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1 Random walks

Let X1, X5,... be i.i.d. taking values in R. Then S, = X; + ... 4+ X, is called a random
walk. When P(X; =1) = P(X; = —1) = 1/2, it’s called a simple random walk.

Theorem 1 (Durrett, Thm 4.1.2) For a random walk (S,) on R, there are only four
possibilities, one of which has probability one.

1. S, =0 for alln.
2. S, — 0.
3. S, — —o0.

4. —oo = liminf 5,, < limsup S,, = +o0.

Any nondegenerate symmetric random walk (meaning that P(X; = 0) < 1), such as the
simple random walk, will satisfy case (iv).

2 Filtrations and stopping times

The sigma-field F,, = (X7, ..., X,) is the information known at time n, and the sequence of
sigma-fields F; C Fo C F3... formsa “filtration” (F,,). A random variable 7 taking values in
{1,2,...} U{o0} is called a stopping time if for all n € N/, we have {r = n} € F,, meaning
that we can decide whether to stop the process at time n based only on the information
known at time n. All constant times are stopping times, and if S, T are stopping times, then
SV T and S AT are also stopping times. F, = o(Xj,..., X,) is the amount of information
known at the stopping time 7. A simple example is

7 = inf{k : Sy > x} for some fixed z.

If M, N are stopping times with M < N, then Fy; C Fy, and if Y,, € F,,, then Yy € Fy.



Theorem 2 (Durrett, Thm 4.1.3) Let Xy, Xs,... be iid, and F,, = 0(X1,...,X,,). Let
N be a stopping time with P(N < oo) > 0. Conditional on {N < oo}, the random variables
{XNin,n > 1} is independent of Fy and has the same distribution as the original sequence.

Note that for any fixed n, a random walk with integrable X; would satisty ES,, = nEX;, and
a random walk with zero-mean and square-integrable increments would satisfy ES,, = nEX?.
Wald’s identities extend these properties to stopping times with finite expectation.

Theorem 3 (Wald’s identities, Durrett Thm 4.1.5 and 4.1.6) Let X;, Xy, ... be iid
and N be a stopping time with EN < co. If E|X;| < oo, then ESy = ENEX;. Further, if
EX; =0 and EX}? < co, then ES%, = ENEX7?.

Exercise 4.1.12. Let X3, Xs,... be ii.d. uniform on (0,1),let S,, = X; +--- + X,
and let 7' =inf {n : S,, > 1}. Show that P(T">n) =1/nl, so ET = e and ESr = ¢/2.

3 Conditional Expectations

We start with a probability space (£2, Fo, P), a sigma-field F C Fy, and a random variable X
that is measurable with respect to the sigma-field Fy, denoted X € Fy. If X is integrable,
meaning that E|X| = [ |X|dP < oo, recall that the conditional expectation of X given F,
denoted E(X|F), is any F-measurable random variable Y such that for all A € F, we have
1) 4 XdP = 1) 4 YdP. The conditional expectation is unique, in the sense that all “versions”
that satisfy the above definition are equal almost surely. Quoting from Durrett, section 5.1:

Intuitively, we think of F as describing the information we have at our disposal -
for each event A € F, we know whether or not A has occurred. E(X|F) is then
our “best guess” of the value of X given the information we have.

If X € F (perfect information), then E(X|F) = X, meaning that if X is contained in the
available information F, then our best guess of X is X itself. If 7 = & (no information), then
E(X|F)=EX, and if X is independent of F (useless information), then E(X|F) = EX.

Conditional expectations are monotone and linear, meaning that if X <Y then E(X|F) <
E(Y|F), and also that E(aX + bY|F) = aE(X|F) + bE(Y|F). Further, if 7; C Fy, then
E(E(X|F1)|F,) = E(X|F1), and also E(E(X|F)|Fy) = E(X|F).

If X € Fand Y, XY are integrable, then E(XY|F) = XE(Y|F). Of course, a special case
of this is that E(cX) = ¢cEX for any constant c¢. Define Var(X|F) = E(X?F) — E(X|F)?,
so that Var(X) = Var(E(X|F)) + E(Var(X|F)).

Geometric interpretation: Let (€2, Fy, P) be a probability space with X € Fy. If F C Fy and
EX? < oo, then E(X|F) = argminyc7 E(X —Y)?. In other words, E(X|F) is the projection
of X onto the closed subspace Lo(F) = {Y € F : EY? < oo} of the Hilbert space La(Fy).
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4 Standard inequalities

Chebyshev’s inequality:
E(X?|F)

a?

P(|X] = alF) < :
Jensen’s inequality: if ¢ is convex, and E|X| < oo, E|¢(X)| < oo, then

P(E(X|F)) < E(6(X)|F)
Cauchy-Schwarz inequality:

E(XY|G)* < E (X*|G) E (Y?|9)



