
Statistics and Machine Learning 
for the Physical Sciences

Ann B. Lee 
Department of Statistics & Data Science 

Carnegie Mellon University



What Does a Statistician Do?



What Does a Statistician Do?

Short answer: We try to make sense of the world 
by analyzing data. 

The fundamental problem in statistics:



What Does a Statistician Do?

Short answer: We try to make sense of the world 
by analyzing data. 

The fundamental problem in statistics:

Machine Learning = science of using algorithms 
to learn from and make predictions from data



Machine Learning & Statistics

https://dzone.com/articles/what-everyone-should-know-about-machine-learning



Machine Learning & Statistics

In Statistics/Data Science:  

Heavy focus on developing insight regarding the 
physical system that generated the data.  

Work a lot with probabilistic models. Quantify the 
uncertainty in our predictions.

https://dzone.com/articles/what-everyone-should-know-about-machine-learning



There Exists a Whole Range of Different Learning 
Algorithms for Different Tasks and of Different Complexity

In general: More flexible models require more data 
(examples) for “training”. They also tend to be less 
interpretable. So there’s a trade-off…

Image credit: kdnuggets.com



So What Kind of Problems Do Statisticians Work On?
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Statistics --- Close Ties to Many Fields

Machine learning (ML) 
Computer science 
Engineering

Physical Sciences 
Astronomy, Earth Sciences 
Chemistry

Biology  
Genetics, Medicine 
Neuroscience (CNBC)

Public policy (Heinz) 
Social Sciences 
       Finance

STATISTICS 
AT CMU



Astrostatistics at CMU

 The CMU Statistics department has been involved in 
astrostatistics since the late 1990s.  

Our group is one of very few (others are based at 
Harvard, Imperial College, UC Berkeley, UC Davis and 
University of Washington) 

We work closely with astronomers at Pitt and the 
McWilliams Center for Cosmology at CMU.



STAMPS@CMU

In 2018, we started the STAtistical Methods for the 
Physical Sciences (STAMPS) research group. 

Problems in the physical sciences have similar statistical 
challenges —- involving massive data sets from different 
physical probes (e.g. images from satellites), large 
simulations, and complex measurement errors. 



ï120 ï100 ï80 ï60 ï40 ï20 0 20
0

10

20

30

40

50

60

70

Hurricanes Edouard (2014; 109mph) and Nicole (2016; 54mph)   

 Modeling Hurricane Intensity Change Using 
GOES Satellite Imagery [McNeely/Lee/Wood/Hammerling]

H



Hurricanes and Ocean Heat Content 
[Hu/Kuusela/Lee/Giglio/Wood]

https://argo.ucsd.edu



Joint Analysis of Hurricane Intensity Change by 
Integrating Satellite and In Situ Observations



Tons of Data and Exciting Problems in Astronomy…

Sloan Foundation Telescope (2.5-m)
Hubble Space Telescope

CANDELS Multi-Cycle Treasury Program 3
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Figure 1. Four-orbit images of HUDF galaxies from ACS vs. 2-orbit images from WFC3/IR illustrate the importance of WFC3/IR
for studying distant galaxy structure. WFC3/IR unveils the true stellar mass distributions of these galaxies unbiased by young stars and
obscuring dust. The new structures that emerge in many cases inspire revised interpretations of these objects, as indicated.

SN portions of both proposals were consolidated under

a separate program by Riess et al. (GO 12099), and the

SN Ia follow-up orbits from both programs were pooled.

Our program takes prime responsibility for the highest-

redshift SNe (z > 1.3), while CLASH addresses SNe at

lower redshifts.

The resulting observing program, now entitled the Cos-

mic Assembly Near-infrared Extragalactic Legacy Sur-

vey (CANDELS), targets five distinct fields (GOODS-N,

GOODS-S, EGS, UDS, and COSMOS) at two distinct

depths. Henceforth, we will refer to the deep portion of

the survey as “CANDELS/Deep” and the shallow por-

tion as “CANDELS/Wide.” Adding in the Hubble Ul-

tra Deep Fields (HUDF) makes a three-tiered “wedding

cake” approach, which has proven to be very e⇥ective
with extragalactic surveys. CANDELS/Wide has expo-

sures in all five CANDELS fields, while CANDELS/Deep

is only in GOODS-S and GOODS-N.

The outline of this paper is as follows. We first provide

a brief synopsis of the survey in §2. We follow in §3 with

a detailed description of the major science goals along

with their corresponding observational requirements that

CANDELS addresses. We synthesize the combined ob-

serving requirements in §4 with regard to facets of our

survey. A description of the particular survey fields and

an overview of existing ancillary data are provided in §5.
Section 6 describes the detailed observing plan, including

the schedule of observations. Section 7 summarizes the

paper, along with a brief description of the CANDELS

data reduction and data products; a much more complete

description is given by Koekemoer et al. (2011), which is

intended to be read as a companion paper to this one.

Where needed, we adopt the following cosmological

parameters: H0 = 70 km s

�1
Mpc

�1
; �tot,��,�m =

1, 0.3, 0.7 (respectively), though numbers used in indi-

vidual calculations may di⇥er slightly from these values.

All magnitudes are expressed in the AB system (Oke &

Gunn 1983).

2. CANDELS SYNOPSIS

Table 1 provides a convenient summary of the sur-

vey, listing the various filters and corresponding total

exposure within each field, along with each field’s co-

ordinates and dimensions. The Hubble data are of sev-

eral di⇥erent types, including images fromWFC3/IR and

WFC3/UVIS (both UV and optical) plus extensive ACS

parallel exposures. Extra grism and direct images will

also be included for SN Ia follow-up observations (see

§3.5), but their exposure lengths and locations are not

pre-planned. They are not included in Table 1. In pe-

rusing the table, it may be useful to look ahead at Fig-

ures 12–16, which illustrate the layout of exposures on

the sky.

Our main focus at CMU Astrostats is on cosmology — the 
study of the origin, evolution and structure of the Universe.



First a Brief Cosmology Primer…

Go back in time by probing deeper into the sky. Allows 
us to constrain theories of how the Universe is evolving.



Possible Fates of the Universe

The ``Big Crunch’’ or the ``Big Rip’’ or a coasting universe?  



Possible Fates of the Universe

Yes, we live in an accelerating universe! 



What is the Universe Made Up of?

https://www.lsst.org/science/dark-energy

70% Dark Energy; 25% Dark Matter; 5% Ordinary Matter 

Image credit: Markus Rau



The Standard Model of Big Bang Cosmology 
(Lambda CDM Model) 

Lambda-CDM is a parametrization of Big Bang cosmology. 

These parameters can be constrained by observations.
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(Dark) Matter: 
`pulls universe together’ Source: https://www.hep.ucl.ac.uk/darkMatter/



Mapping the Sky

Sloan Foundation Telescope (2.5-m)
Hubble Space Telescope

Large Synoptic Survey Telescope (LSST), 8.4 mirror, ready to launch in 2022



How Much Data Do We Have?

We have entered the era of 
``precision cosmology’’. 

We have 200 million galaxy 
images from ``shallow’’ 
surveys (like SDSS). 

We have 200,000 galaxy 
images from ``deep’’ surveys 
(like HST CANDELS)

Credit: Peter Freeman

https://classic.sdss.org/legacy



How Much Data Do We Have?

We have entered the era of 
``precision cosmology’’. 

We have 200 million galaxy 
images from ``shallow’’ 
surveys (like SDSS). 

We have 200,000 galaxy 
images from ``deep’’ surveys 
(like HST CANDELS)

Beginning in 2022, LSST will begin collecting images of 
several billion galaxies. (There are thought to be over 
200 billion galaxies in the Universe)

Credit: Peter Freeman

https://classic.sdss.org/legacy



Simulating the Evolution of the Universe
To understand how the universe evolved into the structures we 
see today, we can use computer simulations to numerically 
evolve a representation of some fraction of the universe in time. 

https://www.illustris-project.org



http://cyberpunkswebsite.com/wp-content/uploads/2014/01/cosmic_web_3.jpeg

http://astrobites.com/wp-content/uploads/2012/07/cosmic-web.jpg

http://www.americaspace.com/wp-content/uploads/2014/01/AstroMSseqF_063aL_18135101.jpg

The “cosmic web”

A cluster within the 
cosmic web

(which may contain 
hundreds of galaxies)

A Simulated
Universe

Credit: Peter Freeman



Key points:
1) Simulation output varies 
as a function of input
theoretical parameters.

2) Simulations create a
distribution of clusters that
all have different masses.

3) The observed distribution
of real clusters and their masses
allow us to constrain the theory
that goes into the simulations.

http://inspirehep.net/record/854412/files/Hallman07f3.png Credit: Peter Freeman



Examples of Things I’ve Worked On:  
Three Astrostatistics Problems

1. How do you measure the distance to a galaxy? 

2. How do you weigh a galaxy or a galaxy cluster?  

3. How do you constrain models of the Universe?



Examples of Things I’ve Worked On:  
Three Astrostatistics Problems

1. How do you measure the distance to a galaxy? 

2. How do you weigh a galaxy or a galaxy cluster?  

3. How do you constrain models of the Universe?



Recall: ``Look-Back Time’” — Go Back in 
Time by Probing Deeper into the Sky.

Can’t measure distances directly —- but because we live in 
an expanding universe, more distant galaxies appear to be 
moving away faster from us than less distant galaxies.



We Measure Distances to Distant 
Galaxies by Estimating their ``Redshift’’

Background universe expands 
and stretches light waves. 

Observed spectra shifts to longer 
wavelengths. 

Redshift (z) = proxy for distance
Image credit: Markus Rau

 



We Measure Distances to Distant 
Galaxies by Estimating their ``Redshift’’

Background universe expands 
and stretches light waves. 

Observed spectra shifts to longer 
wavelengths. 

Redshift (z) = proxy for distance
Image credit: Markus Rau

https://ogrisel/github.io
z =

�obsv � �emit

�emit



Redshift Estimation from Photometry

Left: High-resolution galaxy spectra from spectroscopy.  

Spectroscopy resource intensive ⇒ More than 99 percent of 

today’s galaxy observations are instead from photometry. 

Right: Photometry (broad-band filters)                     

Challenge -- estimate redshift using photometric “colors”
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Redshift Estimation from Photometry

Left: High-resolution galaxy spectra from spectroscopy.  

Spectroscopy resource intensive ⇒ More than 99 percent of 

today’s galaxy observations are instead from photometry. 

Right: Photometry (broad-band filters)                     

Challenge -- estimate redshift using photometric “colors”
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Obtain a Calibration catalog

Spectroscopic
observations

Accurate 
Distance 

Information

Image (photometric) 
observations

`Target’ catalog

Spatially 
match

Smaller calibration catalog with both photometric 
information and accurate distance information

Slide by Markus Rau

Main Steps in “Photo-z Estimation”:



Applications of Machine learning
Match Calibration data from spatially overlapping 
region of
spectroscopic survey and photometric survey

Obtain distances for all galaxies in the (photometric) 
sample

matched Catalog
colors + accurate distances

Known 
accurate Distance `Train’

Only photometric
information 

colors
Predict Distance Apply

Slide by Markus Rau

Main Steps in “Photo-z Estimation”:



Image credit: Markus Rau

However, multiple widely different distances (redshift) can 
be consistent with the observed colors of a galaxy…



However, multiple widely different distances (redshift) can 
be consistent with the observed colors of a galaxy…

Hence, astronomers are more interested in algorithms that 
return a probability distribution function (PDF) over possible 

distances (given observed colors of a galaxy) than a “single 
best guess” of what the distance to that galaxy is.  

Most galaxy image surveys provide catalogs of such PDFs

Probability Distribution

Image credit: Markus Rau



Examples of Things I’ve Worked On:  
Three Astrostatistics Problems

1. How do you measure the distance to a galaxy? 

2. How do you weigh a galaxy or a galaxy cluster?  

3. How do you constrain models of the Universe?



Recall:
1) Simulation output varies 
as a function of input
theoretical parameters.

2) Simulations create a
distribution of clusters that
all have different masses.

3) The observed distribution
of real clusters and their masses
allow us to constrain the theory
that goes into the simulations.

http://inspirehep.net/record/854412/files/Hallman07f3.png Credit: Peter Freeman



But…(small problem)…we cannot “weigh” real clusters.

http://www.astronomynotes.com/galaxy/abell1689-gravlens.jpg

Credit: Peter Freeman



Cluster galaxy velocities are
affected by the cluster mass.
Generally: the higher the mass,
the greater spread in velocities.
(But we only see the velocities
projected onto a line-of-sight.)

Credit: Peter Freeman



The project: can you calibrate the relationship between
cluster galaxy velocities and cluster mass?Draft version October 6, 2014

Preprint typeset using LATEX style emulateapj v. 05/12/14

A MACHINE LEARNING APPROACH FOR
DYNAMICAL MASS MEASUREMENTS OF GALAXY CLUSTERS

M. Ntampaka1, H. Trac1, D.J. Sutherland2, N. Battaglia1, 3, B. Póczos2, J. Schneider2

Draft version October 6, 2014

ABSTRACT

We present a modern machine learning approach for cluster dynamical mass measurements that is
a factor of two improvement over using a conventional scaling relation. Di↵erent methods are tested
against a mock cluster catalog constructed using halos with mass � 1014 M�h�1 from Multidark’s
publicly-available N -body MDPL halo catalog. In the conventional method, we use a standard M(�v)
power law scaling relation to infer cluster mass, M , from line-of-sight (LOS) galaxy velocity dispersion,
�v. The resulting fractional mass error distribution is broad, with width �✏ ⇡ 0.86 (68% scatter),
and has extended high-error tails. The standard scaling relation can be simply enhanced by including
higher-order moments of the LOS velocity distribution. Applying the kurtosis as a linear correction
term to log(�v) reduces the width of the error distribution to �✏ ⇡ 0.74 (15% improvement). Machine
learning can be used to take full advantage of all the information in the velocity distribution. We
employ the Support Distribution Machines (SDMs) algorithm that learns from distributions of data to
predict single values. SDMs trained and tested on the distribution of LOS velocities yield �✏ ⇡ 0.41
(52% improvement). Furthermore, the problematic tails of the mass error distribution are e↵ectively
eliminated.
Subject headings: cosmology: theory—dark matter—galaxies: clusters: general—galaxies: kinematics

and dynamics—gravitation—large-scale structure of universe—methods: statistical

1. INTRODUCTION

Galaxy clusters have been utilized prominently in as-
trophysics and cosmology since pioneering work by Fritz
Zwicky and George Abell. They are the most mas-
sive gravitationally-bound systems in the Universe, with
masses & 1014 M�, and contain scores to hundreds of
galaxies embedded in dark matter halos. These objects
are useful cosmological probes because halo abundance as
a function of mass and redshift depend sensitively on fun-
damental cosmological parameters. Therefore, measures
of cluster abundance can be used to constrain these pa-
rameters. However, accurately measuring cluster masses
for application in cosmology is a di�cult endeavor; see
Voit (2005) and Allen et al. (2011) for a review on utiliz-
ing galaxy clusters to constrain cosmological parameters.
Clusters can be identified across multiple wavelengths.

They were first detected in the visible spectrum as over-
densities of galaxies (e.g. Abell 1958; Zwicky et al. 1968).
They are identified as overdensities of red galaxies in
both visible and IR (e.g. Gladders & Yee 2005; Hao et al.
2010; Ascaso et al. 2012) and can be found as extended X-
ray sources (e.g. Rosati et al. 2002; Vikhlinin et al. 2009).
Clusters are also detected by their unique signature in the
cosmic microwave background, as a decrement below 218
GHz and an increment above, as predicted by Sunyaev &
Zeldovich (1972) (e.g. Staniszewski et al. 2009; Marriage
et al. 2011; Planck Collaboration et al. 2013).
Once clusters are identified, mass measurements are

ntampaka@cmu.edu
1 McWilliams Center for Cosmology, Department of Physics,

Carnegie Mellon University, Pittsburgh, PA 15213
2 School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213
3 Department of Astrophysical Sciences, Princeton University,

Princeton, NJ 08544

needed to map observable cluster properties to the under-
lying mass. Cluster masses can be deduced from a variety
of techniques including: x-ray observations from which
one can infer a mass profile (e.g. Vikhlinin et al. 2009;
Mantz et al. 2010), a temperature-weighted gas mass
via the Sunyaev-Zeldovich e↵ect (e.g. Lueker et al. 2010;
Hasselfield et al. 2013), mass measurement via strong
and weak gravitational lensing (e.g. Johnston et al. 2007;
Mandelbaum et al. 2008), the caustic technique which
uses galaxy velocities to determine a mass profile (e.g. Bi-
viano & Girardi 2003; Andreon 2010; Serra et al. 2011),
and dynamical mass measurements which employ the
virial theorem (e.g. Teague et al. 1990; Colless & Dunn
1996; Fadda et al. 1996; Carlberg et al. 1997; Girardi
et al. 1998; Brodwin et al. 2010; Rines et al. 2010; Sifón
et al. 2013; Ruel et al. 2013).
Zwicky (1933) used the dynamical mass approach. His

work applied the virial theorem, using the dispersion of
galaxy velocities to infer the mass of the Coma cluster.
Because dynamical mass measurements probe the entire
mass distribution, both regular baryonic matter as well
as dark matter, he was able to use the virial theorem to
conclude that dark matter outweighed luminous matter
in the Coma system. The virial theorem, which relates
kinetic energy to gravitational potential energy, predicts
that halo mass relates to galaxy velocity dispersion, �v,
as a power law.
The simplest approach is to treat clusters and their

host halos as self-similar, dynamically-relaxed systems
with the galaxy velocity dispersion, �v, summing up the
halo’s dynamics. However, evidence points toward com-
plications that introduce scatter to the idealized case.
Numerical simulations are useful tools in studying these
complex dynamic systems and analyzing sources of scat-
ter in dynamical mass predictions. Evrard et al. (2008)
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You will attempt this using data from the Multidark simulation
supplied by Ntampaka et al.

Credit: Peter Freeman

CMU Summer Undergraduate Research (SURE) Project



simulated
cluster ID

line-of-
sight ID

cluster mass 
(in solar masses,

log base 10)

projected
velocity (km/s)

Example of
the data

Credit: Peter Freeman

CMU Summer Undergraduate Research (SURE) Project



Regression analysis example:

Summarize (v1,v2,…,vn) along each line-of-sight and 
in each cluster via sample standard deviation…

…to build up k pairs (M,s). Then regress s onto M…  

s = 1
n�1

Pn
i=1(vi � v̄)2

log10 s = �0 + �1 log10M

�̂ =
✓
XT⌃�1X

◆�1
XT⌃�1Y

X =

0

BBBBBBBB@

1 log10M1

1 log10M2
... ...
1 log10MN

1

CCCCCCCCA

Y =

0

BBBBBBBB@

log10 �1
log10 �2

...
log10 �N

1

CCCCCCCCA

1

Credit: Peter Freeman

CMU Summer Undergraduate Research (SURE) Project
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Examples of Things I’ve Worked On:  
Three Astrostatistics Problems

1. How do you measure the distance to a galaxy? 

2. How do you weigh a galaxy or a galaxy cluster?  

3. How do you constrain models of the Universe?



Recall: The Lambda-CDM Model is a 
Parametrization of Big Bang Cosmology

These parameters can be constrained by observations.
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(Dark) Matter: 
`pulls universe together’

Source: https://www.hep.ucl.ac.uk/darkMatter/



But we still have much to do…

There are ~10 key cosmological parameters. With higher 
precision data (from next-generation surveys like LSST), we need 
more advanced statistical techniques than what is currently 
being used to jointly constrain these key parameters. 

Cosmological parameters

Components of the universe 
Dark Matter 

Baryonic Matter 
Radiation (`Light’) 

Dark Energy

Equation of  
state of Dark Energy

`Initial conditions’ 
Early Universe 

Inflation

⌦m,⌦b,⌦r,⌦⇤, w0, wa, H0, (As/�8), ns

Speed of  
expansion

Image credit: Markus Rau



Constraining Models of the Universe

The so-called likelihood function L(x; θ) connects underlying 
parameters of interest θ with observable data x. If you have the 
likelihood, you can estimate θ once you have measured x.

https://devblogs.nvidia.com/gpu-accelerated-cosmological-analysis-titan-supercomputer/

Theory In
(Simulation 

with 
Tunable 

Parameters)

Structures 
Out

Observed Data

Current state-of-the art in cosmology analysis is to 
assume a Gaussian likelihood; the mean and 
(co)variance of the Gaussian are fit using simulated data.



Can We Improve on Our Statistical Model?

Question: Can we use simulations to build a better statistical model 
L(x;θ)  for the relationship between parameters of interest and 
observable data? How about not assuming a particular analytic form  
for the likelihood and instead just repeatedly simulate data under 
different parameter settings?

We still have a lot to do in 
terms of surveys… 

But it is believed that at the 
level of precision of future 
surveys (like LSST), 
assumptions made in 
current analyses will 
become questionable.  

Image credit: Rachel Mandelbaum (Cosmo21)



Basic Idea of “Likelihood-Free Inference”

1. Forward-simulate observable data under different 
parameter settings. 

2. Compare the output with actually observed data. 

3. Let the parameters consistent with observed data define 
a “plausible” distribution of parameters.

https://devblogs.nvidia.com/gpu-accelerated-cosmological-analysis-titan-supercomputer/

Theory In
(Simulation 

with 
Tunable 

Parameters)

Structures 
Out

Observed Data



Fro[[ [Source: Wikipedia]



[Credit: Chad Schafer (Weyant/Schafer/Wood-Vasey 2013)]



[Credit: Chad Schafer]



[Credit: Chad Schafer]



Statistical Challenges in Likelihood-Free 
Inference: What We are Working on Now

Cosmological simulations are often very slow; 
common practice to fit faster “emulators”. How do 
you calibrate and validate these emulators? 

How do you compare distributions/populations of 
simulated and observed data, or simulated and 
“emulated” data? 

This is a statistical problem as you can’t compare 
individual images. 





Statistical Tools for Comparing and 
Analyzing Distributions of Images                       

[Freeman/Kim/Lee 2017, Kim/Lee/Lei 2018, Dalmasso et al 2019]

Can we answer the question if, and if so, how two 
populations are different without just looking at histograms 
of just a few individual features?



Statistical Tools for Comparing and 
Analyzing Distributions of Images                       

[Freeman/Kim/Lee 2017, Kim/Lee/Lei 2018, Dalmasso et al 2019]

We have developed methods that — in an automated way 
— can identify differences that are statistically significant 
(that is, unlikely to occur by chance).



Visualizing the Results



Recap:  Examples of Astrostatistics Problems

How do you measure the distance to a galaxy? 

By photometric redshift estimation 

How do you weigh a galaxy or a galaxy cluster? 

By dynamical velocity measurements 

How do you constrain models of the Universe? 

By comparing output of simulation/theoretical 
models to actual observed data
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