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Discrete mixtures and inverted stitching

Lecturer : Aaditya Ramdas

1 Numerical bounds using discrete mixtures.

In applied use, there is often no need for an explicit closed-form expression so long as the
bound can be easily computed numerically. Our discrete mixture method gives a straight-
forward and efficient technique for numerical computation of curved boundaries whenever
Assumption 1 is satisfied. It permits arbitrary mixture densities and thus can produce
boundaries growing at the asymptotically-optimal O(Vt log log Vt) rate.

Recall that the shape of the stitching bound was determined by the user-specified function
h. For the discrete mixture bound, one instead specifies a distribution F . We then discretize
F using a series of support points λk, geometrically spaced according to successive powers
of some η > 1, and an associated set of weights wk:

λk :=
λmax

ηk+1/2
and wk :=

λmax(η − 1)f(λk
√
η)

ηk+1
for k = 1, 2, . . . . (1)

With the above definitions in place, we have a discrete mixture bound as follows.

Theorem 1 (Discrete mixture bound) Fix ψ : [0, λmax) → R and α ∈ (0, 1). Employ-

ing any continuous distribution F with density f that is nonincreasing and positive on a

nonempty interval (0, λmax], if we define

M̃α(v) := inf{s ∈ R :
∞∑
k=0

wk exp{λks− ψ(λk)v} ≥
EL0

α
}, (2)

then M̃α is a sub-ψ uniform boundary with crossing probability α.

We suppress the dependence of M̃α on F , EL0, λmax and η for notational simplicity. Though
the above theorem is a straightforward consequence of the method of mixtures, our choice
of discretization makes it effective, broadly applicable, and easy to compute numerically.

To see heuristically why the exponentially-spaced grid λk = O(η−k) makes sense, observe
that the integrand exp{λs − λ2v/2} is a scaled normal density in λ with mean s/v and
standard deviation 1/

√
v. In the regime relevant to our curved boundaries, s is of order√

v, ignoring logarithmic factors. Hence the integrand at time v has both center and spread
of order 1/

√
v, so as v → ∞, the relevant scale of the integrand shrinks. With the grid
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Figure 1: Illustration of the discrete mixture method. Mixture density f(λ) is discretized on

a grid (λk)
∞
k=0 which gets finer as λ ↓ 0. Resulting discrete mixture weights are represented

by areas within green bars. Integrand exp{λs − ψ(λ)v} is evaluated at grid points λk,

illustrated by purple points. Multiplying one integrand evaluation exp{λks−ψ(λk)v} by the

corresponding weight wk gives one term of the sum (2).

λk = O(η−k) we have λk − λk+1 = O(λk), ensuring that the resolution of the grid around
the peak of the integrand matches the scale of the integrand as v →∞.

The choice of λmax depends on the minimum value of Vt relevant to inference: making
λmax larger will make the resulting bound tighter over smaller values of Vt at the cost of
a looser bound for all larger values of Vt. In practice, for ψ = ψG, setting λmax = [c +√
vmin/2 logα−1]−1 will ensure the bound is tight for Vt ≥ vmin. Furthermore, in practice the

sum can be truncated after kmax = dlogη(λmax[c+
√

5v/ logα−1])e terms.

To illustrate the accuracy of the discrete mixture, we compare it to the one-sided normal
mixture bound. By using the same half-normal mixing density from last class, and setting
η = 1.05, λmax = 100, we may evaluate a corresponding discrete mixture bound M̃α. With
ρ = 14.3, α = 0.05 and EL0 = 1, numerical calculations show that

sup
1≤t≤106

M̃α(t)

NMα(t)
≤ 1.004, (3)

suggesting that the discrete mixture theorem gives an excellent conservative approximation
to the corresponding continuous mixture boundary to over a large practical range. Of course,
when a closed form is available as in the normal mixture, one should use it in practice. But
an exact closed form integral is rarely available as it is here, and substantial looseness
often accompanies closed-form approximations which provably maintain crossing probability
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guarantees. In such cases, unless a closed form is required, the discrete mixture method is
preferable.

2 Inverted stitching for arbitrary boundaries.

In the discrete mixture method, we choose a mixture distribution F and the machinery
yields a boundary M̃α. Likewise, in the stitching construction from a few lectures ago, we
choose an error decay function h and the machinery yields a boundary Sα. In this section we
invert the procedure: we choose a boundary function g(v) and numerically compute an upper
bound on its St-upcrossing probability using a stitching-like construction. For simplicity we
restrict to the sub-Gaussian case; we are currently working on extending this idea beyond
sub-Gaussianity.

Theorem 2 For any nonnegative, strictly concave function g : R≥0 → R≥0 and vmax > 1,

the function

u(v) :=

{
g(1 ∨ v), v ≤ vmax,

∞, otherwise
(4)

is a sub-Gaussian uniform boundary with crossing probability

(EL0) inf
η>1

dlogη vmaxe∑
k=0

exp{−2(g(ηk+1)− g(ηk))(ηg(ηk)− g(ηk+1))

ηk(η − 1)2
}. (5)

The proof follows a straightforward idea. We break time into epochs ηk ≤ Vt < ηk+1.
Within each epoch we consider the linear boundary passing through the points (ηk, g(ηk)) and
(ηk+1, g(ηk+1)). This line lies below g(Vt) throughout the epoch, and its crossing probability
is determined by its slope and intercept as in the mother theorem. Taking a union bound
over epochs yields the result.

A similar idea was considered by Darling & Robbins (1968), using a mixture integral ap-
proximation instead of an epoch-based construction to derive closed-form bounds. Inverted
stitching requires numerical summation but yields tighter bounds with fewer assumptions.
As an example, the above theorem with η = 2.99 shows that

P
(
∃t : 1 ≤ Vt ≤ 1020 and St ≥ 1.7

√
Vt(log log(eVt) + 3.46)

)
≤ 0.025. (6)
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