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1 Canonical supermartingale assumption

Let (Sy)ier and (V;)ier be two real-valued processes adapted to an underlying filtration
(Ft)ieTuqoy, where either 7 = N for discrete-time processes or 7 = (0,00) for continuous-
time processes, and V; > 0 a.s. for all t € T.

In continuous time, we assume (JF;) satisfies the “usual hypotheses”, namely, that it is right-
continuous and complete, and we assume (.S;) and (V}) are cadlag.

We think of S; as a summary statistic accumulating over time, while V; is an accumulated
“variance” process which serves as a measure of intrinsic time, an appropriate quantity to
control the deviations of S; from its expectation.

Broadly, the literature gives results for two situations: one in which the finite-dimensional
distributions of (S;) are from a parametric family, and one in which they are not. When
we say “parametric” and “nonparametric”, we are referring to the structure of (S;). The
simplest case is the scalar, parametric setting, when S; is a sum of i.i.d., real-valued, mean-
zero random variables with known distribution F. We quantify the relationship between .S;
and V; by a real-valued function v reminiscent of a cumulant generating function (CGF). In
the i.i.d. scalar setting above, we take V; = ¢ and let ) be the CGF of F'. Our key assumption
ensures that S; is unlikely to grow too quickly relative to intrinsic time V;:

Assumption 1 Let (S;)ier and (Vy)ier be two real-valued processes adapted to an underlying
filtration (F;)ier with Sy = Vo =0 and V; > 0 a.s. for all t. Let ¢ be a real-valued function
with domain [0, \pax). We assume, for each A\ € [0, Amax), there exists a supermartingale
(L¢(N))ier with respect to (F;) such that ELy = ELy(\) is constant for all A, and such that
exp{AS: — MV} < Li(X) a.s. forallt € T.

In the scalar, parametric, i.i.d. setting, v is the “cumulant generating function” (logarithm
of the MGF) of the random variable, and L;()) just equals the martingale exp{\S; — ¥ (\)t}
itself, so that the defining inequality of Assumption 1 is an equality.

In matrix cases, S; will often not be a (super)martingale itself; instead there will be an auxil-
iary process (Y;) which is a matrix-valued martingale, and S; will be a scalar function of Y;, for
example Sy = Ymax(Y:) when Y; is Hermitian, where yp,.¢(+) denotes the maximum eigenvalue
map. In such matrix cases, the process exp{\S; — ¥(A\)V;} may not be a supermartingale



itself, but is majorized by one; in the scalar setting, by contrast, exp{AS; — 1(\)V;} will be
a supermartingale itself.

We remark also that it is important in Assumption 1 that (V}) is allowed to be adapted and
not just predictable.

Even in nonparametric cases, ¥ will often still be a CGF of some distribution, though this is
not required. However, our most interesting results require that 1) satisfy certain properties
which are true of CGFs for zero-mean random variables:

Definition 1 A real-valued function ¢ with domain [0, Amax) is called CGF-like if it is
strictly conver and twice continuously differentiable with ¥ (0) = 9'(05) = 0 and also
SUP e [0 \ma) V(A) = 00. For such a function we write b=0b(v):= SUD A [0 Amar) ¥ (A) € (0, o0].

We remark that in many cases Amax = 00 and b = oo, but we allow finite values to handle a
condition that arises later.

2 Sufficient conditions for Assumption 1

With the exception of martingales in Banach spaces, all discrete-time settings use S; =
Ymax(Y:), where (Y;);er is a martingale taking values in H9, the space of Hermitian, d x d
matrices. Typically, setting d = 1 recovers the corresponding known scalar result exactly.
We note also that our results for Hermitian matrices will extend directly to rectangular
matrices C1*% using “Hermitian dilations”.

In discrete time, the following general condition on (Y;) is sufficient to show that Assump-
tion 1 holds; here the relation A < B denotes the semidefinite order, and AY; :=Y; — Y,
for any discrete-time process (Y;)enr. We also give a version for continuous-time scalar pro-
cesses which trivially implies Assumption 1, but which helps us avoid stating results twice
in what follows. Below and throughout the paper we use E; and P; to denote expectation
and probability conditioned on F;, respectively.

Definition 2 Let 1) be a real-valued function with domain [0, \nax). We separate the defi-
nition of a sub-v process into two cases.

(a) When T = N, an adapted, discrete-time, H%-valued process (Yy)ien is sub-1) with
adapted, He-valued, nondecreasing (in the semidefinite order) self-normalizing process
(Uyp)ten and predictable, He-valued, nondecreasing variance process (W)en if, for all
t €N and X € [0, Apax), we have

Ei—1 exp{AAY; — ¥(N) AU} = exp{y(A)AW,}. (1)



If we say that (Y;) is sub-yp with self-normalizing process (U;) and do not specify a
variance process (Wy), then (Wy) is understood to be identically zero. The analogous
statement holds when we do not specify the self-normalizing process (U;). The latter is
always true by convention in the continuous-time case below.

(b) When T = (0,00), an adapted, cadlag, real-valued process (Yi)ic(,00) @5 sub-¢ with
predictably measurable, cadlag, real-valued, nondecreasing variance process (Wy)ie(0,00)
if, for all0 < s <t < oo and A € [0, Amax), we have

E, exp{A(Y; — ;) = () - (W, — W,)} < 1.

For a familiar example, suppose 7 = N, d = 1 and (Y;) has independent increments. Let
W, = t, Uy = 0 and (\) = A2/2. Then (1) reduces to the usual definition of a 1-sub-
Gaussian random variable (Boucheron, Lugosi, Massart). For a self-normalized example, let
(AY;) be i.i.d. from any distribution symmetric about zero. Then, again letting () = \?/2,
then de la Pena showed that (V;) is sub-¢) with self-normalizing process U, = >'_, AY?.

The definition of sub-v) generalizes the standard notion of being sub-Gaussian or sub-gamma
to permit a general function ¢ (Boucheron, Lugosi, Massart). The Cramér-Chernoff method
typically begins with such an assumption, in the form E,_;e*t < ¥ for 02 € F,_;. Using
the semidefinite order allows us to extend our results to H%valued processes, following the
methods of Tropp, and Oliveira. Using the adapted process (U;) in addition to the predictable
process (W;) enables extensions to a variety of self-normalized bounds by de la Pena and
others, for example yielding bounds on the deviation of a martingale in terms of its quadratic
variation. This is the reason we call (U;) a “self-normalizing process”.

In discrete time, the link between Definition 2 and Assumption 1 is the following lemma.

Lemma 2 Let T = N. If (Y})ien is sub-y) with self-normalizing process (Uy)ien and variance
process (Wy)en, then Assumption 1 is satisfied for Sy = Ymax(Ye), Vi = Ymax(Us + Wy), and
b, with ELy = d.

The value ELg = d, the ambient dimension, leads to a pre-factor of d in all of our operator-
norm matrix bounds. In cases when sup,.,rank(U; + W;) < r < d a.s., the pre-factor d in
our bounds may be replaced by 7.

We present five sub-1) cases: the sub-gamma case corresponding to Bernstein’s inequality, the
sub-Gaussian case in Hoeffding’s inequality, the sub-Poisson case from Bennett’s inequality,
and the sub-exponential and sub-Bernoulli cases which are used in several other existing
bounds.

1. We say (Y;) is sub-gamma with scale parameter ¢ when condition (1) holds for some
suitable (U;) and (W;) using
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. We say (Y;) is sub-Gaussian when condition (1) holds for some suitable (U;) and (W;)
using

@ZJN()\) = )\2/2,
that is, when it is sub-gamma with scale parameter ¢ = 0 (taking Ay = 00).

. We say (Y;) is sub-Poisson with scale parameter ¢ when condition (1) holds for some
suitable (U;) and (W;) using
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. We say (Y;) is sub-exponential with scale parameter ¢ when condition (1) holds for
some suitable (U;) and (W) using
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Note this definition departs from the usage of sub-exponential in the literature, but we
adopt it here for internal consistency.

. We say (V) is sub-Bernoulli with range parameters g, h > 0 when condition (1) holds
for some suitable (U;) and (W;) using
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which is the cumulant generating function of a mean-zero random variable taking values
—g and h.



