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Martingales 1 : Concentration inequalities

Stitching for subGamma/subGaussian boundaries

Lecturer : Aaditya Ramdas
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Figure 1: Illustration of stitching together linear boundaries to construct a curved boundary.

We break time into geometrically-spaced epochs ηk ≤ Vt < ek+1, construct a linear uniform

bound using Lemma 1 (previous lecture) optimized for each epoch, and take a union bound

over all crossing events. The final boundary is a smooth analytical upper bound to the

piecewise linear bound.

1 Analytical bounds: the stitching method

The idea behind Theorem 1is to divide intrinsic time into geometrically spaced epochs,
ηk ≤ Vt < ηk+1 for some η > 1. We construct a linear boundary within each epoch using
Lemma 1 (previous lecture) and take a union bound over crossing events of the different
boundaries. The resulting, piecewise-linear boundary may then be upper bounded by a
smooth, concave function. Figure 1 illustrates the construction.

The boundary shape is determined by choosing the function h and setting the nominal cross-
ing probability in the kth epoch to equal α/h(k). Then Theorem 1gives a curved boundary

which grows at a rate O(
√
Vt log h(logη Vt)) as Vt ↑ ∞. The more slowly h(k) grows as

k ↑ ∞, the more slowly the resulting boundary will grow as Vt ↑ ∞. A simple choice is
exponential growth, h(k) = ηsk/(1− η−s) for some s > 1, yielding Sα(v) = O(

√
v log v).
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Figure 2: Finite LIL bounds for independent 1-sub-Gaussian observations, α = 0.025. The

dotted lines show fixed-sample Hoeffding bound
√

2t logα−1, which is nonasymptotically

pointwise valid but not uniformly valid, and the fixed-sample CLT bound z1−α
√
t which

is asymptotically pointwise valid. Polynomial stitching uses Theorem 1with η = 2.04 and

h(k) = (k + 1)1.4ζ(1.4). The inverted stitching boundary is 1.7
√
Vt(log(1 + log Vt) + 3.5),

using the inverted stitching theorem (later class) with η = 2.99, vmax = 1020, and error rate

0.815α to account for finite horizon. Discrete mixture uses the discrete mixture theorem

(later class) with f(λ) ∝ 1/λ log1.4(1/λ), η = 1.1, and λmax = 4. The normal mixture bound

(later class) uses ρ = 0.129. See Howard et al. (2018b) for details.

1.1 Polynomial stitching and finite LIL bounds

Recall that we used ζ(s) =
∑∞

k=1 s
−k to represent the Riemann zeta function. Choosing

h(k) = (k + 1)sζ(s) for some s > 1 in Theorem 1yields Sα(v) ∼
√

(2 + δ)v log log v), where
we may attain any δ > 0 by taking η and s sufficiently close to one, coming arbitrarily
close to the lower bound furnished by the classical LIL. Uniform bounds achieving this
iterated logarithm growth rate are known as finite LIL bounds. One may substitute a series
converging yet more slowly; for example, h(k) ∝ (k + 2) logs(k + 2) for s > 1 yields

log h(logη Vt) = log logη(η
2Vt) + s log log logη(η

2Vt) + log

(
log1−s(3/2)

s− 1

)
, (1)

matching related analysis in Darling & Robbins (1967), Robbins & Siegmund (1969), Robbins
(1970), and Balsubramani (2014). In practice, the bound (1) appears to behave like bound
(??) with worse constants. However, the fact that the stitching approach can recover key
theoretical results like these gives some indication of its power. Figure 2 compares our
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polynomial stitching bound for 1-sub-Gaussian increments to a variety of bounds from the
literature; our bound shows a slight improvement. We also include a numerically-computed
discrete mixture bound with a mixture distribution roughly corresponding to h(k) ∝ (k +
1)1.4, as described later. This acts as a lower bound and shows that not too much is lost by
the approximations involved in the stitching construction.

1.2 Why do we get tighter finite LIL bounds than past work?

The idea of taking a union bound over geometrically spaced epochs is standard in the proof
of the classical law of the iterated logarithm (Durrett 2017, Theorem 8.5.1). The idea
has been extended to finite-time bounds by Darling & Robbins (1967), Jamieson et al.
(2014), Kaufmann et al. (2014), and Zhao et al. (2016), usually when the observations are
independent and sub-Gaussian. Of course, Theorem 1generalizes these constructions much
beyond the independent sub-Gaussian case, but it also achieves tighter constants for the
sub-Gaussian setting. Here, we briefly discuss how the improved constants arise.

Both Jamieson et al. (2014) and Zhao et al. (2016) construct a constant boundary rather
than a linear increasing boundary over each epoch. They apply Doob’s maximal inequality
for submartingales (Durrett 2017, Theorem 4.4.2), as in Hoeffding (1963, eq. 2.17), to obtain
boundaries similar to that of Freedman (1975). As illustrated in Howard et al. (2018a, Figure
2), the linear bounds from Lemma 1 (previous lecture) are stronger than corresponding
Freedman-style bounds, and the additional flexibility yields tighter constants.

Both Darling & Robbins (1967) and Kaufmann et al. (2014) use linear boundaries within
each epoch analogous to those of Lemma 1 (previous lecture). Both methods share a great
deal in common with ours, and Darling & Robbins give consideration to general cumulant-
generating functions. Recall from Lemma 1 (previous lecture) that such linear boundaries
may be chosen to optimize for some fixed time Vt = m. Our method chooses the linear
boundary within each epoch to be optimal at the geometric center of the epoch, i.e., at
Vt = ηk+1/2, so that at both epoch endpoints the boundary will be equally “loose”, that is,
equal multiples of

√
Vt. Darling & Robbins choose the boundaries to be tangent at the start

of the epoch, hence their boundary is looser than ours at the end of the epoch. Kaufmann
et al. choose the boundary as we do, but appear to incur more looseness in the subsequent
inequalities used to construct a smooth upper bound.

References

Balsubramani, A. (2014), ‘Sharp Finite-Time Iterated-Logarithm Martingale Concentration’,
arXiv:1405.2639 [cs, math, stat] .

Darling, D. A. & Robbins, H. (1967), ‘Iterated Logarithm Inequalities’, Proceedings of the
National Academy of Sciences 57(5), 1188–1192.

3



Durrett, R. (2017), Probability: Theory and Examples, 5a edn.

Freedman, D. A. (1975), ‘On Tail Probabilities for Martingales’, The Annals of Probability
3(1), 100–118.

Hoeffding, W. (1963), ‘Probability Inequalities for Sums of Bounded Random Variables’,
Journal of the American Statistical Association 58(301), 13–30.

Howard, S. R., Ramdas, A., McAuliffe, J. & Sekhon, J. (2018a), ‘Exponential line-crossing
inequalities’, arXiv:1808.03204 [math] .

Howard, S. R., Ramdas, A., McAuliffe, J. & Sekhon, J. (2018b), ‘Uniform, nonparametric,
non-asymptotic confidence sequences’, arXiv:1808.08240 [math] .

Jamieson, K., Malloy, M., Nowak, R. & Bubeck, S. (2014), lil’ UCB: An Optimal Exploration
Algorithm for Multi-Armed Bandits, in ‘Proceedings of The 27th Conference on Learning
Theory’, Vol. 35 of Proceedings of Machine Learning Research, pp. 423–439.
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