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Given a sequence of observations (Xt)
∞
t=1, suppose we wish to estimate the average conditional

expectation µt := t−1
∑t

i=1 Ei−1Xi at each time t using the sample mean t−1
∑t

i=1Xi. Let
St =

∑t
i=1(Xi − Ei−1Xi), the zero-mean deviation of our sample sum from its estimand at

time t. Suppose we can construct a uniform upper tail bound uα(·) satisfying

P
(
∃t ≥ 1 : St ≥ uα(Vt)

)
≤ α (1)

for some intrinsic time process (Vt)
∞
t=1, an appropriate quantity to measure the deviations of

(St). This uniform upper bound on the centered sum (St) yields a lower confidence sequence
for (µt) with radius uα(Vt)/t:

P

(
∀t ≥ 1 :

1

t

t∑
i=1

Xi −
uα(Vt)

t
≤ µt

)
≥ 1− α. (2)

Note that an assumption on the upper tail of (St) yields a lower confidence sequence for (µt);
a corresponding assumption on the lower tails of (St) yields an upper confidence sequence
for (µt). In this paper we formally focus on upper tail bounds, from which lower tail bounds
can be derived by examining (−St) in place of (St). In general, the left and right tails of
(St) may behave differently and require different sets of assumptions, so that our upper and
lower confidence sequences may have different forms. Regardless, we can always combine an
upper confidence sequence with a lower confidence sequence using a union bound to obtain
a two-sided confidence sequence.

Under the typical assumption that the (Xt) are independent with common mean µ, the
resulting confidence sequence sequentially estimates µ, but the setup requires neither inde-
pendence nor a common mean. In general the estimand µt may be changing at each time
t; we will see an application to causal inference in which this changing estimand makes a
great deal of practical sense. In principle, µt may also be random, although none of our
applications involve random µt.

To construct uniform boundaries uα satisfying inequality (1), we build upon the following
general assumption:

Assumption 1 (Howard et al. 2018, Assumption 1) Let (St)
∞
t=0 and (Vt)

∞
t=0 be two real-

valued processes adapted to an underlying filtration (Ft)∞t=0 with S0 = V0 = 0 and Vt ≥ 0

a.s. for all t. Let ψ be a real-valued function with domain [0, λmax). We assume, for
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each λ ∈ [0, λmax), there exists a supermartingale (Lt(λ))∞t=0 with respect to (Ft) such that

EL0 := EL0(λ) is constant for all λ, and such that

exp{λSt − ψ(λ)Vt} ≤ Lt(λ) a.s. for all t.

Intuitively, the process exp{λSt − ψ(λ)Vt} measures how quickly St has grown relative to
intrinsic time Vt. Larger values of λ exaggerate larger movements in St, and ψ captures how
much we must correspondingly exaggerate Vt. It is related to the heavy-tailedness of St and
the reader may think of it as a cumulant-generating function (CGF). We will organize our
presentation of uniform boundaries according to the ψ function used in the above assumption,
based on the following definition:

Definition 1 Given a function ψ : [0, λmax)→ R, we call a function u : R≥0 × R>0 → R≥0
as a sub-ψ uniform boundary with crossing probability α if the inequality

P(∃t ≥ 1 : St ≥ u(Vt,EL0)) ≤ α (3)

holds whenever (St), (Vt) and ψ satisfy Assumption 1.

For clarity, we will omit the dependence of u on EL0 from our notation in what follows.

The simplest uniform boundaries are linear: u(v) = a+ bv for some a, b > 0. As seen below,
all such linear boundaries are sub-ψ uniform boundaries. We partially restate this result
from Howard et al. (2018) as a lemma:

Lemma 2 (Howard et al. 2018, Theorem 1) For any λ ∈ [0, λmax) and α ∈ (0, 1), the

boundary

u(v) :=
log(EL0/α)

λ
+
ψ(λ)

λ
· v (4)

is a sub-ψ uniform boundary with crossing probability α.

Five particular ψ functions play important roles in our development:

• ψB(λ) := log
(
gehλ+he−gλ

g+h

)
, the CGF of a centered random variable with support on

just two points −g and h for some g, h > 0.

• ψN(λ) := λ2/2, the CGF of a standard Gaussian random variable.

• ψP (λ) := c−2(ecλ − cλ − 1) for some scale parameter c > 0, which is the CGF of a
centered Poisson random variable with rate one when c = 1.

• ψE(λ) := c−2(− log(1− cλ)− cλ) on λ < 1/c for some scale parameter c > 0, which is
the CGF of a centered exponential random variable with rate one when c = 1.

2



• ψG(λ) := λ2/(2(1− cλ)) on λ < 1/c (taking 1/0 =∞) for some scale parameter c ≥ 0;
this is not the CGF of a gamma random variable, but is rather a convenient upper
bound which also includes the sub-Gaussian case at c = 0 and permits analytically
tractable results presented below. Our terminology follows that of Boucheron et al.
(2013).

When we speak of a sub-gamma uniform boundary, we mean that it is sub-ψG, and likewise
for the other cases. The figure summarizes implications that hold among sub-ψ uniform
boundaries. It shows, in particular, that a sub-gamma or sub-exponential uniform boundary
also yields a sub-Poisson, sub-Gaussian or sub-Bernoulli uniform boundary. Indeed, sub-
gamma and sub-exponential uniform bounds are universal in a certain sense:

Proposition 5 Suppose ψ is twice continuously differentiable and ψ(0) = ψ′(0+) = 0. Sup-

pose, for each c > 0, uc(v) is a sub-gamma or sub-exponential uniform boundary with crossing

probability α for scale c. Then v 7→ uk1(k2v) is a sub-ψ uniform boundary for some constants

k1, k2 > 0.

While the above lemma provides a versatile building block, the linear growth of the boundary
may be undesirable. Indeed, from a concentration point of view, the typical deviations of
St tend to be only O(

√
Vt) while the aforementioned boundary grows like O(Vt), so the

bound will rapidly become loose for large t. From a confidence sequence point of view, the
confidence radius will be O(Vt/t), and Vt/t typically does not approach zero as t ↑ ∞, so the
confidence sequence width will not shrink towards zero. In other words, we cannot achieve
arbitrary estimation precision with arbitrarily large samples. We address this problem later,
building upon the above lemma to construct curved sub-ψ uniform boundaries.
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