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1 Classical limit theorems

In the following, we will always denote Sn := X1 + · · ·+Xn.

Theorem 1 (Strong Law of Large Numbers (SLLN)) Let Xi be iid with mean µ. Then

Sn
n
→ µ, almost surely.

What’s so strong about the strong law? The weak law states that Sn/n→ µ in probability,
which is a weaker statement. So can we just forget about the weak law, and only study
the strong law?! No, because the weak law actually holds under weaker assumptions. De-
spite what Wikipedia, Wolfram and other websites currently say, here is a more complete
description of the WLLN.

Theorem 2 (Weak Law of Large Numbers (WLLN) from Feller 1971, page 565)

Let Xi be iid with characteristic function φ and CDF F . Then the following three conditions

are equivalent:

1. φ is differentiable at 0, and φ′(0) = iµ.

2. As t→∞, we have t[1− F (t) + F (−t)]→ 0 and
∫ t
−t xF (dx)→ µ.

3. Sn/n→ µ, in probability.

Example 3 (from Charles Geyer’s lecture notes at UMN) Define a random variable

via its CDF:

F (t) =


1− log 2

t log t
, t ≥ 2

1/2,−2 ≤ t ≤ 2
log 2
|t| log |t| , t ≤ −2

Then one can show that its mean does not exist, and hence by Theorem 4(c) in Ferguson (A

Course in Large Sample Theory, 1996), the SLLN does not hold. However, the above random

variable is symmetric by construction, and condition (ii) above can be verified to hold with

µ = 0. Hence, the third condition (WLLN) holds.
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However these theorems do not provide a rate of convergence of sample averages to µ, so this
is not sufficient. However, the CLT provides an asymptotic rate of convergence, and hence
an asymptotic confidence interval.

Theorem 4 (Central Limit Theorem (CLT)) Let Xi be iid with mean µ and variance

σ2. Then, we have
Sn − nµ
σ
√
n
→ N (0, 1), in distribution.

Hence, if one divides Sn by n it is damped to zero, if one divides by
√
n, it can still be

unbounded, and it is interesting to ask what function of n one needs to divide by in order
to get a nontrivial bound. It turns out that dividing Sn by n1/2+ε, for any ε > 0, results in a
limit of zero. Hence, the “right” quantity has to be larger than n1/2 but smaller than n1/2+ε

for any constant ε > 0. However, we have:

Theorem 5 (Law of the iterated logarithm (LIL)) Let Xi be a symmetric Rademacher

(±1 with equal probability). Then

lim sup
n→∞

|Sn|√
n log log n

=
√

2, a.s.

2 Nonasymptotic bounds

In order to get something non-asymptotic from the CLT, one needs strictly more than two
moments, as exemplified by the following Berry-Esseen bound.

Theorem 6 (Berry-Esseen theorem) Let Xi be iid with mean µ, variance σ2, and E|Xi|3 <
∞. Then, we have

sup
t

∣∣∣∣P (
Sn − nµ
σ
√
n
≤ t)− Φ(t)

∣∣∣∣ ≤ CE|Xi|3

σ3/2
√
n
.

where 0.41 ≤ C ≤ 0.4748 is a universal constant.

If we assume more, such as the random variable being bounded, or having a bounded MGF,
we can prove many “tail” inequalities, such as Hoeffding’s, Bennett’s and Bernstein’s in-
equalities. As an example, consider Hoeffding’s inequality for bounded random variables.

Theorem 7 (Hoeffding’s inequality) Let Xi be iid, mean 0, bounded in [−ai, ai]. De-

noting A2 :=
∑n

i=1 a
2
i /n, then

P (
Sn
n
> ε) ≤ exp(−2nε2/A2).

There are also matrix extensions of these inequalities due to Ahlswede-Winter, Vershynin,
Tropp and others.
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3 The rest of this mini

The rest of this mini will be devoted to understanding one assumption, and one theorem.
The assumption is a “canonical supermartingale assumption”, and it is weaker than many
standard nonparametric assumptions in the literature. The theorem is informally called the
“mother of all exponential concentration inequalities”, and it is stronger than many standard
famous named theorems in the literaure.

The word “stronger” will become clearer in the rest of the course. For this, we introduce
the A-B-C-D-E mnemonics. A: weaker assumptions, B: lower boundary, C: continuous time,
D: higher dimensions, E: larger exponent. The meaning of those terms will become clearer
later in the course.

Remarkably, we can even improve the aforementioned popular Hoeffding’s inequality: it will
hold under weaker dependence assumptions, have a lower boundary, have a continuous-time
extension, extend to hold for matrices, and also have a tighter exponent (specifically holding
when A =

∑n
i=1 a

2
i /2n+

∑n
i=1 EX2

i /2n).

We will encounter “self-normalized” ineqaulities for heavy-tailed distributions, concentration
for matrices, and if there is time, concentration of continuous time processes, and martingales
in smooth Banach spaces.

This course will require the use of (super)martingales, filtrations, convex analysis, and linear
algebra. We will revise some of this background next, but most of it is assumed to be known
(prerequisites).
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