36-771 Fall 2018

Martingales 1 : Concentration inequalities

Canonical supermartingale assumption

Lecturer : Aaditya Ramdas

1 Canonical supermartingale assumption

Let $(S_t)_{t\in\mathcal{T}}$ and $(V_t)_{t\in\mathcal{T}}$ be two real-valued processes adapted to an underlying filtration $(\mathcal{F}_t)_{t\in\mathcal{T}\cup\{0\}}$, where either $\mathcal{T}=\mathbb{N}$ for discrete-time processes or $\mathcal{T}=(0,\infty)$ for continuous-time processes, and $V_t\geq 0$ a.s. for all $t\in\mathcal{T}$.

In continuous time, we assume (\mathcal{F}_t) satisfies the "usual hypotheses", namely, that it is right-continuous and complete, and we assume (S_t) and (V_t) are càdlàg.

We think of S_t as a summary statistic accumulating over time, while V_t is an accumulated "variance" process which serves as a measure of *intrinsic time*, an appropriate quantity to control the deviations of S_t from its expectation.

Broadly, the literature gives results for two situations: one in which the finite-dimensional distributions of (S_t) are from a parametric family, and one in which they are not. When we say "parametric" and "nonparametric", we are referring to the structure of (S_t) . The simplest case is the scalar, parametric setting, when S_t is a sum of i.i.d., real-valued, mean-zero random variables with known distribution F. We quantify the relationship between S_t and V_t by a real-valued function ψ reminiscent of a cumulant generating function (CGF). In the i.i.d. scalar setting above, we take $V_t = t$ and let ψ be the CGF of F. Our key assumption ensures that S_t is unlikely to grow too quickly relative to intrinsic time V_t :

Assumption 1 Let $(S_t)_{t\in\mathcal{T}}$ and $(V_t)_{t\in\mathcal{T}}$ be two real-valued processes adapted to an underlying filtration $(\mathcal{F}_t)_{t\in\mathcal{T}}$ with $S_0 = V_0 = 0$ and $V_t \geq 0$ a.s. for all t. Let ψ be a real-valued function with domain $[0, \lambda_{\max})$. We assume, for each $\lambda \in [0, \lambda_{\max})$, there exists a supermartingale $(L_t(\lambda))_{t\in\mathcal{T}}$ with respect to (\mathcal{F}_t) such that $\mathbb{E}L_0 = \mathbb{E}L_0(\lambda)$ is constant for all λ , and such that $\exp{\{\lambda S_t - \psi(\lambda)V_t\}} \leq L_t(\lambda)$ a.s. for all $t \in \mathcal{T}$.

In the scalar, parametric, i.i.d. setting, ψ is the "cumulant generating function" (logarithm of the MGF) of the random variable, and $L_t(\lambda)$ just equals the martingale $\exp\{\lambda S_t - \psi(\lambda)t\}$ itself, so that the defining inequality of Assumption 1 is an equality.

In matrix cases, S_t will often not be a (super)martingale itself; instead there will be an auxiliary process (Y_t) which is a matrix-valued martingale, and S_t will be a scalar function of Y_t , for example $S_t = \gamma_{\text{max}}(Y_t)$ when Y_t is Hermitian, where $\gamma_{\text{max}}(\cdot)$ denotes the maximum eigenvalue map. In such matrix cases, the process $\exp{\{\lambda S_t - \psi(\lambda)V_t\}}$ may not be a supermartingale

itself, but is majorized by one; in the scalar setting, by contrast, $\exp\{\lambda S_t - \psi(\lambda)V_t\}$ will be a supermartingale itself.

We remark also that it is important in Assumption 1 that (V_t) is allowed to be adapted and not just predictable.

Even in nonparametric cases, ψ will often still be a CGF of some distribution, though this is not required. However, our most interesting results require that ψ satisfy certain properties which are true of CGFs for zero-mean random variables:

Definition 1 A real-valued function ψ with domain $[0, \lambda_{\max})$ is called CGF-like if it is strictly convex and twice continuously differentiable with $\psi(0) = \psi'(0_+) = 0$ and also $\sup_{\lambda \in [0, \lambda_{\max})} \psi(\lambda) = \infty$. For such a function we write $\bar{b} = \bar{b}(\psi) := \sup_{\lambda \in [0, \lambda_{\max})} \psi'(\lambda) \in (0, \infty]$.

We remark that in many cases $\lambda_{\text{max}} = \infty$ and $\bar{b} = \infty$, but we allow finite values to handle a condition that arises later.

2 Sufficient conditions for Assumption 1

With the exception of martingales in Banach spaces, all discrete-time settings use $S_t = \gamma_{\max}(Y_t)$, where $(Y_t)_{t \in \mathcal{T}}$ is a martingale taking values in \mathcal{H}^d , the space of Hermitian, $d \times d$ matrices. Typically, setting d = 1 recovers the corresponding known scalar result exactly. We note also that our results for Hermitian matrices will extend directly to rectangular matrices $\mathcal{C}^{d_1 \times d_2}$ using "Hermitian dilations".

In discrete time, the following general condition on (Y_t) is sufficient to show that Assumption 1 holds; here the relation $A \leq B$ denotes the semidefinite order, and $\Delta Y_t := Y_t - Y_{t-1}$ for any discrete-time process $(Y_t)_{t \in \mathcal{N}}$. We also give a version for continuous-time scalar processes which trivially implies Assumption 1, but which helps us avoid stating results twice in what follows. Below and throughout the paper we use \mathbb{E}_t and \mathcal{P}_t to denote expectation and probability conditioned on \mathcal{F}_t , respectively.

Definition 2 Let ψ be a real-valued function with domain $[0, \lambda_{max})$. We separate the definition of a sub- ψ process into two cases.

(a) When $\mathcal{T} = \mathbb{N}$, an adapted, discrete-time, \mathcal{H}^d -valued process $(Y_t)_{t \in \mathbb{N}}$ is sub- ψ with adapted, \mathcal{H}^d -valued, nondecreasing (in the semidefinite order) self-normalizing process $(U_t)_{t \in \mathbb{N}}$ and predictable, \mathcal{H}^d -valued, nondecreasing variance process $(W_t)_{t \in \mathbb{N}}$ if, for all $t \in \mathbb{N}$ and $\lambda \in [0, \lambda_{\max})$, we have

$$\mathbb{E}_{t-1} \exp\{\lambda \Delta Y_t - \psi(\lambda) \Delta U_t\} \le \exp\{\psi(\lambda) \Delta W_t\}. \tag{1}$$

If we say that (Y_t) is sub- ψ with self-normalizing process (U_t) and do not specify a variance process (W_t) , then (W_t) is understood to be identically zero. The analogous statement holds when we do not specify the self-normalizing process (U_t) . The latter is always true by convention in the continuous-time case below.

(b) When $\mathcal{T} = (0, \infty)$, an adapted, càdlàg, real-valued process $(Y_t)_{t \in (0,\infty)}$ is sub- ψ with predictably measurable, càdlàg, real-valued, nondecreasing variance process $(W_t)_{t \in (0,\infty)}$ if, for all $0 \le s \le t < \infty$ and $\lambda \in [0, \lambda_{\max})$, we have

$$\mathbb{E}_s \exp\{\lambda(Y_t - Y_s) - \psi(\lambda) \cdot (W_t - W_s)\} \le 1.$$

For a familiar example, suppose $\mathcal{T} = \mathbb{N}$, d = 1 and (Y_t) has independent increments. Let $W_t = t$, $U_t \equiv 0$ and $\psi(\lambda) = \lambda^2/2$. Then (1) reduces to the usual definition of a 1-sub-Gaussian random variable (Boucheron, Lugosi, Massart). For a self-normalized example, let (ΔY_t) be i.i.d. from any distribution symmetric about zero. Then, again letting $\psi(\lambda) = \lambda^2/2$, then de la Pena showed that (Y_t) is sub- ψ with self-normalizing process $U_t = \sum_{i=1}^t \Delta Y_i^2$.

The definition of sub- ψ generalizes the standard notion of being sub-Gaussian or sub-gamma to permit a general function ψ (Boucheron, Lugosi, Massart). The Cramér-Chernoff method typically begins with such an assumption, in the form $\mathbb{E}_{t-1}e^{\lambda\xi_t} \leq e^{\psi(\lambda)\sigma_t^2}$ for $\sigma_t^2 \in \mathcal{F}_{t-1}$. Using the semidefinite order allows us to extend our results to \mathcal{H}^d -valued processes, following the methods of Tropp, and Oliveira. Using the adapted process (U_t) in addition to the predictable process (W_t) enables extensions to a variety of self-normalized bounds by de la Pena and others, for example yielding bounds on the deviation of a martingale in terms of its quadratic variation. This is the reason we call (U_t) a "self-normalizing process".

In discrete time, the link between Definition 2 and Assumption 1 is the following lemma.

Lemma 2 Let $\mathcal{T} = \mathbb{N}$. If $(Y_t)_{t \in \mathbb{N}}$ is sub- ψ with self-normalizing process $(U_t)_{t \in \mathbb{N}}$ and variance process $(W_t)_{t \in \mathcal{N}}$, then Assumption 1 is satisfied for $S_t = \gamma_{\max}(Y_t)$, $V_t = \gamma_{\max}(U_t + W_t)$, and ψ , with $\mathbb{E}L_0 = d$.

The value $\mathbb{E}L_0 = d$, the ambient dimension, leads to a pre-factor of d in all of our operator-norm matrix bounds. In cases when $\sup_{t \in \mathcal{T}} \operatorname{rank}(U_t + W_t) \leq r < d$ a.s., the pre-factor d in our bounds may be replaced by r.

We present five sub- ψ cases: the sub-gamma case corresponding to Bernstein's inequality, the sub-Gaussian case in Hoeffding's inequality, the sub-Poisson case from Bennett's inequality, and the sub-exponential and sub-Bernoulli cases which are used in several other existing bounds.

1. We say (Y_t) is sub-gamma with scale parameter c when condition (1) holds for some suitable (U_t) and (W_t) using

$$\psi_G(\lambda) := \frac{\lambda^2}{2(1 - c\lambda)}$$
 for $0 \le \lambda < \frac{1}{c} = \lambda_{\text{max}}$.

2. We say (Y_t) is sub-Gaussian when condition (1) holds for some suitable (U_t) and (W_t) using

$$\psi_N(\lambda) := \lambda^2/2,$$

that is, when it is sub-gamma with scale parameter c = 0 (taking $\lambda_{\text{max}} = \infty$).

3. We say (Y_t) is *sub-Poisson* with scale parameter c when condition (1) holds for some suitable (U_t) and (W_t) using

$$\psi_P(\lambda) := \frac{e^{c\lambda} - c\lambda - 1}{c^2}.$$

4. We say (Y_t) is sub-exponential with scale parameter c when condition (1) holds for some suitable (U_t) and (W_t) using

$$\psi_E(\lambda) := \frac{-\log(1-c\lambda)-c\lambda}{c^2}, \text{ for } 0 \le \lambda < \frac{1}{c} = \lambda_{\text{max}}.$$

Note this definition departs from the usage of sub-exponential in the literature, but we adopt it here for internal consistency.

5. We say (Y_t) is *sub-Bernoulli* with range parameters g, h > 0 when condition (1) holds for some suitable (U_t) and (W_t) using

$$\psi_B(\lambda) := \log \frac{ge^{h\lambda} + he^{-g\lambda}}{g+h},$$

which is the cumulant generating function of a mean-zero random variable taking values -g and h.