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1 Canonical supermartingale assumption

Let (St)t∈T and (Vt)t∈T be two real-valued processes adapted to an underlying filtration
(Ft)t∈T ∪{0}, where either T = N for discrete-time processes or T = (0,∞) for continuous-
time processes, and Vt ≥ 0 a.s. for all t ∈ T .

In continuous time, we assume (Ft) satisfies the “usual hypotheses”, namely, that it is right-
continuous and complete, and we assume (St) and (Vt) are càdlàg.

We think of St as a summary statistic accumulating over time, while Vt is an accumulated
“variance” process which serves as a measure of intrinsic time, an appropriate quantity to
control the deviations of St from its expectation.

Broadly, the literature gives results for two situations: one in which the finite-dimensional
distributions of (St) are from a parametric family, and one in which they are not. When
we say “parametric” and “nonparametric”, we are referring to the structure of (St). The
simplest case is the scalar, parametric setting, when St is a sum of i.i.d., real-valued, mean-
zero random variables with known distribution F . We quantify the relationship between St
and Vt by a real-valued function ψ reminiscent of a cumulant generating function (CGF). In
the i.i.d. scalar setting above, we take Vt = t and let ψ be the CGF of F . Our key assumption
ensures that St is unlikely to grow too quickly relative to intrinsic time Vt:

Assumption 1 Let (St)t∈T and (Vt)t∈T be two real-valued processes adapted to an underlying

filtration (Ft)t∈T with S0 = V0 = 0 and Vt ≥ 0 a.s. for all t. Let ψ be a real-valued function

with domain [0, λmax). We assume, for each λ ∈ [0, λmax), there exists a supermartingale

(Lt(λ))t∈T with respect to (Ft) such that EL0 = EL0(λ) is constant for all λ, and such that

exp{λSt − ψ(λ)Vt} ≤ Lt(λ) a.s. for all t ∈ T .

In the scalar, parametric, i.i.d. setting, ψ is the “cumulant generating function” (logarithm
of the MGF) of the random variable, and Lt(λ) just equals the martingale exp{λSt−ψ(λ)t}
itself, so that the defining inequality of Assumption 1 is an equality.

In matrix cases, St will often not be a (super)martingale itself; instead there will be an auxil-
iary process (Yt) which is a matrix-valued martingale, and St will be a scalar function of Yt, for
example St = γmax(Yt) when Yt is Hermitian, where γmax(·) denotes the maximum eigenvalue
map. In such matrix cases, the process exp{λSt − ψ(λ)Vt} may not be a supermartingale
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itself, but is majorized by one; in the scalar setting, by contrast, exp{λSt − ψ(λ)Vt} will be
a supermartingale itself.

We remark also that it is important in Assumption 1 that (Vt) is allowed to be adapted and
not just predictable.

Even in nonparametric cases, ψ will often still be a CGF of some distribution, though this is
not required. However, our most interesting results require that ψ satisfy certain properties
which are true of CGFs for zero-mean random variables:

Definition 1 A real-valued function ψ with domain [0, λmax) is called CGF-like if it is

strictly convex and twice continuously differentiable with ψ(0) = ψ′(0+) = 0 and also

supλ∈[0,λmax) ψ(λ) =∞. For such a function we write b̄ = b̄(ψ) := supλ∈[0,λmax) ψ
′(λ) ∈ (0,∞].

We remark that in many cases λmax =∞ and b̄ =∞, but we allow finite values to handle a
condition that arises later.

2 Sufficient conditions for Assumption 1

With the exception of martingales in Banach spaces, all discrete-time settings use St =
γmax(Yt), where (Yt)t∈T is a martingale taking values in Hd, the space of Hermitian, d × d
matrices. Typically, setting d = 1 recovers the corresponding known scalar result exactly.
We note also that our results for Hermitian matrices will extend directly to rectangular
matrices Cd1×d2 using “Hermitian dilations”.

In discrete time, the following general condition on (Yt) is sufficient to show that Assump-
tion 1 holds; here the relation A � B denotes the semidefinite order, and ∆Yt := Yt − Yt−1
for any discrete-time process (Yt)t∈N . We also give a version for continuous-time scalar pro-
cesses which trivially implies Assumption 1, but which helps us avoid stating results twice
in what follows. Below and throughout the paper we use Et and Pt to denote expectation
and probability conditioned on Ft, respectively.

Definition 2 Let ψ be a real-valued function with domain [0, λmax). We separate the defi-

nition of a sub-ψ process into two cases.

(a) When T = N, an adapted, discrete-time, Hd-valued process (Yt)t∈N is sub-ψ with

adapted, Hd-valued, nondecreasing (in the semidefinite order) self-normalizing process

(Ut)t∈N and predictable, Hd-valued, nondecreasing variance process (Wt)t∈N if, for all

t ∈ N and λ ∈ [0, λmax), we have

Et−1 exp{λ∆Yt − ψ(λ)∆Ut} � exp{ψ(λ)∆Wt}. (1)
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If we say that (Yt) is sub-ψ with self-normalizing process (Ut) and do not specify a

variance process (Wt), then (Wt) is understood to be identically zero. The analogous

statement holds when we do not specify the self-normalizing process (Ut). The latter is

always true by convention in the continuous-time case below.

(b) When T = (0,∞), an adapted, càdlàg, real-valued process (Yt)t∈(0,∞) is sub-ψ with

predictably measurable, càdlàg, real-valued, nondecreasing variance process (Wt)t∈(0,∞)

if, for all 0 ≤ s ≤ t <∞ and λ ∈ [0, λmax), we have

Es exp{λ(Yt − Ys)− ψ(λ) · (Wt −Ws)} ≤ 1.

For a familiar example, suppose T = N, d = 1 and (Yt) has independent increments. Let
Wt = t, Ut ≡ 0 and ψ(λ) = λ2/2. Then (1) reduces to the usual definition of a 1-sub-
Gaussian random variable (Boucheron, Lugosi, Massart). For a self-normalized example, let
(∆Yt) be i.i.d. from any distribution symmetric about zero. Then, again letting ψ(λ) = λ2/2,
then de la Pena showed that (Yt) is sub-ψ with self-normalizing process Ut =

∑t
i=1 ∆Y 2

i .

The definition of sub-ψ generalizes the standard notion of being sub-Gaussian or sub-gamma
to permit a general function ψ (Boucheron, Lugosi, Massart). The Cramér-Chernoff method
typically begins with such an assumption, in the form Et−1eλξt ≤ eψ(λ)σ

2
t for σ2

t ∈ Ft−1. Using
the semidefinite order allows us to extend our results to Hd-valued processes, following the
methods of Tropp, and Oliveira. Using the adapted process (Ut) in addition to the predictable
process (Wt) enables extensions to a variety of self-normalized bounds by de la Pena and
others, for example yielding bounds on the deviation of a martingale in terms of its quadratic
variation. This is the reason we call (Ut) a “self-normalizing process”.

In discrete time, the link between Definition 2 and Assumption 1 is the following lemma.

Lemma 2 Let T = N. If (Yt)t∈N is sub-ψ with self-normalizing process (Ut)t∈N and variance

process (Wt)t∈N , then Assumption 1 is satisfied for St = γmax(Yt), Vt = γmax(Ut + Wt), and

ψ, with EL0 = d.

The value EL0 = d, the ambient dimension, leads to a pre-factor of d in all of our operator-
norm matrix bounds. In cases when supt∈T rank(Ut + Wt) ≤ r < d a.s., the pre-factor d in
our bounds may be replaced by r.

We present five sub-ψ cases: the sub-gamma case corresponding to Bernstein’s inequality, the
sub-Gaussian case in Hoeffding’s inequality, the sub-Poisson case from Bennett’s inequality,
and the sub-exponential and sub-Bernoulli cases which are used in several other existing
bounds.

1. We say (Yt) is sub-gamma with scale parameter c when condition (1) holds for some
suitable (Ut) and (Wt) using

ψG(λ) :=
λ2

2(1− cλ)
for 0 ≤ λ <

1

c
= λmax.
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2. We say (Yt) is sub-Gaussian when condition (1) holds for some suitable (Ut) and (Wt)
using

ψN(λ) := λ2/2,

that is, when it is sub-gamma with scale parameter c = 0 (taking λmax =∞).

3. We say (Yt) is sub-Poisson with scale parameter c when condition (1) holds for some
suitable (Ut) and (Wt) using

ψP (λ) :=
ecλ − cλ− 1

c2
.

4. We say (Yt) is sub-exponential with scale parameter c when condition (1) holds for
some suitable (Ut) and (Wt) using

ψE(λ) :=
− log(1− cλ)− cλ

c2
, for 0 ≤ λ <

1

c
= λmax.

Note this definition departs from the usage of sub-exponential in the literature, but we
adopt it here for internal consistency.

5. We say (Yt) is sub-Bernoulli with range parameters g, h > 0 when condition (1) holds
for some suitable (Ut) and (Wt) using

ψB(λ) := log
gehλ + he−gλ

g + h
,

which is the cumulant generating function of a mean-zero random variable taking values
−g and h.
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