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Figure 1: Schematic of relations among sub-t¢) boundaries. Each arrow indicates that a sub-
1 boundary at the source node yields a sub-¢) boundary at the destination node with the
modification indicated on the arrow.

A reader who is familiar with Howard et al. (2018) will note that the arrows in the above
figure are reversed with respect to Figure 3 in their paper. Indeed, since any sub-Bernoulli
process is also sub-Gaussian, it follows that any sub-Gaussian uniform boundary is also a
sub-Bernoulli uniform boundary, and so on.

The above figure summarizes implications that hold among sub-¢) uniform boundaries. It
shows, in particular, that a sub-gamma or sub-exponential uniform boundary also yields
a sub-Poisson, sub-Gaussian or sub-Bernoulli uniform boundary. Indeed, sub-gamma and
sub-exponential uniform bounds are universal in a certain sense:

Proposition 1 Suppose 1 is twice continuously differentiable and ¥(0) = '(04) = 0. Sup-
pose, for each ¢ > 0, u.(v) is a sub-gamma or sub-exponential uniform boundary with crossing
probability a for scale c. Then v — uy, (kov) is a sub-1) uniform boundary for some constants

k17 k?g > 0.

Proof: Suppose, for each ¢ > 0, u, is a sub-gamma uniform boundary for scale ¢. Applying
Taylor’s theorem to 1 at the origin, we have () = [% + h(z)| 2* where h(z) — 0 as
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z | 0. Choose xyp > 0 small enough so that ¥ (z) < ¢”(0,)z? for all 0 < x < . Then,
setting ¢ = k; := 1/x¢ in ¢, and using that fact that Vg > ¥y, we have ¥ (x) < kothg(z)
for all 0 < x < 1/c¢ where ky := 2¢"(04). We conclude that, if (S;) and (V}) satisfy the
canonical Assumption 1 for 1, then (S;) and (k2V;) satisfy Assumption 1 for ¢g. This
implies P(3t > 1: S; > ug, (k2V4)) < o, which is the desired conclusion. The same argument
holds if u, is a sub-exponential uniform boundary, replacing ¢ with ¥ g. [ ]

The following proposition formalizes the relationships illustrated in the above figure, and
follows directly from Proposition 3 of Howard et al. (2018).

Proposition 2 Let u: R>g — R>¢ be a sub-y) uniform boundary with crossing probability o
(we omit the dependence on ELy, as elsewhere).

1. If u is a sub-Gaussian uniform boundary, then v — u(p(g,h)v) is a sub-Bernoulli
uniform boundary with crossing probability o for range parameters g, h, where
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2. If u is a sub-Gaussian uniform boundary, then v — u((g + h)*v/4) is a sub-Bernoulli
uniform boundary with crossing probability o for range parameters g, h.

3. Ifu is a sub-Poisson uniform boundary for scale ¢, then v — u(gcv) is a sub-Bernoulli
uniform boundary with crossing probability o for range parameters g, c.

4. If u is a sub-Poisson uniform boundary for scale c, then it is also a sub-Gaussian
uniform boundary with crossing probability c.

5. Ifu is a sub-gamma uniform boundary for scale c, then it is also a sub-Poisson uniform
boundary with crossing probability o for scale 3c.

6. If u is a sub-gamma uniform boundary for scale c, then it is also a sub-exponential
uniform boundary with crossing probability o for scale c.

7. If u is a sub-exponential uniform boundary for scale c, then it is also a sub-gamma
uniform boundary with crossing probability a for scale 2¢/3.
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