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1 Conjugate mixtures

Let f be a probability density on R. For appropriate choices of f and ψ, the integral∫
exp{λSt − ψ(λ)Vt}f(λ)dλ will be analytically tractable. Since, under Assumption 1, this

mixture process is upper bounded by a mixture supermartingale
∫
Lt(λ)f(λ)dλ, such mix-

tures yield closed-form or efficiently computable curved boundaries. This approach is known
as the method of mixtures, one of the most widely-studied techniques for constructing uni-
form bounds (Ville 1939, Wald 1945, Darling & Robbins 1968, Robbins 1970, Robbins &
Siegmund 1969, 1970, Lai 1976). With the exception of the sub-Gaussian case, most prior
work on the method of mixtures has focused on parametric settings. We instead derive a
variety of nonparametric uniform boundaries using this approach.

Unlike the stitching bound of two lectures ago, which involves a small amount of looseness
in the analytical approximations, mixture boundaries are unimprovable in a sense we make
precise later. We present both one-sided and two-sided boundaries. Each conjugate mix-
ture boundary includes a tuning parameter ρ which controls the sample size for which the
boundary is optimzed. Such tuning is critical in practice, as we explain later.

In the sub-Gaussian case, the following boundary is well-known (Robbins 1970, example 2).

Proposition 1 (Two-sided normal mixture) Suppose (St) and (Vt) satisfy Assumption

1 with ψ = ψN and λmax = ∞, and suppose the same holds for (−St). Fix α ∈ (0, 1) and

ρ > 0, and define

f(v) :=

√
(v + ρ) log

(
(EL0)2(v + ρ)

α2ρ

)
. (2)

Then P(∀t ≥ 1 : |St| < NM2(Vt)) ≥ 1− α.

When only a one-sided sub-Gaussian assumption holds, the normal mixture can still be used
to obtain a sub-Gaussian uniform boundary.

When tails are heavier than Gaussian, the normal mixture boundary is not applicable, How-
ever, the follow sub-exponential mixture boundary based a gamma mixing density is univer-
sally applicable, as described in the previous lecture. Below we make use of the regularized
lower incomplete gamma function γ(a, x) := (

∫ x
0
ua−1e−uu. )/Γ(a), available in standard sta-

tistical software packages.
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Theorem 1 (Gamma-exponential mixture) Fix c > 0, ρ > 0 and define

GEα(v) := inf{s ≥ 0 : m(s, v) ≥ EL0

α
}, (3)

where m(s, v) :=

(
ρ
c2

) ρ

c2

Γ
(
ρ
c2

)
γ
(
ρ
c2
, ρ
c2

) Γ
(
v+ρ
c2

)
γ
(
v+ρ
c2
, cs+v+ρ

c2

)(
cs+v+ρ
c2

) v+ρ
c2

exp{cs+ v

c2
}. (4)

Then GEα is a sub-exponential uniform boundary with crossing probability α for scale c.

When a sub-exponential condition applies to (−St) as well, we may apply these boundaries
to both tails and take a union bound, obtaining a two-sided confidence sequence.

2 More examples

The basic idea behind the method of mixtures is as follows. If (St), (Vt), and ψ(λ) satisfy
Assumption 1, and for any probability distribution F on R≥0, we have, for all t,∫

exp{λSt − ψ(λ)Vt}dF (λ) ≤
∫
Lt(λ)dF (λ), (5)

and the right-hand side is a nonnegative supermartingale with initial expectation EL0. So
defining

Mα(v) := inf{s ∈ R :

∫
exp{λs− ψ(λ)v}dF (λ) ≥ EL0

α
}, (6)

and invoking Ville’s maximal inequality for nonnegative supermartingales, we have the fol-
lowing basic result:

Lemma 2 Mα is a sub-ψ uniform boundary with crossing probability α.

We suppress the dependence of Mα on ψ, F and EL0 for notational simplicity, as we did
with Sα. With F a point mass at λ we recover the linear uniform bounds.

In the sub-Gaussian case, we can take the mixture distribution F to be half-normal over the
positive reals. The integral in (6) can be evaluated explicitly, yielding the mixture boundary

NMα(v) = inf{s ∈ R :

√
4ρ

Vt + ρ
exp{ s2

2(Vt + ρ)
}Φ
(

s√
Vt + ρ

)
≥ EL0

α
}. (7)

This is easily evaluated to high precision by numerical root finding. Alternatively, we have
the following tight analytical upper bound:

NM(v) ≤ ÑMα(v) :=

√
2(v + ρ) log

(
EL0

2α

√
v + ρ

ρ
+ 1

)
. (8)
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Proposition 9 (One-sided normal mixture) For any α ∈ (0, 1) and ρ > 0, the bound-

aries NMα and ÑMα are sub-Gaussian uniform boundaries with crossing probability α.

Many of our definitions and results have focused on one-sided uniform bounds, which yield
one-sided (upper or lower) confidence sequences. Such one-sided bounds can always be
combined via a union bound to form a two-sided confidence sequence, and for typical values
of α used in statistical practice, such a union bound is hardly wasteful, as the intersection of
the two error events will have very small probability. In the method of mixtures, however,
it is sometimes convenient to derive a two-sided bound directly using a mixture distribution
F with support on both positive and negative values of λ.

In the sub-Bernoulli case, we first rewrite the exponential process exp{λSt − ψB(λ)Vt} in
terms of the transformed parameter p = (1+e−(g+h)λ)−1. This is motivated by the transform
from the canonical parameter to the mean parameter of a Bernoulli family, but keep in mind
that we make no parametric assumption here, these are merely analytical manipulations.
Then a truncated Beta distribution on p ∈ [g/(g + h), 1] yields the one-sided Beta-Binomial
uniform boundary. Below, Bx(a, b) =

∫ x
0
pa−1(1 − p)b−1dp denotes the incomplete Beta

function, whose implementation is readily available in statistical software packages.

Proposition 10 (One-sided Beta-Binomial mixture) Fix any g, h > 0, α ∈ (0, 1), and

ρ > gh, let m = ρ/gh− 1 and define

fg,h(v) := inf{s ≥ 0 : mg,h(s, v) ≥ EL0

α
}, (11)

where mg,h(s, v) :=
(g + h)v

g
gv+s
g+h h

hv−s
g+h

Bh/(g+h)

(
h(m+v)−s

g+h
, g(m+v)+s

g+h

)
B1{ mgg+h

, mh
g+h
}

. (12)

Then fg,h is a sub-Bernoulli uniform boundary with crossing probability α and range g, h.

Sub-Bernoulli conditions typically follow from the assumption that centered observations are
[−g, h]-bounded. In such a case, the following two-sided bound may be preferable. Simpler
versions of this boundary have long been studied i.i.d. Bernoulli sampling (Ville 1939,
Robbins 1970, Lai 1976, Shafer et al. 2011).

Proposition 13 (Two-sided Beta-Binomial mixture) Suppose (St) and (Vt) satisfy As-

sumption 1 with ψ = ψB for range g, h and λmax =∞, and suppose the same holds for (−St)
with range h, g. Fix any ρ > gh, let m = ρ/gh− 1 and define

fg,h(v) := inf{s ≥ 0 : mg,h(s, v) ≥ EL0

α
}, (14)

where mg,h(s, v) :=
(g + h)v

g
gv+s
g+h h

hv−s
g+h

B1

(
g(m+v)+s

g+h
, h(m+v)−s

g+h

)
B1

(
mg
g+h

, mh
g+h

) . (15)

Then P(∀t ≥ 1 : −fh,g(Vt) < St < fg,h(Vt)) ≥ 1− α.
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The Beta mixing density is chosen so that the corresponding mixture on λ is approximately
mean zero with precision ρ, making the boundary comparable to a normal mixture bound
with the same precision. This allows the user to choose ρ following the same logic as for the
normal mixture boundary, as described later, and indeed this is true by construction for all
of our conjugate mixture boundaries.

The gamma-exponential mixture is the result of evaluating the mixture integral (6) with
mixture density

dF

dλ
=

1

γ(ρ/c2, ρ/c2)

(ρ/c)ρ/c
2

Γ(ρ/c2)
(c−1 − λ)ρ/c

2−1e−ρ(c
−1−λ)/c. (16)

This is a gamma distribution with shape ρ/c2 and scale ρ/c applied to the transformed
parameter u = c−1 − λ, truncated to the support [0, c−1]. The distribution has mean zero
and variance equal to 1/ρ, making it comparable to the normal mixture distribution used
above. As ρ→∞, the gamma mixture distribution converges to a normal distribution and
concentrates about λ = 0, the regime in which ψE(λ) ∼ ψN(λ), which gives some intuition
for why the gamma mixture recovers the normal mixture when ρ � c2. Like the normal
mixture, the gamma mixture is unimprovable and is effective in practice.

A similar mixture boundary holds in the sub-Poisson case:

Proposition 17 (Gamma-Poisson mixture) Fix c > 0, ρ > 0 and define

GPα(v) := inf{s ≥ 0 : m(s, v) ≥ EL0

α
}, (18)

where m(s, v) :=

(
ρ
c2

) ρ

c2

Γ
(
ρ
c2

)
γ
(
ρ
c2
, ρ
c2

) Γ
(
cs+v+ρ
c2

)
γ
(
cs+v+ρ
c2

, v+ρ
c2

)(
v+ρ
c2

) cs+v+ρ
c2

exp{ v
c2
}. (19)

Then GPα is a sub-Poisson uniform boundary with crossing probability α for scale c.
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