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What Does a Statistician Do?



What Does a Statistician Do?

@ Short answer: We try to make sense of the world
by analyzing data.

@ The fundamental problem in statistics:
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Algorithms

@ Machine Learning = science of using algorithms
to learn from and make predictions from data




Machine Learning & Statistics

Traditional Machine
programming learning

Data Algorithm Data Output

Output Algorithm

https://dzone.com/articles/what-everyone-should-know-about-machine-learning



Machine Learning & Statistics

Traditional Machine
programming learning

Data Algorithm Data Output

Output Algorithm

https://dzone.com/articles/what-everyone-should-know-about-machine-learning

@ |In Statistics/Data Science:

@ Heavy focus on developing insight regarding the
physical system that generated the data.

@ Work a lot with probabilistic models. Quantify the
uncertainty in our predictions.




There Exists a Whole Range of Different Learning
Algorithms for Different Tasks and of Different Complexity

Dimensionality Reduction

Image credit: kdnuggets.com

@ In general:
They also tend to be less
interpretable. So there’s a trade-off...




So What Kind of Problems Do Statisticians Work On?

The best thing about being a statistician is
that you get to play in everyone’'s backyard.

— John W. Tukey
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Statistics --- Close Ties to Many Fields

Physical Sciences
Astronomy, Earth Sciences
Chemistry

Machine learning (ML) |STATISTICS| Biology

Computer science AT CMU Genetics, Medicine
Engineering Neuroscience (CNBC)
Public policy (Heinz)

Social Sciences
Finance




Astrostatistics at CMU

® The CMU Statistics department has been involved in
astrostatistics since the late 1990s.

@ Our group is one of very few (others are based at
Harvard, Imperial College, UC Berkeley, UC Davis and
University of Washington)

@ We work closely with astronomers at Pitt and the
McWilliams Center for Cosmology at CMU.




STAMPS@CMU

@ In 2018, we started the STAtistical Methods for the
Physical Sciences (STAMPS) research group.

@ Problems in the physical sciences have similar statistical
challenges —- involving massive data sets from different
physical probes (e.g. images from satellites), large
simulations, and complex measurement errors.

Astronomy Particle physics Oceanography Meteorology Remote sensing




Modeling
GOES Satel

b 20 0 SN

B0y

Ve AN
€./ NN
Al
Geostationary Lightning

\,7f 4
Mapper (GLM) \

eeeee

urricane Intensity Change Using

ite Ima gery [McNeely/Lee/Wood/Hammerling]

Rapid Change?/- \

+24/48 hr

s
S
3 /
R
o
o
o
S
Q

Present Time




Hurricanes and Ocean Heat Content
[Hu/Kuusela/Lee/Giglio/Wood]
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Joint Analysis of Hurricane Intensity Change by
Integrating Satellite and In Situ Observations
Component 1 Component 3
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Tons of Data and Exciting Problems in Astronomy...

Emergent Disks Hidden Mergers

F775W (i) F160W (H)

Our main focus at CMU Astrostats is on cosmology — the
study of the origin, evolution and structure of the Universe.




First a Briet Cosmology Primer...

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years

@ Go back in time by probing deeper into the sky. Allows
us to constrain theories of how the Universe is evolving.




Possible Fates of the Universe

coasting accelerating
universe universe
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@ The "Big Crunch” or the "Big Rip" or a coasting universe?




Possible Fates of the Universe
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@ Yes, we live in an accelerating universe!




What is the Universe Made Up of?

COMPOSITION OF THE COSMOS

eutrinos:
3‘;’;)

Free Hydrogen
and Helium:
4%

Dark Matter:
25%

Dark Energy:
70%

Image credit: Markus Rau

https://www.Isst.org/science/dark-energy

@ /0% Dark Energy; 25% Dark Matter; 5% Ordinary Matter




The Standard Model of Big Bang Cosmology
(Lambda CDM Model)

® Lambda-CDM is a parametrization ot Big Bang cosmology.

@ These parameters can be constrained by observations.
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(Dark) Matter: matter
“pulls universe together’ Source: https://www.hep.ucl.ac.uk/darkMatter/
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Large SYnoptic SurVey Telescope (LSST), 8.'4 mirr, ready to launch in 2022 :




How Much Data Do We Have?

® We have entered the era of
“precision cosmology”.

@ We have 200 million galaxy
images from “shallow”
surveys (like SDSS).

200

@ We have 200,000 galaxy
images from “deep” surveys
(like HST CANDELS)

https://classic.s

4o

Credit: Peter Freeman
s



How Much Data Do We Have?

® We have entered the era of
“precision cosmology”.

@ We have 200 million galaxy
images from “shallow”
surveys (like SDSS).

200

@ We have 200,000 galaxy
images from “deep” surveys
(like HST CANDELS)

https://classic.s

4o

@ Beginning in 2022, LSST will begin collecting images of
several billion galaxies. (There are thought to be over
200 billion galaxies in the Universe)

Credit: Peter Freeman
s



Simulating the Evolution of the Universe

@ To understand how the universe evolved into the structures we
see today, we can use computer simulations to numerically
evolve a representation of some fraction of the universe in time.

https://www.illustris-project.org
SLLREGGGGEGLHSSSSHL




http://cyberpunkswebsite.com/wp-content/uploads/2014/01/cosmic_web_3.jpeg
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The “cosmic web”
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p" 3 Key points:

1) Simulation output varies
as a function of input
theoretical parameters.

Pl | 2) Simulations create a
= L g distribution of clusters that
B T | all have different masses.
i ‘ 3) The observed distribution

of real clusters and their masses
allow us to constrain the theory
that goes into the simulations.
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Examples of Things I've Worked On:
Three Astrostatistics Problems

1. How do you measure the distance to a galaxy?
2. How do you weigh a galaxy or a galaxy cluster?

3. How do you constrain models of the Universe?
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Three Astrostatistics Problems

1. How do you measure the distance to a galaxy?
2. How do you weigh a galaxy or a galaxy cluster?

3. How do you constrain models of the Universe?



Recall: "Look-Back Time'" — Go Back in

Time by Probing Deeper into the Sky.

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.
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1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years

@ Can’t measure distances directly —- but because we live in
an expanding universe, more distant galaxies appear to be

moving away faster from us than less distant galaxies.
EGEGE——————EL



We Measure Distances to Distant
Galaxies by Estimating their "Redshift

and stretches light waves.

@ Observed spectra shifts to longer
wavelengths.

@ Redshift (z) = proxy for distance

Image credit: Markus Rau



We Measure Distances to Distant

Galaxies by Estimating their “Redshift

and stretches light waves.

@ Observed spectra shifts to longer
wavelengths.

@ Redshift (z) = proxy for distance
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Redshift Estimation from Photometry
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@ Left: High-resolution galaxy spectra from spectroscopy.

@ Spectroscopy resource intensive = More than 99 percent of

today’s galaxy observations are instead from photometry.
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@ Left: High-resolution galaxy spectra from spectroscopy.

@ Spectroscopy resource intensive = More than 99 percent of

today’s galaxy observations are instead from photometry.
@ Right: Photometry (broad-band filters)

@ Challenge -- estimate redshift using photometric “colors”



Main Steps in “Photo-z Estimation”:

Obtain a Calibration catalog

Spectroscopic
observations

Image (photometric)
observations

Spatially
match

Wavelength (Angstroms)

Accurate
Distance
Information

“Target’ catalog

Smaller calibration catalog with both photometric

information and accurate distance information

Slide by Markus Rau



Main Steps in “Photo-z Estimation”:

Applications of Machine learning

Match Calibration data from spatially overlapping

region of
spectroscopic survey and photometric survey

matched Catalog m Known
colors + accurate distances - accurate Distance
Only photometric
information Predict Distance
“ colors

Obtain distances for all galaxies in the (photometric)

sample
idé by Markus Rau



However, multiple widely different distances (redshitt) can
be consistent with the observed colors of a galaxy...
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However, multiple widely different distances (redshitt) can
be consistent with the observed colors of a galaxy...

Probability Distribution
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Hence, astronomers are more interested in algorithms that

return a probability distribution function (PDF) over possible
distances (given observed colors of a galaxy) than a “single
best guess” of what the distance to that galaxy is.
Most galaxy image surveys provide catalogs of such PDFs

Image credit: Markus Rau



Examples of Things I've Worked On:
Three Astrostatistics Problems

1. How do you measure the distance to a galaxy?
2. How do you weigh a galaxy or a galaxy cluster?

3. How do you constrain models of the Universe?
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http://www.astronomynotes.com/galaxy/abell1689-gravlens.jpg
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But...(small problem)...we cannot “weigh” real clusters.

Credit: Peter Freeman




Cluster galaxy velocities are
atfected by the cluster mass.
Generally: the higher the mass,
the greater gpread in velocities.
(But we only see the velocities
projected onto a line-of-sight.)

<

Credit: Peter Freeman




CMU Summer Undergraduate Research (SURE) Project

A MACHINE LEARNING APPROACH FOR
DYNAMICAL MASS MEASUREMENTS OF GALAXY CLUSTERS

M. NTAMPAKA', H. TRAC', D.J. SUTHERLAND?, N. BATTAGLIAY 3, B. POCZOS?, J. SCHNEIDER®
Draft version October 6, 2014

ABSTRACT

We present a modern machine learning approach for cluster dynamical mass measurements that is
a factor of two improvement over using a conventional scaling relation. Different methods are tested
against a mock cluster catalog constructed using halos with mass > 104 Myh~! from Multidark’s
publicly-available N-body MDPL halo catalog. In the conventional method, we use a standard M (o)

power law scaling relation to infer cluster mass, M, from line-of-sight (LOS) galaxy velocity dispersion,
0y. The resulting fractional mass error distribution is broad, with width Ae ~ 0.86 (68% scatter),
and has extended high-error tails. The standard scaling relation can be simply enhanced by including
higher-order moments of the LOS velocity distribution. Applying the kurtosis as a linear correction
term to log(o,) reduces the width of the error distribution to Ae ~ 0.74 (15% improvement). Machine
learning can be used to take full advantage of all the information in the velocity distribution. We
employ the Support Distribution Machines (SDMs) algorithm that learns from distributions of data to
predict single values. SDMs trained and tested on the distribution of LOS velocities yield Ae ~ 0.41
(52% improvement). Furthermore, the problematic tails of the mass error distribution are effectively
eliminated.
Subject headings: cosmology: theory—dark matter—galaxies: clusters: general—galaxies: kinematics
and dynamics—gravitation—large-scale structure of universe—methods: statistical

You will attempt this using data from the Multidark simulation
supplied by Ntampaka et al.

Credit: Peter Freeman




simulated
cluster 1D
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Credit: Peter Freeman




CMU Summer Undergraduate Research (SURE) Project

Regression analysis example:

Summarize (v1,vs,...,va) along each line-of-sight and
in each cluster via sample standard deviation...

...to build up k pairs (M,s). Then regress s onto M...

Credit: Peter Freeman
I



CMU Summer Undergraduate Research (SURE) Project

Regression analysis example:

Summarize (v1,vs,...,va) along each line-of-sight and
in each cluster via sample standard deviation...

...to build up k pairs (M,s). Then regress s onto M...

logip s = Po + b1 logg M

24 28 32 36

Log10(Mass)

Credit: Peter Freeman
I



Examples of Things I've Worked On:
Three Astrostatistics Problems

1. How do you measure the distance to a galaxy?
2. How do you weigh a galaxy or a galaxy cluster?

3. How do you constrain models of the Universe?



Recall: The Lambda-CDM Model is a
Parametrization of Big Bang Cosmology

@ These parameters can be constrained by observations.
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But we still have much to do...

Cosmological parameters

Components of the universe Equation of Speed of “Initial conditions’
Dark Matter state of Dark Energyexpansion Early Universe
Baryonic Matter Inflation
Radiation (‘Light’)
Dark Energy Image credit: Markus Rau

@ There are ~10 key cosmological parameters. With higher
precision data (from next-generation surveys like LSST), we need
more advanced statistical techniques than what is currently
being used to jointly constrain these key parameters.



Constraining Models of the Universe

1.4 Gyear
e

A

Theory In
(Simulation Structures
with Out
Tunable =
Parameters) o
Observed Data

—46.625 Mpc—

https://devblogs.nvidia.com/gpu-accelerated-cosmological-analysis-titan-supercomputer/

® The so-called likelihood function L(x; 8) connects underlying
parameters of interest 8 with observable data x. If you have the
likelihood, you can estimate 8 once you have measured x.

@ Current state-of-the art in cosmology analysis is to
assume a Gaussian likelihood: the mean and
(co)variance of the Gaussian are fit using simulated data.




Can We Improve on Our Statistical Model?

DES collaboration, Abbott+17

KiDS, Joudaki+17

DES Y1

@ We still have a lot to do in
terms of surveys... e T

)
/ : 3 \\':\_\ KiDS (ACDM) ---

Planck (ACDM)
@ But it is believed that at the / T

level of precision of future
surveys (like LSST),
assumptions made in

current ana |yseS Wi ” Image credit: Rachel Mandelbaum (Cosmo?21)
become questionable.

@ Question: Can we use simulations to build a better statistical model
L(x;8) for the relationship between parameters of interest and
observable data? How about not assuming a particular analytic form
for the likelihood and instead just repeatedly simulate data under
different parameter settings?



Basic Idea of “Likelihood-Free Inference”

Time —— » Today

Theory In
IET T Structures
with Out
Tunable
Parameters)
Observed Data

—40.625 Mpc—
https://devblogs.nvidia.com/gpu-accelerated-cosmological-analysis-titan-supercomputer/

1. Forward-simulate observable data under different
parameter settings.

2. Compare the output with actually observed data.

3. Let the parameters consistent with observed data define
a "plausible” distribution of parameters.
EGEGE——————EL



Observational data

v

1) Compute summary statistic
y from observational data

Simulation 1

Prior distribution of
model parameter 6

Simulation 2

Simulation 3

2) Given a certain model,
perform n simulations, each
with a parameter drawn from

"\ the prior distribution
AN

By

Simulation n

3) Compute summary
statistic y, for each M,
simulation

oll 1) <& X

4) Based on a distance p{-,*)
and a tolerance &, decide for
each simulation whether its
summary statistic is sufficiently
close lo that of the observed
data.

X

Posterior distribution of
model parameter 6

5! Approximate the posterior
distribution of 8 from the distribution

of parameter values 0‘; associated
with accepted simulations.

[Source: Wikipedia]
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Basic rejection approach applied to SNe data

[Credit: Chad Schafer (Weyant/Schafer/Wood-Vasey 2013)]
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Basic rejection approach applied to SNe data

[Credit: Chad Schafer]
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Basic rejection approach applied to SNe data

[Credit: Chad Schafer]




Statistical Challenges in Likelihood-Free
Inference: What We are Working on Now

@ Cosmological simulations are often very slow;
common practice to fit faster “emulators”. How do
you calibrate and validate these emulators?

® How do you compare distributions/populations of
simulated and observed data, or simulated and
"emulated” data?

@ This is a statistical problem as you can’t compare
individual images.



Forward Simulators Example - CAMELUS Simulator *

In cosmology, weak lensing data simulations can be used to provide
constraints on parameters of the ACDM model.

Truth

14 Explored parameter regions
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1Credits: Lin et al., 2018

Nic Dalmasso (Carnegie Mellon University) 5/41




Statistical Tools for Comparing and

Analyzing Distributions of Images
[Freeman/Kim/Lee 2017, Kim/Lee/Lei 2018, Dalmasso et al 2019]

Figure 7: Examples of galaxies from (a) the low-SFR sample &y versus (b) the high-SFR sample S;.

@ Can we answer the question if, and if so, how two
populations are ditferent without just looking at histograms
of just a few individual features?




Statistical Tools for Comparing and

Analyzing Distributions of Images
[Freeman/Kim/Lee 2017, Kim/Lee/Lei 2018, Dalmasso et al 2019]

Figure 8: Galaxies in the test set with the highest significant difference |m(x) > 71| according to our local test
in feature space. (a) Galaxies that are more representative of the low-SFR sample §,, and (b) galaxies more
representative of the high-SFR sample &;. The first group of galaxies presents undisturbed and concentrated

morphologies, while the latter galaxies appear more extended. This is in line with what is expected by astronomers
when comparing actual low-SFR and high-SFR galaxies.

@ We have developed methods that — in an automated way
— can identify differences that are statistically significant
(that is, unlikely to occur by chance).




Visualizing the Results

JHighSFR > fLowSFR

=

fHighSFR < fLowSFR

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the
blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional
diffusion map. Figure adapted from [49].




Recap: Examples of Astrostatistics Problems

® How do you measure the distance to a galaxy?
@ By photometric redshift estimation

@ How do you weigh a galaxy or a galaxy cluster?
@& By dynamical velocity measurements

@ How do you constrain models of the Universe?

@ By comparing output of simulation/theoretical
models to actual observed data
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