36-771 Martingales 2 : Confidence sequences

The one and only homework

Lecturer : Aaditya Ramdas

There will be 8 questions in total, each worth 5 points.

Question 1 Consider tossing a sequence of coins with probability p, and keeping track of the sum S_n (+1 for heads, -1 for tails).

- (a) Write down the asymptotically pointwise valid CLT confidence interval for p.
- (b) Write down any pointwise valid Chernoff-based confidence interval (mention which one you used) for p.
- (c) Write down a uniformly valid linear confidence sequence (mention which one you used) for p.
- (d) Write down a uniformly valid curved confidence sequence (mention which one you used) for p.

Question 2 For each of the previous bounds, run a simulation with 10^5 coins (of any bias you choose) to estimate the probability that the confidence interval for p is wrong at some time between 1 and 10^5 (repeat a 1000 times to get an accurate estimate of the probability).

Question 3 Play around with the inverted stitching method to come up with your own unique 1-subGaussian boundary that has crossing probability at most 0.1 before intrinsic time 10^9 .

Question 4 If you had to use your a 1-subGaussian confidence sequence before a finite time, say 10^6 , which of the following would you use? (a) a stitching boundary, (b) a normal mixture boundary, (c) the inverted stitching boundary. Justify your answer.

Question 5 Consider a series of iid coin tosses (+1 for H with probability p, -1 for T with probability q), and let S_n be the running sum. Prove that $(q/p)^{S_n}$ is a martingale with respect to the natural filtration. Find the value of C for which $C^n \lambda^{S_n}$ is a martingale, where λ is some positive constant.

Question 6 Prove that for any sum S_t of independent increments with finite variance, we have $\Pr(\exists t \in \mathbb{N} : S_t - t\mu > 1000\sqrt{t}) = 1.$

Question 7 What is the difference between a p-value and an always-valid p-value? What is the use of the latter and how do you construct it?

Question 8 What is the relationship of the normal mixture confidence sequence to the sequential probability ratio test (SPRT)?