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Statistics --- Close Ties to Many Fields

Physical Sciences
Astronomy, Earth Sciences
Chemistry

Machine learning (ML) [STATISTICS | Biology

Computer science AT CMU Genetics, Medicine
Engineering Neuroscience (CNBC)
Public policy (Heinz)

Social Sciences
Finance




STAMPS@CMU

@ In 2018, we started the STAtistical Methods for the
Physical Sciences (STAMPS) research group.

@ Problems in the physical sciences have similar statistical
challenges —- involving massive data sets from different
physical probes (e.g. images from satellites), large
simulations, and complex measurement errors.

Astronomy Particle physics Oceanography Meteorology Remote sensing
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STAMPS@CMU

@ In 2018, we started the STAtistical Methods for the
Physical Sciences (STAMPS) research group.

@ Problems in the physical sciences have similar statistical
challenges —- involving massive data sets from different
physical probes (e.g. images from satellites), large
simulations, and complex measurement errors.

Astronomy ~ Particle physics Oceanograph Meteorology \ Remote sensing




Commonalities in Physical Sciences:
“The Matrix” behind STAMPS...

Astrophysics
Particle physics
Oceanography

Meteorology
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Environmental Science

Uncertainty
quantification
Spatio-temporal
statistics
Combining
heterogeneous data
Low signal-to-noise
ratio problems
lll-posed inverse
problems
Large-scale
computational models

Statistics and lJata Science Focus Areas




Astronomy/Cosmology Context

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.
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about 400 million yrs.

Big Bang Expansion

T

13.77 billion years

NASA/WMAP Science Toam

® Timeline of the Universe



Project 1 with Nic (4th Year): Likelihood-Free Inference

and Validation of Complex Simulation Models

Theory In

(Simulation)

Ensemble of
Galaxies Out

How, Exactly?
Observed Data

1. Small mass fluctuations (such
as those revealed by the all-sky
\ map, shown at left, obtained by
] the COBE satellite) are relics of
the Big Bang. These are the
"seeds" of galaxy formation.

2. Invisible dark matter halos (shown in brown

below) collapse from the ambient background, 3. Primordial gas condenses within the

tracing the initial mass fluctuations. dark matter halos. Some stars form during

the collapse, and collect into globular

clusters. Most of the gas collects into
disks (shown in yellow).
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4. Stars form in the disk, gradually
building up a spiral galaxy.

5. A collision of two (or more) disks
produces an elliptical galaxy.
The globular clusters from the

disks are preserved in the

Abraham & van den Bergh (2001)
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Comparing distributions in
high dimensions [with lImun
Kim and Jing Lei]

“Likelihood-free inference”:
Attach meaningful measures
of uncertainty to estimates.
(Statistical and computational
efficiency.)

Model validation. Assessing
“emulators” and approximate
likelihood models.



Project 2 with Trey (3rd Year): Model
Intensity Change Using GOES Satellite Imagery

ng Hurricane
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Geostationary Lightning <6

Mapper (GLM) \

Advanced Baseline Imager (ABI)

Note: The cone contains the probable path of the storm center but does not show
the size of the storm. Hazardous conditions can occur outside of the cone.
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Current Informati

Thursday October 1, 2015 Center Location23.0 N 73.9 W @ Tropical Cyclone O Post-Tropical
{ EDT Advisory 15 Max Sustained Wind 125 mph Sustained Winds: D <39 mph



Project 3 with Addison (2nd Year ADA), Mikael and Trey:
Joint Analysis of TC Intensity Change by

Integrating Satellite and In Situ Observations

Component 1 Component 3

Convective
Structure
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Component 2




Project 4 with Lorenzo (1st Year ADA) and Coty:
Chemical Fingerprinting of Wildtfire Smoke

@ Knowing what fuels burned during a wildfire is critical to
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_ 1D RT Index
Santa Rosa, CA Fires

(Oct 2018), NASA



Key Points

@ Tons of data and interesting science/methodology/
algorithmic problems in the physical sciences.

@ Look on the Arxiv for my recent papers.

Contact: annlee@cmu.edu
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Unlocking GOES: A Statistical Framework for Quantifying the Evolution of Convective
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ABSTRACT

Tropical cyclones (TCs) rank among the most costly natural disasters in the United States, and accurate
forecasts of track and intensity are critical for emergency response. Intensity guidance has improved steadily
but slowly, as processes which drive intensity change are not fully understood. Because most TCs develop
far from land-based observing networks, geostationary (Geo) satellite imagery is critical to monitoring these
storms. Modern high-resolution Geo observations provide an unprecedented scientific opportunity. These
complex data are however challenging to analyze by forecasters in real time, whereas off-the-shelf machine
learning algorithms have limited applicability due to their “black box™ structure. This study presents analytic
tools that quantify convective structure patterns in infrared Geo imagery for over-ocean TCs, yielding lower-
dimensional but rich representations that support analysis and visualization of how these patterns evolve dur-
ing a rapid intensity change. The proposed ORB feature suite targets the global Organization, Radial structure,
and Bulk morphology of TCs. Combined with a functional basis, the resulting representation of convective
structure patterns on multiple scales serves as input to powerful but sometimes hard-to-interpret machine
learning methods. This study uses the logistic lasso, a penalized generalized linear model, to relate predictors
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Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting

Niccolo Dalmasso! Rafael Izbicki> Ann B. Lee'

Abstract 1. Introduction

Parameter estimation, statistical tests and confidence sets are
the cornerstones of classical statistics that relate observed
data to properties of the underlying statistical model. Most
frequentist procedure with good statistical performance (e.g.,
high power) require explicit knowledge of a likelihood func-
tion. However, in many science and engineering applica-
tions, complex phenomena are modeled by forward simu-
lators that implicitly define a likelihood function: For ex-
ample, given input parameters ¢, a statistical model of our
environment, climate or universe may combine determinis-
tic dynamics with random fluctuations to produce synthetic
data X. Simulation-based inference without an explicit

Parameter estimation, statistical tests and confi-
dence sets are the cornerstones of classical statis-
tics that allow scientists to make inferences about
the underlying process that generated the ob-
served data. A key question is whether one can
still construct hypothesis tests and confidence sets
with proper coverage and high power in a so-
called likelihood-free inference (LFI) setting; that
is, a setting where the likelihood is not explic-
itly known but one can forward-simulate observ-

[stat. ME]| 24 Feb 2020

able data according to a stochastic pwdcl. In this likelihood is called likelihood-free inference (LF).

paper, we present ACORE (Approximate Compu-

tation via Odds Ratio Estimation), a frequentist The literature on LFI is vast. Traditional LFI methods, such
approach to LFI that first formulates the classical as Approximate Bayesian Computation (ABC; Beaumont
likelihood ratio test (LRT) as a parametrized clas- et al. 2002; Marin et al. 2012; Sisson et al. 2018), esti-

sification problem, and then uses the equivalence mate posteriors by using simulations sufficiently close to
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Statistical Tools and Software tor CDE in Python and R
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Conditional Density Estimation Tools in Python and R
with Applications to Photometric Redshifts and Likelihood-Free Cosmological Inference
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@ Estimate p(BIx), where BeRd and xeRp (d<3, p large)

Table 1. Comparison of CDE methods in terms of training capacity and compatibility with multivariate response and different
types of covariates. Capacities are roughly estimated based on input with around 100 features, and a standard 15/17 /quad-core
processor with-16GB of RAM.

Method  Capacity (# Training Pts)~ Multivariate Response Functional Covariates Image Covariates
NNKCDE Up to ~ 10° v
figetnod (f)RFCDE Up to ~ 10° v v
Complexity 6
FlexCode Up to ~ 10 v
l  DeepCDE Up to ~ 10° v v
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TC intensity forecasts have fallen behind trajectory

forecasts.

Hurricane JOAQUIN Model Intensity Guidance
Initia]ized at 1?2 Oct 01v2015

Levi Cowan - tropicaltidbits.com
1 | 1

The cone contains the probable path of the storm center but - - - - -
2 size of the storm. Hazardous conditions can occur outside o Cat 5
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Trey McNeely Rapid Weakening in Tropical Cyclones



Eye wall




Leverage the axisymmetric structure of a
mature, intense storm
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@ Left: Hurricane Edouard (95 kt) at 18 UTC 16 Sept 2014

@ Right: Hurricane Nicole (~47 kt) at 1 UTC 9 Oct 2016



Hurricanes and Ocean Heat Content
[Hu/Kuusela/Lee/Giglio/Wood]
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Statistical Tools for Comparing and

Analyzing Distributions of Images
[Freeman/Kim/Lee 2017, Kim/Lee/Lei 2018, Dalmasso et al 2019]

Figure 7: Examples of galaxies from (a) the low-SFR sample &y versus (b) the high-SFR sample 8;.

@ Can we answer the question if, and if so, how two
populations are different without just looking at histograms
of just a few individual features?




Statistical Tools for Comparing and

Analyzing Distributions of Images
[Freeman/Kim/Lee 2017, Kim/Lee/Lei 2018, Dalmasso et al 2019]

Figure 8: Galaxies in the test set with the highest significant difference |m(x) > 7| according to our local test
in feature space. (a) Galaxies that are more representative of the low-SFR sample §,, and (b) galaxies more
representative of the high-SFR sample &;. The first group of galaxies presents undisturbed and concentrated
morphologies, while the latter galaxies appear more extended. This is in line with what is expected by astronomers
when comparing actual low-SFR and high-SFR galaxies.

@ We have developed methods that — in an automated way
— can identify differences that are statistically significant
(that is, unlikely to occur by chance).




Visualizing the Results

JHighSFR > fLowSFR

e

fHighSFR < fLowSFR

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the
blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional

diffusion map. Figure adapted from [49)

.
J




Individual Fuel Burns

Subalpine Fir
Burn #47, F157
6000
2 -
L] L] L) . 5000
Wildland Fire Smoke Chemical Signature . _
; . 3
@ 1.5F . _ 14000 §
L —
. e ; £
2T o E A 13000 ?:
@ =
[ ] 8 E"
2000 =
A A -
E 05.. ® v 9 ...-.-.. R S
~15 > ' . A L PR 1000
\‘P/ : 10 E/ e%e AEW @3 e .
O ‘ G
: o 48 € 1500 2000 2500 3000 3500
X qr 8 & 8 1D RT Index
0 T 9 Douglas Fir Rotten Log
N TR It 16 o Burn #31, F138
T @ 6000
. =
‘..., omm ‘v ® [ ]
S, e 4'. a 2 -
0.5} o 5000
515} . 4000 £
g T
O 1 I I I I g i
1000 1500 2000 2500 3000 3500 B .l s =
1D RT Index = E
{ 2000 =
Ll
0.5 - ®
1000
o
o
Goals
1500 2000 2500 3000 3500

1) Identify the types of fuels that burned |
2) Ballpark the amount of fuel that burned



