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We have organized our presentation around confidence sequences and their closely related
uniform concentration bounds. We have emphasized confidence sequences due to our belief
that they offer a useful “user interface” for sequential inference. However, our methods
may alternatively be viewed as sequential hypothesis tests or always-valid p-values processes
(Johari et al. 2015). Indeed, a slew of related definitions from the literature are equivalent or
dual to one another. Here we briefly discuss these connections, building upon the definitions
and dualities of Johari et al. (2015). Recall Lemma 1 from lecture 15, which gives equivalent
formulations of certain common definitions in sequential testing.

First, let us mention that our definition of confidence sequence based on Darling & Robbins
(1967a) and Lai (1984), differs from that Johari et al. (2015), who require that P(θτ ∈
CIτ ) ≥ 1−α for all stopping times τ . They allow τ =∞ by defining CI∞ := lim inft→∞ CIt.
By taking At := {θt /∈ CIt} in Lemma 1 from lecture 14, we see that the distinction is
immaterial, and furthermore that we could equivalently define confidence sequences in terms
of arbitrary random times, not necessarily stopping times. This generalizes Proposition 1 of
Zhao et al. (2016).

As an alternative to confidence sequences, Johari et al. (2015) define an always-valid p-value
process for some null hypothesis H0 as an adapted, [0, 1]-valued sequence (pt)

∞
t=1 satisfying

P0(pτ ≤ α) ≤ α for all stopping times τ , where P0 denotes probability under the null H0.
Taking At := {pt ≤ α} in Lemma 1 from lecture 14 shows that we may replace this definition
with an equivalent one over all random times, not necessarily stopping times, or with the
uniform condition P0(∃t ∈ N : pt ≤ α) ≤ α. By analogy to the usual dual construction be-
tween fixed-sample p-values and confidence intervals1, one can see that confidence sequences
are dual to always-valid p-values, and both are dual to sequential hypothesis tests, as defined
by a stopping time and a binary random variable indicating rejection (Johari et al. 2015,
Proposition 5). In particular, for the null H0 : θ = θ?, if (CIt) is a (1−α)-confidence sequence
for θ, it is clear that a test which stops and rejects the null as soon as θ? /∈ CIt controls
type I error: P0(reject H0) = P0(∃t ∈ N : θ? /∈ CIt) ≤ α. Typically, then, a confidence
sequence based on any of the curved uniform bounds in this paper with radius u(v) = o(v)
will yield a test of power one (Darling & Robbins 1967b, Robbins 1970). In particular, for
a confidence sequence with limits X̄t ± u(Vt), it is sufficient that X̄t converges a.s. to θ

1Indeed, if (CIαt ) is a (1−α)-level confidence sequence for some constant parameter θ, for each α ∈ (0, 1),

then pt := inf{α ∈ (0, 1) : θ? /∈ CIαt } gives an always-valid p-value process for the null hypothesis H0 : θ = θ?.

Conversely, if (pθ
?

t ) is an always-valid p-value process for the null hypothesis H0 : θ = θ?, for each θ? in some

domain Θ, then CIt := {θ? ∈ Θ : pθ
?

t > α} gives a (1− α)-level confidence sequence for θ.
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and lim supt→∞ Vt/t < ∞ a.s., conditions that will typically hold. These conditions imply
that the radius of the confidence sequence, u(Vt)/t, approaches zero, while the center X̄t

is eventually bounded away from θ? whenever θ 6= θ?, so that the confidence sequence will
eventually exclude θ? with probability one.

In the one-parameter exponential family case, the exponential process exp{λSt(µ)− tψµ(t)}
is exactly the likelihood ratio for testing H0 : θ = θ(µ) against H1 : θ = θ(µ) + λ. When
using a mixture uniform boundary, a sequential test which rejects as soon as the confidence
sequence excludes µ? can be seen as equivalently rejecting as soon as either of the mixture
likelihood ratios

∫
exp{λSt − ψµ?(λ)t}F. (λ) or

∫
exp{−λSt − ψµ?(−λ)t}F. (λ) exceeds 2/α.

Thus a sequential hypothesis test built upon a mixture-based confidence sequence is equiva-
lent to a mixture sequential probability ratio test (Robbins 1970) in the parametric setting.
As we have discussed, stitching bounds can also be viewed as approximations to certain
mixture bounds, so that hypothesis tests based on stitching bounds are also approximations
to mixture SPRTs. Importantly, the confidence sequences defined in this paper are natural
nonparametric generalizations of the mixture SPRT, recovering various mixture SPRTs in
the parametric cases.
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