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Universality of sub-Gamma bounds

Figure 1: Schematic of relations among sub-ψ boundaries. Each arrow indicates that a sub-

ψ boundary at the source node yields a sub-ψ boundary at the destination node with the

modification indicated on the arrow.

A reader who is familiar with Howard et al. (2018) will note that the arrows in the above
figure are reversed with respect to Figure 3 in their paper. Indeed, since any sub-Bernoulli
process is also sub-Gaussian, it follows that any sub-Gaussian uniform boundary is also a
sub-Bernoulli uniform boundary, and so on.

The above figure summarizes implications that hold among sub-ψ uniform boundaries. It
shows, in particular, that a sub-gamma or sub-exponential uniform boundary also yields
a sub-Poisson, sub-Gaussian or sub-Bernoulli uniform boundary. Indeed, sub-gamma and
sub-exponential uniform bounds are universal in a certain sense:

Proposition 1 Suppose ψ is twice continuously differentiable and ψ(0) = ψ′(0+) = 0. Sup-

pose, for each c > 0, uc(v) is a sub-gamma or sub-exponential uniform boundary with crossing

probability α for scale c. Then v 7→ uk1(k2v) is a sub-ψ uniform boundary for some constants

k1, k2 > 0.

Proof: Suppose, for each c > 0, uc is a sub-gamma uniform boundary for scale c. Applying

Taylor’s theorem to ψ at the origin, we have ψ(x) =
[
ψ′′(0+)

2
+ h(x)

]
x2 where h(x) → 0 as
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x ↓ 0. Choose x0 > 0 small enough so that ψ(x) ≤ ψ′′(0+)x2 for all 0 ≤ x ≤ x0. Then,
setting c = k1 := 1/x0 in ψG, and using that fact that ψG ≥ ψN , we have ψ(x) ≤ k2ψG(x)
for all 0 ≤ x ≤ 1/c where k2 := 2ψ′′(0+). We conclude that, if (St) and (Vt) satisfy the
canonical Assumption 1 for ψ, then (St) and (k2Vt) satisfy Assumption 1 for ψG. This
implies P(∃t ≥ 1 : St ≥ uk1(k2Vt)) ≤ α, which is the desired conclusion. The same argument
holds if uc is a sub-exponential uniform boundary, replacing ψG with ψE.

The following proposition formalizes the relationships illustrated in the above figure, and
follows directly from Proposition 3 of Howard et al. (2018).

Proposition 2 Let u : R≥0 → R≥0 be a sub-ψ uniform boundary with crossing probability α

(we omit the dependence on EL0, as elsewhere).

1. If u is a sub-Gaussian uniform boundary, then v 7→ u(ϕ(g, h)v) is a sub-Bernoulli

uniform boundary with crossing probability α for range parameters g, h, where

ϕ(g, h) :=

{
h2−g2

2 log(h/g)
, g < h

gh, g ≥ h.
(3)

2. If u is a sub-Gaussian uniform boundary, then v 7→ u((g + h)2v/4) is a sub-Bernoulli

uniform boundary with crossing probability α for range parameters g, h.

3. If u is a sub-Poisson uniform boundary for scale c, then v 7→ u(gcv) is a sub-Bernoulli

uniform boundary with crossing probability α for range parameters g, c.

4. If u is a sub-Poisson uniform boundary for scale c, then it is also a sub-Gaussian

uniform boundary with crossing probability α.

5. If u is a sub-gamma uniform boundary for scale c, then it is also a sub-Poisson uniform

boundary with crossing probability α for scale 3c.

6. If u is a sub-gamma uniform boundary for scale c, then it is also a sub-exponential

uniform boundary with crossing probability α for scale c.

7. If u is a sub-exponential uniform boundary for scale c, then it is also a sub-gamma

uniform boundary with crossing probability α for scale 2c/3.
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