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Conjugate mixtures

Lecturer : Aaditya Ramdas

1 Conjugate mixtures

Let f be a probability density on R. For appropriate choices of f and v, the integral
[ exp{AS; — Y(A)V;} f(A)dA will be analytically tractable. Since, under Assumption 1, this
mixture process is upper bounded by a mixture supermartingale [ L;()\)f(A)d\, such mix-
tures yield closed-form or efficiently computable curved boundaries. This approach is known
as the method of mixtures, one of the most widely-studied techniques for constructing uni-
form bounds (Ville 1939, Wald 1945, Darling & Robbins 1968, Robbins 1970, Robbins &
Siegmund 1969, 1970, Lai 1976). With the exception of the sub-Gaussian case, most prior
work on the method of mixtures has focused on parametric settings. We instead derive a
variety of nonparametric uniform boundaries using this approach.

Unlike the stitching bound of two lectures ago, which involves a small amount of looseness
in the analytical approximations, mixture boundaries are unimprovable in a sense we make
precise later. We present both one-sided and two-sided boundaries. Each conjugate mix-
ture boundary includes a tuning parameter p which controls the sample size for which the
boundary is optimzed. Such tuning is critical in practice, as we explain later.

In the sub-Gaussian case, the following boundary is well-known (Robbins 1970, example 2).

Proposition 1 (Two-sided normal mixture) Suppose (S;) and (V;) satisfy Assumption
1 with 1 = VYN and Apax = 00, and suppose the same holds for (=S;). Fiz o € (0,1) and
p >0, and define

fv) = \/ (v + ) log (M) @)

a?p
Then P(Vt > 1:|S;] < NMy(V})) > 1 —a.

When only a one-sided sub-Gaussian assumption holds, the normal mixture can still be used
to obtain a sub-Gaussian uniform boundary.

When tails are heavier than Gaussian, the normal mixture boundary is not applicable, How-
ever, the follow sub-exponential mixture boundary based a gamma mixing density is univer-
sally applicable, as described in the previous lecture. Below we make use of the regularized
lower incomplete gamma function y(a, z) := (f; u* *e~"u)/T'(a), available in standard sta-
tistical software packages.



Theorem 1 (Gamma-exponential mixture) Fizc > 0,p > 0 and define

S ELg

GE,(v) = inf{s > 0:m(s,v) > ) (3)
_ (BT Ty esto
where  m(s,v) = [(2)(2,2) (Csﬂ;rp)% exp{ 2 }. (4)

Then GE, is a sub-exponential uniform boundary with crossing probability o for scale c.

When a sub-exponential condition applies to (—S;) as well, we may apply these boundaries
to both tails and take a union bound, obtaining a two-sided confidence sequence.

2 More examples

The basic idea behind the method of mixtures is as follows. If (S;), (V;), and 1(\) satisfy
Assumption 1, and for any probability distribution £’ on R>(, we have, for all ¢,

/ exp{AS, — BVIIF(A) < / L(NAF(N), (5)

and the right-hand side is a nonnegative supermartingale with initial expectation ELg. So
defining

M (v) = inf{s € R / exp{As — B(\)o}dF(\) > % , (6)

and invoking Ville’s maximal inequality for nonnegative supermartingales, we have the fol-
lowing basic result:

Lemma 2 M, is a sub-i) uniform boundary with crossing probability c.

We suppress the dependence of M, on 9, F' and EL( for notational simplicity, as we did
with S,. With F' a point mass at A\ we recover the linear uniform bounds.

In the sub-Gaussian case, we can take the mixture distribution F' to be half-normal over the
positive reals. The integral in (6) can be evaluated explicitly, yielding the mixture boundary

. ‘ 4p ox 52 5 ELg
NMQ(U)—mf{SER.\/—V}_’_p p{—Z(Vt—i—p)}qD (m) > - }. (7)

This is easily evaluated to high precision by numerical root finding. Alternatively, we have
the following tight analytical upper bound:

NM(v) < NM, (v) := \/2@ +p)log (%, /2 : i 1). (8)

2




Proposition 9 (One-sided normal mixture) For any o € (0,1) and p > 0, the bound-
aries NM,, and NM,, are sub-Gaussian uniform boundaries with crossing probability c.

Many of our definitions and results have focused on one-sided uniform bounds, which yield
one-sided (upper or lower) confidence sequences. Such one-sided bounds can always be
combined via a union bound to form a two-sided confidence sequence, and for typical values
of « used in statistical practice, such a union bound is hardly wasteful, as the intersection of
the two error events will have very small probability. In the method of mixtures, however,
it is sometimes convenient to derive a two-sided bound directly using a mixture distribution
F with support on both positive and negative values of \.

In the sub-Bernoulli case, we first rewrite the exponential process exp{\S; — ¥5(\)V;} in
terms of the transformed parameter p = (14e¢~@ )~ This is motivated by the transform
from the canonical parameter to the mean parameter of a Bernoulli family, but keep in mind
that we make no parametric assumption here, these are merely analytical manipulations.
Then a truncated Beta distribution on p € [g/(g + h), 1] yields the one-sided Beta-Binomial
uniform boundary. Below, B,(a,b) = [ p* (1 — p)*'dp denotes the incomplete Beta
function, whose implementation is readily available in statistical software packages.

Proposition 10 (One-sided Beta-Binomial mixture) Fiz any g,h >0, a € (0,1), and
p > gh, let m = p/gh — 1 and define

EL,

for(v) = inf{s > 0:mgu(s,v) > — b (11)
(g+h)" Bu/esn (h(nﬂ)_s’ Wﬁf“)
where Mg p(s,v) = —m s gk . (12)
g otk hooth B o

Then fgp is a sub-Bernoulli uniform boundary with crossing probability o and range g, h.

Sub-Bernoulli conditions typically follow from the assumption that centered observations are
[—g, h]-bounded. In such a case, the following two-sided bound may be preferable. Simpler
versions of this boundary have long been studied ii.d. Bernoulli sampling (Ville 1939,
Robbins 1970, Lai 1976, Shafer et al. 2011).

Proposition 13 (Two-sided Beta-Binomial mixture) Suppose (S;) and (V;) satisfy As-
sumption 1 with 1» = ¥ for range g, h and Ayax = 00, and suppose the same holds for (—S;)
with range h,g. Fiz any p > gh, let m = p/gh — 1 and define

forn(v) == inf{s > 0:mgyu(s,v) > % , (14)
a

(m+v)+s h(m4v)—s
(g + h)v B (9 gth ' g+h >

g'u+hs h h,v—hs B mg mh
g+ g+ —d
g ! <g+h’ g+h>

where  mgp(s,v) = (15)

Then P(Vt > 1: —frqg(Vi) <S¢ < fon(V2)) > 1 —a.
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The Beta mixing density is chosen so that the corresponding mixture on A is approximately
mean zero with precision p, making the boundary comparable to a normal mixture bound
with the same precision. This allows the user to choose p following the same logic as for the
normal mixture boundary, as described later, and indeed this is true by construction for all
of our conjugate mixture boundaries.

The gamma-exponential mixture is the result of evaluating the mixture integral (6) with
mixture density

ar 1 (p/c)/
dx — y(p/c p/c®) T(p/c?)

This is a gamma distribution with shape p/c* and scale p/c applied to the transformed
parameter u = ¢! — )\, truncated to the support [0,c™!]. The distribution has mean zero
and variance equal to 1/p, making it comparable to the normal mixture distribution used
above. As p — oo, the gamma mixture distribution converges to a normal distribution and
concentrates about A = 0, the regime in which ¥ g(A\) ~ ¥ (X), which gives some intuition
for why the gamma mixture recovers the normal mixture when p > c¢?. Like the normal

mixture, the gamma mixture is unimprovable and is effective in practice.

(¢t — AP/ templem =N, (16)

A similar mixture boundary holds in the sub-Poisson case:

Proposition 17 (Gamma-Poisson mixture) Fiz ¢ > 0,p > 0 and define

GP,(v) = inf{s > 0:m(s,v) > % : (18)
p
L @F r(emeg e
where  m(s,v) = [(2)7(5.2) (izp)cstgﬂ exp{cQ}. (19)

Then GP,, is a sub-Poisson uniform boundary with crossing probability o for scale c.
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