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1 Proof of Ville’s inequality

Theorem 1 (Ville (1939)) For any nonnegative supermartingale (L;) and any v > 1,
define the (possibly infinite) stopping time

N:=inf{t>1:L, >z}

and denote the expected overshoot when L; surpasses x as

L
o—E[—N]N<oo > 1.
x
Then,
EL, ® EL
Pr(3t: L, >z) < — < —2
ox x

Proof: Using the optional stopping theorem and the supermartingale convergence theorem
(to establish existance of L), we have the following chain of inequalities:

ELo > ELy
=E(Ly|N < 00)P(N < 00) + E(Loo|N = 00)P(N = 00)
> E(Ly|N < 00)P(N < o0)
= oxP(N < 00),

immediately proving the theorem. [ ]

For nonnegative martingales, the inequality (i7) is actually an equality. For continuous-
time supermartingales with continuous paths, we have o = 1, making inequality (i) into an
equality. In fact, for continous-time martingales with continuous paths, Ville’s inequality
holds with equality.
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