}
finely spanning [0, 1]. It then suffices to check for every pair of values
τ1 = mδ and τ2 = (m + 1)δ that qτ1(x) < qτ2(x) at every x ∈ [0, 1]d.
Because qτ ’s are hyper-planes, qτ1(x) < qτ2(x) for all x ∈ [0, 1]d if and
only if qτ1(x̃) < qτ2(x̃) where x̃ = (x̃1, · · · , x̃d) is given by

x̃j = I(Qj(τ1)−Qj(τ2) > Q0(τ1)−Q0(τ2)), j = 1, · · · , d.

Therefore it suffices to check the ordering of qτ1 and qτ2 only at the
point x̃.

7 Conclusion

We have introduced a statistical framework for a joint analysis of quan-
tile regression on a range of quantile points with linearity and piecewise
linearity constraints on the quantile curves. This framework offers a
sounder alternative to the usual practice of stitching together quantile
regression analysis done separately for each choice of a quantile point
from a range of interest. Our analyses of the North Atlantic tropical
cyclone data shows interesting differences with a previous analysis of
this data by Elsner et al. (2008). We find that an increasing trend of
intensity persists across the entire range of quantiles and the rate of
this increase heightens in the upper tail.
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