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1 Definition of a confidence sequence

It has become standard practice for organizations with online presence to run large-scale
randomized experiments, or A/B tests, to improve product performance and user experience.
Such experiments are inherently sequential: visitors arrive in a stream and outcomes are
typically observed quickly relative to the duration of the test. Results are often monitored
continuously using inferential methods that assume a fixed sample, despite the well-known
problem that such monitoring can inflate Type I error substantially (Armitage et al. 1969,
Berman et al. 2018). Furthermore, most A/B tests are run with little formal planning and
very fluid decision-making, as compared with clinical trials or industrial quality control, the
traditional applications of sequential analysis.

In this mini, we present methods for deriving confidence sequences as a flexible tool for
inference in sequential experiments (Darling & Robbins 1967a, Lai 1984, Jennison & Turnbull
1989). A confidence sequence is a sequence of confidence sets (CIt)

∞
t=1, typically intervals

CIt = (Lt, Ut) ⊆ R, satisfying a uniform coverage guarantee: after observing the tth unit,
we calculate an updated confidence set CIt for the unknown quantity of interest θt, with the
coverage property

P(∀t ≥ 1 : θt ∈ CIt) ≥ 1− α. (1)

With only a uniform lower bound (Lt) on θt ∈ R, i.e., if Ut ≡ ∞, we have a lower confidence
sequence. Likewise, if Lt ≡ −∞ we have an upper confidence sequence given by the uniform
upper bound (Ut). We will build upon the general framework for uniform exponential con-
centration introduced in the previous mini (Howard et al. 2018), which means our techniques
apply to a wide variety of situations: scalar, matrix and Banach-space-valued observations,
with possibly unbounded support; self-normalized bounds applicable to observations satis-
fying very weak moment or symmetry conditions; and continuous-time scalar martingales.
Some bounds will yield closed-form confidence sequences, while others give a method for
numerical computation of tighter intervals. Both methods allow for flexible control of the
“shape” of the confidence sequence, that is, how the sequence of intervals shrink in width
over time. As a simple example, given a sequence of observations from a 1-sub-Gaussian
distribution whose mean we would like to track, we may choose any η > 1 and an increasing
function h : R>0 → R>0 with

∑∞
k=0 1/h(k) = 1, to obtain a confidence sequence of the form

St
t
± η1/4 + η−1/4√

2

√
log h(logη t) + log(2/α)

t
. (2)
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Our theorems will generalize and sharpen related methods from Darling & Robbins (1967b,
1968), Jamieson et al. (2014), Kaufmann et al. (2014), Balsubramani (2014), Zhao et al.
(2016). Our confidence sequences possess the following properties:

(P1) Non-asymptotic and nonparametric: our confidence sequences offer provable cov-
erage for all sample sizes, without exact distributional assumptions or asymptotic ap-
proximations.

(P2) Unbounded sample size: our methods do not require a final sample size to be
chosen ahead of time. They may be tuned for a planned sample size, but always
permit additional sampling.

(P3) Arbitrary stopping rules: we make no assumptions on the stopping rule used by
an experimenter to decide when to end the experiment, or when to act on certain
inferences.

These properties give us strong guarantees and broad applicability. An experimenter may
always choose to gather more samples, and may stop at any time according to any rule,
even one not formally defined, and the resulting inferential guarantees hold under the stated
assumptions without any approximations. Of course, this flexibility comes with a cost:
our intervals are wider than those that rely on asymptotics, and without assuming a rigid
stopping rule, we cannot explicitly correct for selective bias introduced by adaptive stopping.
The typical, fixed-sample confidence intervals derived from the central limit theorem do not
satisfy any of these properties, and accommodating any one property necessitates wider
intervals. It is remarkable that we can accommodate all three and incur a cost of less than
doubling the interval width—the discrete mixture bound stays within a factor of two of
the fixed-sample central limit theorem bounds over five orders of magnitude in time. Our
work gives another example of gaining flexibility and robustness by “doubling” uncertainty
estimates, an observation made recently in multiple testing by Katsevich & Ramdas (2018),
and a theme more broadly explored by Meng (2018). It may seem that the definition (1) of
a confidence sequence is stronger than necessary to achieve these properties, but as we show
below, it is equivalent to a definition in terms of arbitrary, unbounded stopping times. It is
therefore reasonable to say that any procedure satisfying these three properties will satisfy
a guarantee similar to (1).

We will later demonstrate two applications in sequential estimation. First, under a random-
ization inference model in the Neyman-Rubin potential outcomes framework, we give a tight
empirical variance confidence sequence for Bernoulli treatment assignment. This method
sequentially estimates the variance of the underlying process and uses it to generate a valid
confidence sequence, giving a non-asymptotic, sequential analogue of the t-test. Such a con-
fidence sequence follows from a general empirical variance confidence sequences for bounded
observations. Second, we give asymptotic and non-asymptotic iterated logarithm bounds for
the operator norm of a matrix martingale and demonstrate their application to sequential
covariance matrix estimation.
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Lemma 1 Let (At)
∞
t=1 be an adapted sequence of events in some filtered probability space

and let A∞ := lim supt→∞At. The following are equivalent:

1. P (
⋃∞
t=1At) ≤ α.

2. P(AT ) ≤ α for all random times T , possibly infinite and not necessarily stopping times.

3. P(Aτ ) ≤ α for all stopping times τ , possibly infinite.

Proof: The implication (a) =⇒ (b) follows from

AT =

(
∞⋃
t=1

At ∩ {T = t}

)
∪ [A∞ ∩ {T =∞}] ⊆

∞⋃
t=1

At. (3)

It is clear that (b) =⇒ (c). For (c) =⇒ (a), take τ = inf{t ∈ N : At occurs}, so that
Aτ =

⋃∞
t=1At.

References

Armitage, P., McPherson, C. K. & Rowe, B. C. (1969), ‘Repeated Significance Tests on Accu-
mulating Data’, Journal of the Royal Statistical Society. Series A (General) 132(2), 235–
244.

Balsubramani, A. (2014), ‘Sharp Finite-Time Iterated-Logarithm Martingale Concentration’,
arXiv:1405.2639 [cs, math, stat] .

Berman, R., Pekelis, L., Scott, A. & Van den Bulte, C. (2018), p-Hacking and False Discovery
in A/B Testing, SSRN Scholarly Paper ID 3204791, Social Science Research Network,
Rochester, NY.

Darling, D. A. & Robbins, H. (1967a), ‘Confidence Sequences for Mean, Variance, and
Median’, Proceedings of the National Academy of Sciences 58(1), 66–68.

Darling, D. A. & Robbins, H. (1967b), ‘Iterated Logarithm Inequalities’, Proceedings of the
National Academy of Sciences 57(5), 1188–1192.

Darling, D. A. & Robbins, H. (1968), ‘Some Further Remarks on Inequalities for Sample
Sums’, Proceedings of the National Academy of Sciences 60(4), 1175–1182.

Howard, S. R., Ramdas, A., McAuliffe, J. & Sekhon, J. (2018), ‘Exponential line-crossing
inequalities’, arXiv:1808.03204 [math] .

Jamieson, K., Malloy, M., Nowak, R. & Bubeck, S. (2014), lil’ UCB: An Optimal Exploration
Algorithm for Multi-Armed Bandits, in ‘Proceedings of The 27th Conference on Learning
Theory’, Vol. 35 of Proceedings of Machine Learning Research, pp. 423–439.

3



Jennison, C. & Turnbull, B. W. (1989), ‘Interim Analyses: The Repeated Confidence Interval
Approach’, Journal of the Royal Statistical Society. Series B (Methodological) 51(3), 305–
361.

Katsevich, E. & Ramdas, A. (2018), ‘Towards ”simultaneous selective inference”: post-hoc
bounds on the false discovery proportion’, arXiv:1803.06790 [math, stat] .
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