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1 Martingales

Recall that a filtration (Fn) is a sequence of increasing sigma-fields.

Definition 1 A sequence (Sn) is “adapted” to the filtration (Fn), if Sn ∈ Fn for all n. A

sequence (Sn) is “predictable” (with respect to the filtration (Fn)) if Sn ∈ Fn−1 for all n.

If (Sn) is integrable and adapted to (Fn), and it also satisfies E(Sn+1|Fn) = Sn, then (Sn)
is called a martingale (with respect to (Fn)). If the equality above is replaced by ≤, it is
called a supermartingale, and if replaced by ≥, it is a submartingale. If n > m, then we
have E(Sn|Fm) = E(Sm) for martingales (and ≤ or ≥ for super-/sub-martingales).

If (Sn) is a martingale wrt (Gn), and Fn = σ(S1, . . . , Sn), then we must have Gn ⊃ Fn for
all n and that (Sn) is a martingale wrt (Fn) as well. Further, (Fn) is the smallest filtration
wrt which (Sn) is adapted, and if the filtration is not mentioned, it is understood to be
σ(S1, . . . , Sn).

For example, the simple random walk (Sn) is a martingale that is adapted to the “canonical”
filtration σ(S1, . . . , Sn) = σ(X1, . . . , Xn).

• If (Sn) is a martingale, φ is a convex function, and (φ(Sn)) is integrable, then it is a
submartingale (by Jensen’s inequality).

• If (Sn) is a supermartingale and N is a stopping time, then (SN∧n) is a supermartingale.

Just as it is well known that a monotonically nondecreasing sequence of real numbers with
upper bound a number M converges to a limit which does not exceed M , we have the
following stochastic analogue.

Theorem 1 (Martingale convergence theorem, Durrett Thm 5.2.8) If (Sn) is a mar-

tingale with supn ES+
n < ∞, then Sn converges almost surely to an integrable limit X.

As a corollary, if (Sn) is a positive supermartingale, then Sn converges to a limit X with

EX ≤ ES0.

Any submartingale can also be decomposed into a martingale and a predictable increasing
component.

1



Theorem 2 (Doob’s decomposition theorem, Durrett Thm 5.2.10) Any submartin-

gale (Sn) can be uniquely decomposed as Sn = Mn + An where (Mn) is a martingale, and

(An) is a predictable increasing sequence.

There are variants of the above called Riesz’s and Krickenberg’s decompositions. Just as one
can construct a filtration from a martingale, one can also do the reverse.

Theorem 3 (Constructing a martingale from a filtration) Let Z be integrable, (Fn)

be a filtration, and define Mn = E(Z|Fn). Then (Mn) is a martingale (and moreover, it is a

uniformly integrable martingale).

This technique often allows us to use martingale methods even when there is no obvious
martingale in plain sight, since one can construct it out of thin air.

2 Ville’s and Doob’s inequalities

The first of Doob’s inequalities can be seen as a uniform generalization of Markov’s inequality
to submartingales.

Theorem 4 (Doob’s maximal inequality for submartingales, Durrett Thm 5.4.2)

If (Sn) is a submartingale, then for any x > 0, we have

P ( max
1≤n≤N

S+
n ≥ x) ≤ E(S+

N)

x

If Sn =
∑n

i=1Xi is a random walk with EXi = 0,EX2
i = σ2

i < ∞, then using the fact
that (Sn) is a martingale implies (S2

n) is a submartingale, we get Kolmogorov’s maximal
inequality, which can be interpreted as a uniform generalization of Chebyshev’s inequality
to martingales. Denoting s2n := Var(Sn) =

∑n
i=1 σ

2
i , we have

P ( max
1≤n≤N

Sn ≥ x) ≤ s2N
x2
.

For random walks like above, the process (S2
n−s2n) is also a martingale (confirm for yourself).

Using this fact, if we additionally had |Xi| ≤ K, then one may also prove that

P ( max
1≤n≤N

Sn ≤ x) ≤ (x+K)2

s2N
.

Further, for any zero-mean, finite-variance martingale (Sn), we have a uniform version of
Upensky’s inequality:

P ( max
1≤n≤N

Sn ≥ x) ≤ Var(SN)

Var(Sn) + x2

Ville’s supermartingale maximal inequality is closely related to Doob’s:
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Theorem 5 (Ville’s maximal inequality for supermartingales) If (Sn) is a nonneg-

ative supermartingale, then for any x > 0, we have

P (sup
n∈N

Sn > x) ≤ ES0

x
.

3 Optional Stopping (also called Optional Sampling,

different from Optimal Stopping)

Theorem 6 (Supermartingale optional stopping, Durrett Thm 5.7.6) If (Sn) is a

nonnegative supermartingale, then for any stopping time N ≤ ∞, we have

ESN ≤ ES0,

recalling that S∞ = limn Sn exists via the martingale convergence theorem.

For martingales, equality does not hold above, because the above theorem permits unbounded
stopping times. As an example, consider the simple random walk, and the stopping time
N = inf n : Sn = 1. Obviously ESn = 0 for any fixed n, but ESN = 1 by definition. The
problem again is that N is unbounded, and indeed EN =∞. Instead, we have the following:

Theorem 7 (Doob’s martingale optional sampling, Gut Corollary 7.1) If (Sn) is a

martingale, and N is a bounded stopping time, i.e. P (N ≤ K) = 1 for some constant K,

then {SN , SK} is a martingale, and specifically

ESN = ES0 = ESK .

Bounded stopping times, in fact, characterize martingales, as claimed below.

Theorem 8 (Gut Theorem 7.2) (Sn) is a martingale if and only if ESN = constant for

every bounded stopping time N .
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