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Large-scale A/B-testing or other related
forms of randomized experimentation has
revolutionized the tech industry in the last | 5yrs.

In 2013, a team from Microsoft (Bing) claimed that they run tens
of thousands of such experiments, leading to millions of dollars in
INncreased revenue.

Much has been discussed about doing A/B testing the “right” way,
both theoretically and practically in real-world systems.

Many companies contributing to this vast and growing literature.

Kohavi et al. " | 3
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How many of you have written papers on A/B testing
or online experimentation!

(or work in the area, or consider yourselves experts?)

How many of you have read papers on A/B testing
and know what it is, but want to know more!?

How many have no idea what I'm talking about!?
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There are many resources for these topics

Yandex tutorial at The Web Conference ' | 8

Microsoft tutorial at The Web Conference "1 9
(+ ExP Platform webpage)

Blog posts by Evan Miller; Etsy, Optimizely, etc.
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A new ‘“‘doubly-sequential” perspective:
a sequence of sequential experiments

EXp.

Time / Samples
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What kind of guarantees would we like
for doubly sequential experimentation?

(a) inner sequential process (a single experiment)

— correct Inference when experiment ends

(correct p-values for A/B test or cor

reCl

confidence intervals for treatment e

fect)

(b) outer sequential process (multiple experiments)

— less clear (is error control on inner

process enough!!)
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Some existing problems in practice

Some potential issues within each experiment

(a) continuous monitoring
(b) flexible experiment horizon
(¢) arbitrary stopping (or continuation) rules

Some potential issues across experiments

(a) selection bias (multiplicity)
(b) dependence across experiments
(c) don’t know future outcomes

Many other concerns as well
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Solutions for these issues

Inner sequential process:

Part |

“confidence sequence” for estimation
also called “anytime confidence intervals”

(correspondingly, “always valid p-values™ for testing)

Outer sequential process: Part Il

“false coverage rate” for estimation

(correspondingly, “false discovery rate” for testing)

Modular solutions: fit well together
Many extensions to each piece

Part i



The INNER Sequential Process
(a single experiment)

[| hour]
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Hypothesis testing Is like

stochastic proof by contradiction.
B Tails B Heads

| 000 tosses

0 200 400 600 800

The coin is fair (bias = 0) Apparent contradiction!

| <)
Alternative: Should we reject the null hypothesis:

Coin Is biased towards H
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Calculate p-value

Prob.
density

Possible data ot

all |
observations
heads

tails

Reject null if P < a  ~ #H — #T > /2N log(1/a) .

Then, Pr(false positive) < a.
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#H — #T
N

Estimate the coin bias by i :=

An asymptotic (1 — a)-Cl for u is given by (/’Z

where z,_ I1s the (1 — a)-quantile of N(0,1).
(appealing to the Central Limit Theorem)

It this confidence interval does not contain O,
we may be reasonably confident that the coin Is biased,
and we may reject the null hypothesis.

~ #H — #T > /2N log(1/a) .
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For any parameter 1 of interest,
with associated estimator i,
the following claim holds:

(1—a/2) confidence interval = P, , > «a/2
Y e N
R, l? N — for Ho = p = Ho
! ) | 77T T we have p-value P,, < «
M .
(1—«) confidence interval (we would reject the null

for p hypothesis at level «)
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In summary, tests (p-values) and Cls are “dual’.

family of tests for 8 — Cl for

A (1 — a)-Cl for a parameter 6 is the set of all §, such that
the test for H,, : 0 = 6, has p-value larger than a.

Cl for 8 — family of tests for @
A p-value for testing the null H, : 0 = @, can be given by
the smallest g for which the (1 — g)-Cl for @ talls to cover 6, .

Cl for & — composite tests for @
A p-value for testing the null H, : 6 € ®, can be given by
the smallest g for which the (1 — g)-Cl for @ fails to intersect ©, .

Both of them are useful tools to estimate uncertainty,
and like any other tool, they can be used well, or be misused.



However, commonly taught confidence intervals

and p-values are only valid (correctly control error)
it the sample size Is fixed In advance.
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High-level caricature of an A/B-test

Collect more data Check if
(increase sample size)

“optional continuation”

With commonly-taught p-values,

false positive rate > «. “optional stopping”
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Let P be a classical p-value (eg: t-test),

calculated using the first n samples.

Under the null hypothesis (no treatment effect),

Vn > 1, Pr(P" < a) <a.

proB. of false poéitive

Let 7 be the stopping time of the experiment.

Often, T depends on data, eg: 7 :=min{in €N : P, < a}.

Unfortunately, Pr(P"” < a) £ «a.

In other words, Pr(An € N : P < ) > «a.




Same problem with confidence interval (Cl)

. Collect more daﬁa Check i
(increase sample size)

“optional continuation”

Again, false positive rate > .  ©OPtional stopping’
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Let (LY, U™) be any classical (1 — a) Cl,
calculated using the first n samples (eg: CLT).

When trying to estimate the treatment effect 6,

Vvn>1, Pr(@e (L, UY))>1-a.
‘prob. of vcoveragel

Let 7 be the stopping time of the experiment.

Again, T may depend on data, eg: 7 := min{n € N : L™ > 0} .

Unfortunately, Pr(6 & (L, UDY) >1—-a.

In other words, Pr(Vn >1:0 € (L™, U™))

usually = 0.




Solution:“confidence sequence”
(aka “anytime confidence intervals™)

or “sequential p-values” for testing
(aka “always-valid p-values™)



A “confidence sequence” for a parameter ¢
is a sequence of confidence intervals (L, U,)
with a uniform (simultaneous) coverage guarantee.

P(Vn2>1:0€ (L, U)) >1—-a.

Sample size



A “confidence sequence” for a parameter ¢
is a sequence of confidence intervals (L, U,)
with a uniform (simultaneous) coverage guarantee.

P(Vn2>1:0€(L,,U) >1-a.

Sample size

Darling, Robbins 67,68
Lai /6, 384

Howard, Ramdas, McAuliffe, Sekhon '| 8
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Example: tracking the mean of a Gaussian
or Bernoulli from i.i.d. observations.

X, X5, ... ~N(0,1) or Ber(0)

Producing a confidence interval at a fixed time
is elementary statistics (~100 years old).

How do we produce a confidence sequence!
(which is like a confidence band over time)
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;. 1.71\/10{(; log(2n) + 0.7210g(5.19/a)

n

s a (1 —a) confidence sequence.

2,000 - |__— Jamieson et al. (2013)
Balsubramani (2014)
- Zhao et al. (2016)

Darling & Robbins (1967b)
Kaufmann et al. (2014)
Normal mixture
Darling & Robbins (1968)
Polynomial stitching (ours)
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Discrete mixture (ours)
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PP Hoeffding bound
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Vi Howard, Ramdas, McAuliffe, Sekhon "1 8




((Jtog@,u)h<a.

neN



P (0¢ @, U)) <a

neN

Some implications:



P (0¢ @, U)) <a

neN

Some implications:

|.Valid inference at any time, even stopping times:



P (0¢ @, U)) <a

neN

Some implications:

|.Valid inference at any time, even stopping times:
For any stoppingtime 7: P(0 & (L, U))) < a.



P (0¢ @, U)) <a

neN

Some implications:

|.Valid inference at any time, even stopping times:
For any stoppingtime 7: P(0 & (L, U))) < a.

2.Valid post-hoc inference (in hindsight):



P (0¢ @, U)) <a

neN

Some implications:

|.Valid inference at any time, even stopping times:
For any stoppingtime 7: P(0 & (L, U))) < a.

2.Valid post-hoc inference (in hindsight):
For any random time T: P(0 & (L, Uy)) < «a.



P (0¢ @, U)) <a

neN

Some implications:

|.Valid inference at any time, even stopping times:
For any stoppingtime 7: P(0 & (L, U))) < a.

2.Valid post-hoc inference (in hindsight):
For any random time T: P(0 & (L, Uy)) < «a.

3. No pre-specified sample size:
can extend or stop experiments adaptively.



The same duality between
confidence intervals and p-values
also holds in the sequential setting:
“confidence sequences” are dual to
“always valid p-values”.
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Duality between anytime p-value and Cl
Define a set of null values & for 6.

Let P := inf{a : the (1 — a) CI" does not intersect )

If CI™ is a pointwise Cl then P™ is a classical p-value .

For all fixed times n, Pr(P"™ < a) <a.

proB. of false po%itive
f CI'™ is an anytime Cl then P is an always-valid p-value.

For all stopping times 7, Pr(P"” < a) < a.
For all data-dependent times 7, Pr(P") < a) < a.
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Relationship to Sequential Probability Ratio Test

Given a stream of data X, X5, ... ~ f,, suppose

we want to test a null hypothesis Hy : 0 = 6,

against an alternative hypothesis H; : 6 = 6, .

Wald's SPRT (or SLRT) calculates a probability/likelihood ratio:
[T_, /G
Hzl:lf()(Xi) |

and rejects when L™ > 1/a . Can also use prior/mixture over @, .

L™ =

Equivalently, define P = 1/L™  Then P™ is an always-valid p-value.

(And Inverting it defines a confidence sequence.) Wald ‘48




Can construct confidence sequences

(and hence always valid p-values)

in a wide variety of nonparametric settings
(eg: random variables that are

bounded, or subGaussian, or subexponential)

Howard, Ramdas, McAuliffe, Sekhon ' | 8
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“confidence sequence” for estimation
also called “anytime confidence intervals”

(correspondingly, “always valid p-values™ for testing)

Outer sequential process: Part Il

“false coverage rate” for estimation

(correspondingly, “false discovery rate” for testing)

Modular solutions: fit well together
Many extensions to each piece

Part i



The OUTER Sequential Process
(a sequence of experiments)

[40 mins]
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Quick recap of A/B testing

Decision rule :
. if P < q then
: we reject the null

B Misses [ Clicks

[ )
[ o ’»
A : — . (“discovery”).
—H :\We change A to B,
i ensuring that
: type-l error = o,
[ ) :
I O
B: = s —_
E— : a wrong rejection
0 200 400 600 800 i of the.null
: : is a false discovery
Null hypothesis: : Calculate p-value: and implies
Alsatleast ip = Pr(observed data or morei  a bad change

as good as B, extreme, assuming null is true)é from A to B.
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Reality: internet companies run thousands
of different (iIndependent) A/B tests over time.

Decision rule:
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A/B tests nulls | discoveries
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type- |l error rate (per test)

= 0.05
|- ------ .
Run 10,000 7,700 true : false discovery
different, nulls l . ‘
| 1 pProportion
independent |00 non- 30 true |1 FpPp = 495/575
A/B tests nulls ;| discoveries :

power (per test)
= 0.80

FDP — # false discoveries

# discoveries

FDR = E[FDP]

Summary: FDR can be larger than per-test error rate.
(even if hypotheses, tests, data are independent)



Given a possibly infinite sequence

of independent tests (p-values), can we
guarantee control of the FDR

in a fully online fashion?

Foster-Stine '08
Aharoni-Rosset ' [ 4
Javanmard-Montanari "1 6

Ramdas-Yang-Wainwright-Jordan " | /
Ramdas-Zrnic-Wainwright-Jordan ' 8
Tian-Ramdas "9
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The aim of online FDR procedures

Decision rule:
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One of the most famous offline
FDR methods is the “Benjamini-
Hochberg” (BH) method

Offline FDR methods
do not control the FDR
in online settings

Benjamini-Hochberg 95
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The following method is not a
valid online FDR algorithm:

At the end of experiment ¢, run BH on Py, ..., P,.

The reason is that the decision
about the first hypothesis depends
on all future hypotheses.VVe cannot
commit to a decision and stick to it.

We need the error level a, for experiment ¢
to be specified when It starts, and we need
to make a final decision when experiment ¢ ends.



This multiple testing issue
is not particular to p-values.
It also exists when selectively

reporting treatment effects
with confidence intervals.

Benjamini, Yekutieli ‘05

Weinstein, Ramdas ' 9
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Multiplicity in reported Cls

One rarely cares about all Cls or follows-up on them,

one usually reports only the most “promising” Cls.

False coverage proportion

# incorrectly reported Cls
# reported Cls

FCP =

False coverage rate

FCR = E[FCP]

Benjamini-Yekutieli ‘06

Welinstein-Yekutiell ' [ 4
Fithian et al. ' [ 4
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Controlling FCR is nontrivial

Constructing marginal 95% ClIs for all parameters
fails to control FCR at 0.05.

Suppose treatment effect 6, € {£0.1} for all 7,
and experimental observations are normalized to

X ~ N(0;,1).

Suppose we only care about drugs with large effects.
So we only pursue phase II of the trial if X; > 3.

For these drugs, the standard marginal 95% CI
does not cover 6,. So FCR=L1.
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Can we control FCR *online*?

When experiment j starts, we must assign
a target confidence level a;.

When experiment 7 ends, we must decide
if we wish to report 0;.

This must be done such that the FCR
is controlled at any time.

Weinstein, Ramdas ‘| 9



A simple solution for both
online FDR control, and
online FCR control
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Online FCR control: the main idea

Let S; € {0,1} denote the selection decision
made after experiment <.

Maintain FCP(T) := N < a.
LV i1 Si

For testing, let R, € {0,1} represent a rejection.

T
: . zizl a;
Then maintain FDP (T) := - <a.
vy R

This provably controls FCR/FDR at level ar .
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Online FCR control : high-level picture

-rror budget
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Error budget for
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‘ Expts. use wealth

Selections

earn wealth
\ . Error budget
s data-dependent
Remaining error budget
’ Infinite process
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Summary of this section

° Vt, error; < a does not imply V¢, FDR(?) < «,

even If hypotheses, data, p-values are independent.

o Can track a running estimate of the FDP (or FCP):

a simple update rule to keep this estimate bounded

also results in the FDR (or FCR) being controlled.
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Handling local dependence

Most online FDR algorithms assume independent p-values
(but hypotheses can be dependent).

However, assuming arbitrary dependence between dall p-values
s also extremely pessimistic and unrealistic.

A middle ground is a flexible notion of local dependence:
P, arbitrarily depends on the previous L, p-values,

where L, 1s a user-chosen lag-parameter .

The online FDR and FCR algorithms can be easily modified
to handle local dependence.

Zmic, Ramdas, jordan ' [ 8
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Combining inner and outer solutions (FDR):

(2) Online FDR method assigns a; when expt. starts
(b) We keep track of anytime p-value P(”)
(c) Adaptively stop at time 7, report d|scovery T P(T) < q,

(d) Guarantee FDR(T') < a at any time positive t|me T

EXp.

Time / Samples
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|.What if we are testing more than one alternative!

o d

¢

N

Site Visitors

Control

Control —

Variation A

Variation B

Conversion

Much more traffic needed by an A/B/n test
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| . Multi-armed bandits for hypothesis testing

Slot Slot Slot
Machine Machine Machine

A B C

Pays out $1 every 5 tries Pays out $1 every 7 tries Pays out $1 every 3 tries

What would you do?

Depends on the aim: minimize regret OR identify best arm?
We would like to test null hypothesis

Hy : py 2> maxiug, pci .

Can design variant of UCB algorithms to define anytime p-value,
with optimal sample complexity for high power.

Yang, Ramdas, Jamieson, Wainwright " | /
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2. Switch from estimating means to quantiles!?

Let X ~ F. Define the a-quantile as g, := sup{x : F(x) < a}.

(hence gy, Is the median)

Reasons to use quantiles include:
» Quantiles always exist for any distribution,
while means (moments) do not always exist (eg: Cauchy).
» Quantiles can be defined for any totally ordered space,
eg: ratings A-F, where "distance between ratings” undefined.
o Estimating quantiles can be done sequentially, without
any tall assumptions, unlike estimating means.
» (Can run A/B tests and get always valid p-values
for testing the difference in quantiles.
o (Can run bandit experiments, including best-arm identification.

Can also estimate all quantiles simultaneously! Howard, Ramdas ‘|9



2. Quantiles are informative for heavy tails

Mean = + o0

Prob.
density

(heavy right tall)

qo q1n qo.8

Possible
observations

Eo: amount of time spent on Reddit
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2.The mean need not even exist (eg: Cauchy)

Mean Is undefined.

Prob.
density

(heavy left tail)

1

90.3 9172 90.8
Eg: amount of money won/lost in a casino

(heavy right tail)

Do not need to resort to trimming “outliers”.

(How to pick threshold? Throw away or cap?)



2.The same could arise in discrete settings

p, < 1/k* = Mean =+ o

Prob.
mass

-
—

q1, do.8

Fo: number of links clicked
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2. Quantile sensible in totally ordered settings

Mean Is undefined.

Prob.
mass

A<B<(C<D<E<...

q1/2 do.8

Fg: grades or non-numerical ratings

Do not need to artificially assisn numerical values.

(Are they equally spaced?! Spacing and start point matter.)
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2.A/B testing with quantiles

First pick target quantile a (say 0.9).
Hy @ qo.9(A) = qp.o(B)
H, @ qpo(A) < qoo(B)

Can construct always valid p-value.

If numerical, can construct confidence sequence for gy o(B) — gy o(A) .

(In that case, one way to define sequential p-value Is
the smallest 6 such that the (1 — ) CS overlaps with Rg.)

Howard, Ramdas ‘| 9




2. Best-arm identification with quantiles
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2. Best-arm identification with quantiles

A JL |h L N

Which arm has the highest 80% quantile?

Can design MAB algorithms to adaptively determine
the “best” arm with a prescribed failure probabllity.

It the first arm Is “special”, can design MAB algorithms to adaptively
test the null hypothesis that A Is best, and get a sequential p-value.

Howard, Ramdas ‘| 9
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3. Running intersections or minimums: pros/cons

Fact |:if P™ is an anytime p-value, so is min P
m<n

Fact 2: if (L™, U™) is a confidence sequence, so is ﬂ (LW, U™y
m<n
Pro of taking running intersections of Cls :
o Smaller width, hence tighter inference, without inflating error.

Con of taking running intersections of Cls :
» (Can have intervals of decreasing width (great!) and then in the
next step, end up with an empty interval (disconcerting).

Pro of ending up with zero width :
o “Falling loudly™: you know you're in the low-probability error
event, or assumptions have been violated.

Howard, Ramdas, McAuliffe, Sekhon "1 9



4. Sequential Average Treatment Effect estimation
with adaptive randomization
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Can change with timel

(eg: keep groups balanced)




4. Sequential Average Treatment Effect estimation

with adaptive

= )

T

\_ J

randomization

Users of app or website

Mrarene

4 )

B

=

Can change with time!
(eg: keep groups balanced)

Can infer the treatment effect sequentially (Neyman-Rubin
potential outcomes model) using anytime p-value or Cl.

Howard, Ramdas, McAuliffe, Sekhon "1 9



PART V: Advanced topics
(outer sequential process)

[Next |5 mins]
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|. Smoothly forgetting the past

Recent tests may be more relevant than older ones,
and hence we may wish to smoothly forget the past.
With this motivation, we may wish to control the

decaying memory FDR: (user-chosen decay d < |)

> dP 1 (false discovery, )
>, df~t1(discovery,)

mem-FDR(T) = E

(similarly mem-FCR)

Ramdas et al. | /
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What It you did not use an online FCR or FDR algorithm,
but at the end of the year, you would like to answer

“based on the decisions made and error levels used,
how large could my FCR or FDR be?”
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What It you did not use an online FCR or FDR algorithm,
but at the end of the year, you would like to answer

“based on the decisions made and error levels used,
how large could my FCR or FDR be?”

With probability at least 1 — 6 we have

I+2..9 log(1/5) |
FDP, < : simultaneously for all 7.
ZKZ R, log(1l + log(1/6))
L+2,., log(1/8
FCP, < = og179) simultaneously for all £.

Y._ S log(l +log(1/8))

Katsevich, Ramdas '| 8
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The usual error metrics count all mistakes equally.

But, different experiments may have differing importances.

Can define “weighted’ variants of FDR and FCR
in the natural way: weighted sums in numerator/denominator.

Benjamini, Hochberg 97/
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3.Weighted error metrics and algorithms

The usual error metrics count all mistakes equally.

But, different experiments may have differing importances.

Can define “weighted’ variants of FDR and FCR
in the natural way: weighted sums in numerator/denominator.

Onl

cont

ine FDR a

nd FCR algor

thms can be extended to

rol welight

‘ed error me

IICS.

Benjamini, Hochberg 97/

Ramdas, Yang, Jordan, VWainwright "| /



4. False-sign rate



4. False-sign rate

Sometimes, all we want Is a “'sign decision’ about parameter:

an output of +1 1t
and an output of -

ﬁ

treatment effect 1s +ve,

f treatment effect Is -ve,

or no output at all If 1t I1s uncertain.



4. False-sign rate

Sometimes, all we want Is a “'sign decision’ about parameter:

ﬁ

an output of + 1| If treatment effect I1s +ve,

and an output of -1 If treatment effect Is -ve,
or no output at all If 1t I1s uncertain.

VWe may correspondingly define the false sign rate as

# Incorrect signh decisions made

FSR =

# sign decisions made



4. False-sign rate

Sometimes, all we want Is a “'sign decision” about parameter:

P

an output of + 1| If treatment effect I1s +ve,

and an output of -1 If treatment effect Is -ve,
or no output at all If 1t I1s uncertain.

VWe may correspondingly define the false sign rate as

# Incorrect signh decisions made

FSR =

# sign decisions made

To control the FSR, just using the online FCR algorithm,
and report the sign iff the Cl does not contain zero.

Welnstein, Ramdas ' | 9
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A large number of different teams run
such A/B tests or randomized experiments

From the larger organization’s perspective,
coordination Is necessary to control FDR or FCR,
since that might affect the bottom line of the company.

But each individual group or team might fee
“why do we have to pay If some other group
s running lots of random tests/experiments’”?

How do we align incentives!?
Should our notion of error be hierarchical?



|. A hierarchical FDR or FCR control?

Company desires FDR < 0.1

Product | Product 2 Product |5
(Group 1) (Group 2) (Group 15)

The average of group FDRs does not give company FDR.

FDR Is additive In the worst case: If each group separately
controls FDR at 0.1, the company FDR could be trivial.



2. Utilizing contextual information

Often, we have contextual information about
each visitor (sample), like age, gender, etc.
These have been utilized for contextual
bandit algorithms that minimize regret.



2. Utilizing contextual information

Often, we have contextual information about
each visitor (sample), like age, gender, etc.
These have been utilized for contextual
bandit algorithms that minimize regret.

s such information useful for hypothesis testing?
How do we use contextual bandits for hypothesis testing!
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VWhen our assumptions are wrong, and the system
s not behaving like intended or expected, how
can we automatically detect and report this?



3. Designing systems that fail loudly

VWhen our assumptions are wrong, and the system
s not behaving like intended or expected, how
can we automatically detect and report this?

|s 1t possible to design such self-critical systems
that “announce’ fallures!
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null hypothesis testing basics

Wald (1948) randomization for causal inference
sequential probability ratio test

(the first always-valid p-values) " Robbins (1952)

multi-armed bandits
Darling & Robbins (1967)

confidence sequences

(the first always valid Cls) Lai, Siegmund,... (1970s)
confidence sequences, inference
Jennison & Turnbull (1980s) after stopping experiments

oroup sequential methods
(peeking only 2 or 3 times)

Time
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A selective history (outer process)

Tukey (1953)
an unpublished book on the

Eklund & Seeger (1963) problem of multiple comparisons

define false discovery proportion

suggested heuristic algorithm S
Benjamini & Hochberg (1995)

—rediscovered Eklund-Seeger method

Benjamini & Yekutieli (2005) first proof of FDR control

false coverage rate (FCR)

first methods to control it Foster & Stine (2008)

conceptualized online FDR control
first method to control it

Time
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In this tutorial, you learnt the basics of

How to think about a single experiment
A. Why peeking is an issue In practice
B. Why applying a t-test repeatedly inflates errors
C. Anytime confidence intervals and p-values

How to think about a sequence of experiments
A. Why selective reporting Is an issue In practice
B. Why Benjamini-Hochberg fails in the online setting
C. Online FCR and FDR controlling algorithms

How to think about doubly-sequential experimentation
A. Using anytime Cls with online FCR control
B. Using anytime p-values with online FDR control
C. Handling asynchronous tests with local dependence
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You also learnt some advanced topics:

*  Within a single experiment:
A. Using bandits for hypothesis testing
B. Quantiles can be estimated sequentially
C. The pros and cons of running intersections
D. SATE with adaptive randomization

* Across experiments:
A. Error metrics with decaying-memory
B. The false sign rate
C. Weighted error metrics
D. Post-hoc analysis

* Open problems:
A. Incentives/errors within hierarchical organizations
B. Utilizing contextual information for testing
C. Designing systems that fail loudly




SOFTWARE

Within a single experiment:

Pyvthon package called “confseq’”

Vaintained by Steve Howard (Berkeley)

-requent updates + wrappers for months to come

ACross experiments:

R package called “onlineFDR”

Vaintained by David Robertson (Cambridge)
-requent updates + wrappers for months to come

References and links at



http://www.stat.cmu.edu/~aramdas/kdd19/

Collaborators from this talk

Steve Jinjin Asaf Fugene Akshay Tiana David
Howard Tian Welinstein Katsevich Balsubramani  Zrnic Robertson

Jasjeet Jon Kevin Fanny Martin Michael
Sekhon  McAduliffe  Jamieson Yang Wainwright  Jordan
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