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Simulators are Ubiquitous in Science

3 High Energy Physics
(Particle Collisions) 10°

1012

Neuroscience

(Neural Activity)

Cosmology
(Evolution of the Universe)
Epidemiology
(Epidemic Spreading)

Credit: Dalmasso (adapted from Cranmer et al, 2020)

@ For many complex phenomena, the only meaningtul
model (theory) may be in the form of simulations.



Taxonomy ot Different Types of Simulators

SIMULATORS Image credit: Kyle Cranmer
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@ These simulators may be good at simulating observable data

— but often poorly suited for the inverse problem of inferring
the underlying scientific mechanisms associated with

observed real-world phenomena.
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Likelihood-Based Inference

Likelihood L(D;0)
Parameters of —— >

Data Generating Observable Data
Process ©




Likelihood-Free Inference (LFI)
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Input Output

Parameters of

Data Generating Observable Data
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Forward Simulator

Image credit: Nic Dalmasso

@ Inference on parameters in the latter setting is called

likelihood-free inference (LFI).
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Classical LFI: Approximate Bayesian
Computation (ABC)

Prior distribution of

Observational datg model parameter 0

v

() Given a certain model,
perform n simulations, each
with a parameter drawn from
the prior distribution

(D Compute summary statistic
u from observational data

Simulation 1 Simulation 2 Simulation 3 Simulation n

(3 Compute summary -
u2 p 3

statistic p, for each H,
simulation

olu, 1) <& X X

@ Based on a distance p(*,*)
and a tolerance ¢, decide for
each simulation whether its
summary statistic is sufficiently B
close to that of the observed

data Posterior distribution of (® Approximate the posterior

model parameter 6 distribution of 6 from the distribution

of parameter values 6, associated
with accepted simulations.

J
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mage credit: Sunnaker et al. 2013




Changing LFI Landscape

® More recent developments use ML algorithms to directly
estimate key inferential quantities from simulated data

{(017X1)7 (927X2)7 R (037XB)}? where 0 ~ 71-(9)7 X ~ F9

@ Posteriors, f(8Ix) [e.g., Papamakarios et al, 2016; Lueckmann et al, 2016;
Izbicki et al, 2019; Greenberg et al, 2019]

@ Likelihoods, f(xI0) or f(xI8)/g(x) [e.g., Izbicki et al, 2014; Thomas et al,
2016; Durkan et al, 2020; Brehmer et al., 2020]

® Likelihood ratios, f(x101)/f(x0,) [e.g, Cranmer et al, 2015; Thomas et al,
2016; Hermans et al, 2020; Durkan et al, 2020; Brehmer et al, 2020]
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@ Posteriors, f(8Ix) [e.g., Papamakarios et al, 2016; Lueckmann et al, 2016;
Izbicki et al, 2019; Greenberg et al, 2019]

@ Likelihoods, f(xI0) or f(xI8)/g(x) [e.g., Izbicki et al, 2014; Thomas et al,
2016; Durkan et al, 2020; Brehmer et al., 2020]

® Likelihood ratios, f(x101)/f(x0,) [e.g, Cranmer et al, 2015; Thomas et al,
2016; Hermans et al, 2020; Durkan et al, 2020; Brehmer et al, 2020]

@ These new training-based approaches provide “amortized”
inference. Can handle complex high-dimensional data

without a prior dimension reduction.
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So What's Missing in the LFI-ML Literature?

@ Shortage of practical inferential and diagnostic tools with finite-
sample guarantees of freq. coverage.

DES collaboration, Abbott+17

KiDS, Joudaki+17

KiDS-450 (wCDM)

@ Given observed data D={X1,.. X..},
want to infer the true parameters 6 S s

Planck (ACDM) ---

with valid measures of uncertainty.

Esisencs
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@ Given observed data D={X1,.. X..},
want to infer the true parameters 6 IO oo

Planck (ACDM) ---

with valid measures of uncertainty.

Ppy (0 € RD)|0) =1-a, ¥ o

Simulate (601,D1), (6,Ds), ..., (05, Dg),
where 6; ~ w(0), D; = {Xz',l, fe 7Xz',n} ~ Fy,



Predictive Approach Can Be Very Powertful, But
One Needs to Correct for Bias

[New project with Luca Masserano, Dr. Tommaso Dorigo, Dr. Mikael Kuusela]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV.

Energy=655.69965 GeV

Figure 4: Muon entering the calorimeter in z direction.

[Kieseler et al., July 2021 arXiv:2107.02%19]
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Figure 9: 2D histogram of uncorrected Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test kNN prediction versus true energy for test
data. data.

E[O|X] #6

Source: Dorigo et al 2020.
Slide credit: Luca Masserano




How about Frequentist LFI Approaches?

DES collaboration, Abbott+17

KiDS, Joudaki+17

Confidence sets with correct

KiDS-450 (wCDM)
Planck 2015 (wCDM) IR

Ll conditional coverage (for small n)?

P (9 c ﬁ(D)‘H) —1—a, VAeO

@ Most approaches that estimate likelihoods or likelihood ratios

@ rely on asymptotic assumptions (Wilks 1938) for downstream inference
@ do not assess validity across entire parameter space, or

@ use costly MC simulations at fixed parameter settings on a grid

12
EGEGE——————EL



Unitied Inference Machinery for Frequentist LF

@ Bridges ML with classical statistics to provide:

(i) valid inference: confidence sets and with finite-sample
guarantees (Type | error control and power)

(i) practical diagnostics: check actual coverage across entire
parameter space

@ Goal: Modular procedures with theoretical guarantees.
@ Can accommodate different types of high-dimensional data

@ Compatible with any test statistic (including LR statistics; but
more generally also output from any prediction algorithm)

&
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Preliminary work (Felb 2020) presented at ICML 2021 by Nic Dalmasso

[stat. ME| 24 Feb 2020

https://arxiv.org/abs/2002.10399

Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting

Niccolo Dalmasso! Rafael Izbicki? Ann B. Lee!

Abstract

Parameter estimation, statistical tests and confi-
dence sets are the cornerstones of classical statis-
tics that allow scientists to make inferences about
the underlying process that generated the ob-
served data. A key question is whether one can
still construct hypothesis tests and confidence sets
with proper coverage and high power in a so-
called likelihood-free inference (LFI) setting; that
is, a setting where the likelihood is not explic-
itly known but one can forward-simulate observ-
able data according to a stochastic model. In this
paper, we present ACORE (Approximate Compu-
tation via Odds Ratio Estimation), a frequentist
approach to LFI that first formulates the classical
likelihood ratio test (LRT) as a parametrized clas-
sification problem, and then uses the equivalence

1. Introduction

Parameter estimation, statistical tests and confidence sets are
the cornerstones of classical statistics that relate observed
data to properties of the underlying statistical model. Most
frequentist procedure with good statistical performance (e.g.,
high power) require explicit knowledge of a likelihood func-
tion. However, in many science and engineering applica-
tions, complex phenomena are modeled by forward simu-
lators that implicitly define a likelihood function: For ex-
ample, given input parameters , a statistical model of our
environment, climate or universe may combine determinis-
tic dynamics with random fluctuations to produce synthetic
data X. Simulation-based inference without an explicit
likelihood is called likelihood-free inference (LFI).

The literature on LFI is vast. Traditional LFI methods, such
as Approximate Bayesian Computation (ABC; Beaumont
et al. 2002; Marin et al. 2012; Sisson et al. 2018), esti-

mate posteriors by using simulations sufficiently close to
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Abstract

Many areas of science make extensive use of computer simulators that implicitly encode
likelihood functions of complex systems. Classical statistical methods are poorly suited for
these so-called likelihood-free inference (LFI) settings, particularly outside asymptotic and
low-dimensional regimes. Although new machine learning methods, such as normalizing
flows, have revolutionized the sample efficiency and capacity of LFI methods, it remains
an open question whether they produce confidence sets with correct conditional coverage
for small sample sizes. This paper unifies classical statistics with modern machine learning
to present (i) a practical procedure for the Neyman construction of confidence sets with
finite-sample guarantees of nominal coverage, and (ii) diagnostics that estimate conditional
coverage over the entire parameter space. We refer to our framework as likelithood-free fre-
quentist inference (LF2I). Any method that defines a test statistic, like the likelihood ratio,
can leverage the LF2I machinery to create valid confidence sets and diagnostics without
costly Monte Carlo samples at fixed parameter settings. We study the power of two test
statistics (ACORE and BFF), which, respectively, maximize versus integrate an odds function
over the parameter space. Our paper discusses the benefits and challenges of LF2I, with a



Equivalence of Tests and Confidence Sets

@ Data D ={Xy,.... X, } ~ Fy
@ Test statistic A\(D;0)

@ Critical values

Reject Hy : 0 = 0y <— )\(D; 90) < Ceo,a

Theorem (Neyman 1937)

Constructing a 1 — o confidence set for 0 is equivalent to testing

H():Q:@o VS. HAZQ#HO

for every 0y € O.




1. Fixed 6. Find the rejection region for test statistic .

LR(D; 6)




2. Repeat for every 6 in parameter space.




3. Observe data D = D. Evaluate A\(D;#).

0.0 -

2.5 1

5.0

7.5 1




4. Construct (1 — «) confidence set for 6.

0.0 -

2.5 -

5.0 -




Challenges

@ Neyman construction itself. L. Lyons, “Open Statistical Issues
in Particle Physics”, AOAS 2008:

However, in practice, it is very hard to use the Neyman frequentist construction
when more than two or three parameters are involved: software to perform a Ney-

man construction efficiently in several dimensions would be most welcome. The

@ Validation of frequentist coverage. R. Cousins: “Lectures on
Statistics in Theory: Prelude to Statistics in Practice”,
arXiv:1807.05996.

A complete, rigorous check of coverage considers a fine multi-D grid of all parameters, and
for each multi-D point in the grid, generates an ensemble of toy MC pseudo-experiments,
runs the full analysis procedure, and finds the fraction of intervals covering the u of interest

that was used for that ensemble. ILe., one calculates P(u; € [u1, p2]), and compares to C.L.

But. . . the ideal of a fine grid is usually impractical.

21
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How Do we Turn the Neyman Construction and Validation
into Practical Procedures?

The Neyman construction requires one to test
H():H:@o VS. HAIH#H()

for every 6y € O.

Key insight:

© Test statistic A(D; 6)
@ Ciritical values Cy, ,, or p-values p(D;0g) of the test

© Coverage Ppg (9 S R(D)) of the constructed confidence set

are conditional distribution functions of the (unknown) parameters, and
often vary smoothly across the parameter space O.



Efficient Construction of Finite-Sample Confidence Sets

LR(D; 6)

Co LR(D; 6)

Rather than running a batch of Monte Carlo simulations for every null
hypothesis 8 = 6 on, e.g., a fine enough grid in ©, we can interpolate
across the parameter space using training-based ML algorithms.




Our Inference Machinery

Likelihood-Free Frequentist Inference

[ Proposal ]
lo

Simulator

B

g l----CReference Distribution)

Classification

Critical or Odds and 5 .
P-Value Test Statistics lagnostics

Hypothesns Confidence
[ Data D Testng |~ | Setford




Center Branch: Estimating Odds and Test Statistic

Parameter: 0 € ©
Simulated data: X, x € X. Observed data: X°Ps x°Ps ¢ X.

(Proposal n(ﬁ)) @ Proposal distribution 7(6) over
lo the parameter space ©

Simulator F, @ Forward simulator Fy
» Fy, # Fy, for 0y #0605 € O

yB } -- ( Reference Distribution G )

\ 4
Classification f----

© Reference distribution G over
the feature space X

l » [y < G forall @ e ©®

/TOdds and / O A simulated sample of size B to
S

t Statisti - isti
O5: SialStC estimate odds and test statistic




Estimate Odds via Probabilistic Classification

Simulate two samples:
o {(0, X, Y, = 1)}2/% where 6 ~ 7(6), X ~ Fj
o {(6,,X,,Y;=0)}"? where 6 ~ 7(6), X ~ G

Probabilistic classifier r:
r:(0,X) — P(Y =1|X,6)

Define the odds at # € © and fixed x € X as

O P(Y =1lx,60)  fa(x)
O(x;0) := P(Y =0|x,0) ¢g(x)

Interpretation: Chance that x was generated from Fjy rather than G.




Test Statistics Based on Odds: ACORE and BFF

Suppose we want to test:
Hy:0€ 0y vs H;:0¢€ 01, where ©1 = O;

For observed data D = {X$"s, ..., X955} we define:

@ ACORE (Approximate Computation via Odds Ratio Estimation):

- n  Q(X0bs: g
A(D;0¢) :=log SUPgeo( 1'1;—1/\ ( ;bs )
supgeg | [i=1 O(X3°;6)

@ BFF (Bayesian Frequentist Factor):

Jo (TTi=y O(XS55; ) dmo(6)

7(D;09) := - — .
f@g 11;=1 @(Xq: 59) d7r1(9)

where g and 71 are the restrictions of a proposal distribution 7, over
© to O and OF, respectively.



ACORE and BFF are Approximations of the LR Statistic and
the Bayes Factor respectively!

Lemma (Fisher's Consistency)
If P(Y =1/6,X) =P =1/|0,x)V0,X

Supee@o L(D,Q)
Supee@ L(D,Q) )

Q0 — A(D;0g) = LR(D;0) = log

_ POD|Hy) _ Jeo, £(Di0)dmo(0)

Q@ — 7(D;6p) =BF(D;00) = 557,y = o, £(D:8)dmi(8)°
1

Note: The Bayes factor is often used as a Bayesian alternative to
significance testing but here we are treating it as a frequentist test statistic.




Test Statistics Based on Odds: ACORE and BFF

Suppose we want to test:

Ho:@zeo VS H1:97£90

For observed data D = {X$bs, ..., X°Ps) we define

@ ACORE (Approximate Computation via Odds Ratio Estimation):

A 1y O(X$; 6)

A(D; 6y) :=log ——
supgee [ 1= O(X9; 6p)

@ BFF (Bayesian Frequentist Factor):

I, O(X™:0)
Jo (ITi=) O(X; 6)) dr- (6)

where 7-(6) is a probability distribution over the parameter space.

?(@, 90) =




Left Branch: Estimate Critical Values or P-Values

( Proposal )
lo

Simulator

g .
"/B

\ 4

Critical or
p-Value

/ . . . -
We use B simulations to estimate critical values.




Estimating Critical Values Cy, ,

To control Type | error at level a: l00(AD)

a

Reject Hy : 0 = 0y when \(D;60y) < Cy, o, Where N\

Ceo, a

Coy,0 = arg sup {C Ppjg, (A(D;0p) < C) < Oz} :

CeR

Problem: Need to compute Ppg (A(D;0) < C) for every 0 € ©.

Solution: Fy4(C | 0) =\Ppg(A(D;0) < C | 8))is a conditional CDF, so
we can estimate its a-quantile via quantile regression )\‘9(049)




Construct Confidence Set via Neyman Inversion

R(D) = {9 c O | \D;6) > ég,a}

Critical or Odds and
p-Value Test Statistics
Hypothesis Confidence
( Lol ) '[ testing I ’[ set for 6 ]




Are the Constructed Confidence Sets Valid?

Theorem (Validity for any test statistic)

Let Cg be the critical value of a level-o test based on the statistic
A(D;60y). Then, if the quantile regression estimator is consistent,

P

B — 0

Cp

> C™,

where C* is such that

Ppjo(A(D;6o)) < CF) =

!/ . . .
If B is large enough, we can construct a confidence set with guaranteed
nominal coverage regardless of the observed sample size n.




What Can We Say about Power?

Suppose we are testing
Ho:(9:(90 VS. HAZQ%QO

and assume that the critical values are well estimated (that is, B’ is large
enough).

Consider
° ¢~ (D) =1(78(D;0p) < Cyy,p): decision of approximate test
(

o ¢.(D) =1(7(D;60y) < Cp,): decision of exact test

Theorem
If the probabilistic classifier for learning the odds is consistent, and
Co.B SN Cy, then, for every 6 € ©:

B—00

P00 (,(D) = 1)

B—




Right Branch: Assessing Conditional Coverage of R(D)

How do we check coverage of constructed confidence sets across ©7
Note:

R(D)={0c O | \D;0) > Cpa}

Py (9 e R(D) | 9) — Epyg []1 (9 € fz(@)) | 0}

( Proposal )
"0

Smulater @ Sample 0; and data D; ~ Fy,
¢ )
g, @ Construct confidence set R(D;)
B
ﬁ ; / Q@ For {0;, R(D;)}2 ., regress
iagnostics R
[ Confidence ]_|
set for 6

How close is the actual coverage to the nominal confidence level 1 — a7
35



Ex: Estimate Critical Values (GMM)
& Run Diagnostics Across the Parameter Space

X1,..., X, ~05N(0,1) +0.5N(—6,1)

LR with Monte Carlo samples ) Chi-square LRT ) LR with Cg via Quantile Regression

(Left) LR with1000 MC simulations at each 6 on a fine grid
(Center) Assume chi-squared distribution of LR statistic
(Right) LR with quantile regression with B’=1000 simulations total

36
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Ex: Construct Confidence Sets (MVG data)

Xi,..., X, ~N(0,1;), where n=10, 8 =0

LFI setting, 90% confidence sets

1.5
1.0
0.5 ]
< 0.0] &" * D"
—0.57 ACORE, B=B'=5000 1
BFF, B=B'=5000
-1.04{ 1 Exact LR
L — Exact BF
-15

215 -10 -05 00 05 10 15 -15 -10 -05 00 ©05 10 15 -15 -10 -05 00 05 1.0 15
91 61 61

When d=2, ACORE and BFF confidence sets (for B=B’=5000) are

similar in size to the confidence sets.
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Coverage and Power of LF2I Confidence Sets

Finite-sample confidence sets in a likelihood-free inference setting

d=1

d=2

d=5

d=10

Coverage of ACORE

0.92 £+ 0.03

0.92 £+ 0.03

0.90 + 0.03

0.90 £ 0.03

Coverage of BFF

0.94 + 0.02

0.89 £ 0.03

0.96 £+ 0:02

0.87 £ 0.03

d=1

r

ACORE
BFF

Exact LRT
Exact BF

d=2

1.0

0.8

0.61

25 30

ACORE
BFF

Exact LRT
Exact BF

In higher dimensions, ACORE and BFF confidence sets are still valid but lose

30

ACORE
BFF

Exact LRT
Exact BF

25 30

ACORE
BFF

Exact LRT
Exact BF

some power with respect to their exact counterparts.
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Break-Down of Sources of Errors in LF2|

@ ACORE (Approximate Computation via Odds Ratio Estimation):

R Xobs
A(D;bp) :=1log - “"= 10X 60

supgee IT1; O(X; )

@ BFF (Bayesian Frequentist Factor):

n O(X$5; 6)

7(D;0y) = ———=L " 27
(D1 f0) Jo Rz—1 @(X?bs;9) dm(0)

@ eq: error in estimating the odds function

@ ey numerical error when computing test statistics
o

@ es: error in estimating the critical values

d

85,



Break-Down of Sources of Errors in LF2|

@ ACORE (Approximate Computation via Odds Ratio Estimation):

R Xobs
A(D;bp) :=1log - “"= 10X 60

supgee IT1; O(X; )

@ BFF (Bayesian Frequentist Factor):

n O(X$5; 6)

7(D;0y) = ———=L " 27
(D1 f0) Jo Rz—1 @(X?bs;9) dm(0)

@ eq: error in estimating the odds function

@ ey numerical error when computing test statistics
@ power depends on both ejande;

@ es: error in estimating the critical values

@ validity determined by e3 (if B’ large enough, then e;=0)
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Coverage and Power of LF2I Confidence Sets

Finite-sample confidence sets in a likelihood-free inference setting

d=1

d=2

d=5

d=10

Coverage of ACORE

0.92 £+ 0.03

0.92 £+ 0.03

0.90 + 0.03

0.90 £ 0.03

Coverage of BFF

0.94 + 0.02

0.89 £ 0.03

0.96 £+ 0:02

0.87 £ 0.03

d=1

r

ACORE
BFF

Exact LRT
Exact BF

d=2

1.0

0.8

0.61

25 30

ACORE
BFF

Exact LRT
Exact BF

In higher dimensions, ACORE and BFF confidence sets are still valid but lose

30

ACORE
BFF

Exact LRT
Exact BF

25 30

ACORE
BFF

Exact LRT
Exact BF

some power with respect to their exact counterparts.
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Current work in progress...

@ Handling of nuisance parameters/systematics
and more efficient methods for optimization or
integration = next time?

@ Alternative test statistics

a "WALDO" = rest of the talk!
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Simulation-Based Inference with WALDO: Perfectly
Calibrated Confidence Regions Using Any Prediction
or Posterior Estimation Algorithm
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Department of Statistics and Data Science INFN
Carnegie Mellon University Sezione di Padova
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Ann B. Lee

Department of Statistics and Data Science
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Abstract

The vast majority of modern machine learning targets prediction problems, with
algorithms such as Deep Neural Networks revolutionizing the accuracy of point
predictions for high-dimensional complex data. Predictive approaches are now
used in many domain sciences to directly estimate internal parameters of interest
in theoretical simulator-based models. In parallel. common alternatives focus

15680v1 [stat.ML] 31 May 2022



LF21-Waldo for Calorimetric Muon Energy Measurement
[Luca Masserano, Rafael Izbicki, Tommaso Dorigo, Mikael Kuusela]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV.

Energy=655.69965 GeV

>
)
1)
E
8

E Pred

8
o =
Etrue [GeV]

Figure 9: 2D histogram of uncorrected Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test kNN prediction versus true energy for test
data. data.

E[O|X] #6

Figure 4: Muon entering the calorimeter in z direction. Source: Dorigo et al 2020.
Slide credit: Luca Masserano

[Kieseler et al., July 2021 arXiv:2107.02119] 44




Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming
muon had and construct a confidence set for it with proper coverage

- goal: Reconstruct muon properties with rigorous uncertainties for downstream analyses

2. How much added value does a high granularity of the calorimeter cells offer over the 1D and
28D representations?

— goal: devise better and more cost-effective calorimeters for future particle colliders

Slide credit: Luca Masserano




Inputs: 1D energy-sum, 28 features and full calorimeter

Prediction algorithms used

Three “nested” datasets:
1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
2. 27 features + 1D energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
3. Full calorimeter (51200-D) + 28 features: custom CNN (with MSE loss) from Kieseler et al. (2022)

—¥%  We estimate E[@| D] and V[@| D] for each of these. Muon energy is

Slide credit: Luca Masserano




Valid confidence sets?

Confidence sets for muon energy have proper coverage

0 Nominal coverage is achieved regardless of the dataset used
J Prediction sets do not achieve the desired level of coverage

™ Coverage Diagnostics

o
o

orediction sets

N

o
FN

@
(@)
48]
—
Q
S
o
O

Waldo Energy Sum

Waldo 28 Features

Waldo Full Calorimeter

Prediction Sets Full Calorimeter
-== Nominal coverage = 68.3 %

"0 1000 2000 3000 4000 5000 6000 7000 8000
True Muon Enerqgy 6 [GeV]

Confidence and Prediction Sets

Pl

B Waldo Full Calorimeter
¢ Prediction Sets Full Calorimeter

Upper/Lower Bounds [Ge_V]

1000 2000 3000 4000 5000 6000 7000 8000
True Muon Energy 6 [GeV]

Slide credit: Luca Masserano




Constraining power?
Valuable information in high-granularity calorimeter

Interval Length

‘--‘-" ‘“‘.""" .’_'
O Intervals are shorter as the data

becomes higher-dimensional

A"’--._.,..-O .-
O Prediction sets can even be larger

than Waldo confidence sets (while

4
4
also not guaranteeing coverage)

4
3

—&— Waldo Energy Sum
Waldo 28 Features

-#- Waldo Full Calorimeter

$
]
3
]
)
: J
3
3
]
]
]
3
.

¢ Prediction Sets Full Calorimeter

1000 2000 3000 4000 5000 6000 7000 8000

True Muon Energy 6 [GeV]

%%
Slide credit: Luca Masserano




Ex: Recalibrating a Posterior Estimated via NFs
D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1

Parameter Regions Coverage Diagnostics
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Ex: Recalibrating a Posterior Estimated via NFs

D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1
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Take-Away: LF2I (inverse problem)

@ Can construct finite-sample confidence sets with nominal
coverage, and provide diagnostics, even without a tractable
likelihood. (Do not rely on large n, or costly MC samples)

Likelihood-Free Frequentist Inference

Critical or Odds and Di ti
P-Value Test Statistics R
Hypothesis Confidence
Testing > Set foro




Take-Away: LF2I (inverse problem)

@ Validity: Any existing or new test statistic — that is, not only
estimates of the LR statistic — can be used in our framework
to create frequentist confidence sets.

@ Nuisance parameters and diagnostics: No guarantee that
hybrid methods are valid. However, we have a practical tool
for assessing coverage across the entire parameter space.

@ Power: Hardest to achieve in practice. Area where most
statistical and computational advances will take place.

@ ACORE (Approximate Computation via Odds Ratio Estimation):

- [T, O(X5b; 6o)
supgee 17, O(X95; )

A(D; 6y) :=log

@ BFF (Bayesian Frequentist Factor):

A(Digy) = T OXE™6)
Jo Ty O(X§;0) dr-(0)
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How Do we Handle Nuisance Parameters?

In many applications, the parameter space can be decomposed as
© = d x U, where ® are the parameters of interest, and ¥ are nuisance
parameters not of immediate interest.

To guarantee frequentist coverage with Neyman's inversion technique, we
need to test null hypotheses

Hogo i@ =¢o versus Hjg, 19 # ¢o for ¢g € ®

by comparing test statistics to the cutoffs CA’¢O = infyew CA’((bO,w).

Can lead to numerically unwieldy and costly computations.




ACORE: Handling Nuisance Parameters by Maximization

For ACORE, we use a hybrid or “likelihood profiling” method.?

For each ¢, we compute an approximation of the MLE of 1) for observed
data D:

s = argmax [10 (x5™: (6,0))
1=1

Rather than comparing the ACORE test statistic A(D ¢o) = (D; (o, @Z(b))
to C’¢O = infyecw C(%’ ), we use the hybrid cutoffs:

Cl, = F! (@),

0 A(D; cbo)’ (cboﬂ/b\%)

where the quantile regression is based on a training sample T’ generated at
fixed g,

V/an der Vaart, 2000: Chuang & Lai, 2000; Feldman, 2000; Sen et-al. 2009




BFF: Handling Nuisance Parameters by Integration

For BFF, we eliminate the nuisance parameters via integration.

By definition,

Jo Iliza © <X§’bs; (%0, ¢)> drm ()
Jo (IT=y O(X§5;6) ) d(9)

T(D; ¢o) :=

where 7 (1)) is a distribution over W, the nuisance parameter space.

Instead of using hybrid resampling, we approximate the cutoffs at
parameter of interest ¢y according to

AN

Cy = :1
»0 7( D#bo)‘(%)

(@)




Hybrid Methods and Confidence Sets

@ Hybrid methods (which maximize or average over
nuisance parameters) do not always control the type
| error of statistical tests.

@ "For small sample sizes, there is no theorem as to
whether profiling or marginalization will give better
frequentist coverage for the parameter of interest”
(Cousins 2018)

@ Can our diagnostic tools provide guidance as to
which method to choose for the problem at hand?
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HEP Example: “Poisson Counting Experiment”
[Lyons, 2008; Cowan et al, 2011; Cowan, 2012]

@ Particle collision events counted under the presence of a
background process.

Observed data D = (X, X,

X = (M, N), where M ~ Pois(*yb),‘ N ~ Pois(b + €s)

® The observed data D consist of n=10 realizations of
X=(M,N), where

@ M is the number of events in the control region (assume y=1)
@ N is the number of events in the signal region

@ Unknown parameters:

@ signal strength (s); two nuisance parameters (b and €)
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Contidence sets at a fiducial point

HEP example with nuisance parameters

90% confidence intervals for s at true parameter 8 *
20 . T HE ) TTTTT h-ACORE
| — - h-BFF
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Assessing Conditional Coverage

@ With logistic regression and B”=500 simulations, we estimate
the coverage with a 2o prediction band for all (s, b, €) across
the entire parameter space s€[0,20] bg[90.110], e€[0.5,1.0]

@ If the nominal coverage of 1-a=0.9 falls within the prediction

band => correct coverage. Upper/lower 2o limit falls below/
above 0.9 => under/over coverage.

. Coverage as Function of 6 (Poisson Example)




Diagnostics for HEP Example (UC, CC or OC)

Estimated coverage across parameter space ©

B Undercoverage
B Correct Coverage
Overcoverage

h-ACORE (Critical Values) h-BFF (Critical Values) ACORE (Asymptotic)

@ h-BFF (averages over nuisance parameters) performs the best in
terms of having the largest proportion of the parameter space
with CC and only a small fraction of the parameter space with UC
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Our diagnostic tool can identify regions in parameter

space with UC, CC and OC

(Bottom: heat maps of upper limit of 2o prediction band)

h-BFF (Critical Values) ACORE (Asymptotic)
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