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1 Random walks

Let X1, X2, . . . be i.i.d. taking values in R. Then Sn = X1 + . . . + Xn is called a random
walk. When P (Xi = 1) = P (Xi = −1) = 1/2, it’s called a simple random walk.

Theorem 1 (Durrett, Thm 4.1.2) For a random walk (Sn) on R, there are only four

possibilities, one of which has probability one.

1. Sn = 0 for all n.

2. Sn →∞.

3. Sn → −∞.

4. −∞ = lim inf Sn < lim supSn = +∞.

Any nondegenerate symmetric random walk (meaning that P (Xi = 0) < 1), such as the
simple random walk, will satisfy case (iv).

2 Filtrations and stopping times

The sigma-field Fn = σ(X1, . . . , Xn) is the information known at time n, and the sequence of
sigma-fields F1 ⊂ F2 ⊂ F3 . . . forms a “filtration” (Fn). A random variable τ taking values in
{1, 2, . . . } ∪ {∞} is called a stopping time if for all n ∈ N , we have {τ = n} ∈ Fn, meaning
that we can decide whether to stop the process at time n based only on the information
known at time n. All constant times are stopping times, and if S, T are stopping times, then
S ∨ T and S ∧ T are also stopping times. Fτ = σ(X1, . . . , Xτ ) is the amount of information
known at the stopping time τ . A simple example is

τ = inf{k : Sk ≥ x} for some fixed x.

If M,N are stopping times with M ≤ N , then FM ⊆ FN , and if Yn ∈ Fn, then YN ∈ FN .
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Theorem 2 (Durrett, Thm 4.1.3) Let X1, X2, . . . be iid, and Fn = σ(X1, . . . , Xn). Let

N be a stopping time with P (N <∞) > 0. Conditional on {N <∞}, the random variables

{XN+n, n ≥ 1} is independent of FN and has the same distribution as the original sequence.

Note that for any fixed n, a random walk with integrable Xi would satisfy ESn = nEX1, and
a random walk with zero-mean and square-integrable increments would satisfy ESn = nEX2

1 .
Wald’s identities extend these properties to stopping times with finite expectation.

Theorem 3 (Wald’s identities, Durrett Thm 4.1.5 and 4.1.6) Let X1, X2, . . . be iid

and N be a stopping time with EN <∞. If E|Xi| < ∞, then ESN = ENEX1. Further, if

EXi = 0 and EX2
i <∞, then ES2

N = ENEX2
1 .

Exercise 4.1.12. Let X1, X2, . . . be i.i.d. uniform on (0, 1), letSn = X1 + · · ·+Xn

and let T = inf {n : Sn > 1} . Show that P (T > n) = 1/n!, so ET = e and EST = e/2.

3 Conditional Expectations

We start with a probability space (Ω,F0, P ), a sigma-field F ⊂ F0, and a random variable X
that is measurable with respect to the sigma-field F0, denoted X ∈ F0. If X is integrable,
meaning that E|X| =

∫
|X|dP < ∞, recall that the conditional expectation of X given F ,

denoted E(X|F), is any F -measurable random variable Y such that for all A ∈ F , we have∫
A
XdP =

∫
A
Y dP . The conditional expectation is unique, in the sense that all “versions”

that satisfy the above definition are equal almost surely. Quoting from Durrett, section 5.1:

Intuitively, we think of F as describing the information we have at our disposal -
for each event A ∈ F , we know whether or not A has occurred. E(X|F) is then
our “best guess” of the value of X given the information we have.

If X ∈ F (perfect information), then E(X|F) = X, meaning that if X is contained in the
available information F , then our best guess of X is X itself. If F = ∅ (no information), then
E(X|F) = EX, and if X is independent of F (useless information), then E(X|F) = EX.

Conditional expectations are monotone and linear, meaning that if X ≤ Y , then E(X|F) ≤
E(Y |F), and also that E(aX + bY |F) = aE(X|F) + bE(Y |F). Further, if F1 ⊂ F2, then
E(E(X|F1)|F2) = E(X|F1), and also E(E(X|F2)|F1) = E(X|F1).

If X ∈ F and Y,XY are integrable, then E(XY |F) = XE(Y |F). Of course, a special case
of this is that E(cX) = cEX for any constant c. Define Var(X|F) = E(X2|F) − E(X|F)2,
so that Var(X) = Var(E(X|F)) + E(Var(X|F )).

Geometric interpretation: Let (Ω,F0, P ) be a probability space with X ∈ F0. If F ⊂ F0 and
EX2 <∞, then E(X|F) = arg minY ∈F E(X−Y )2. In other words, E(X|F) is the projection
of X onto the closed subspace L2(F) = {Y ∈ F : EY 2 <∞} of the Hilbert space L2(F0).
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4 Standard inequalities

Chebyshev’s inequality:

P (|X| ≥ a|F) ≤ E(X2|F)

a2
.

Jensen’s inequality: if φ is convex, and E|X| <∞,E|φ(X)| <∞, then

φ(E(X|F)) ≤ E(φ(X)|F)

Cauchy-Schwarz inequality:

E(XY |G)2 ≤ E
(
X2|G

)
E
(
Y 2|G

)
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