
36-771 Fall 2018
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Proof of the mother theorem
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1 Proof of the mother theorem

Ville’s maximal inequality for nonnegative supermartingales (Ville (1939); Durrett (2017),
exercise 4.8.2), often attributed to Doob, is the foundation of all uniform bounds in this
paper. It is an infinite-horizon uniform extension of Markov’s inequality, asserting that a
nonnegative supermartingale (Lt) has probability at most EL0/a of ever crossing level a:
P(∃t : Lt ≥ a) ≤ EL0/a for any a > 0. Applying this inequality to Assumption 1 gives, for
any λ ∈ (0, λmax) and z ∈ R,

P(∃t ∈ T : exp{λSt − ψ(λ)Vt} ≥ ez) ≤ P(∃t ∈ T : Lt ≥ ez) ≤ (EL0)e
−z. (1)

To derive Theorem 1(a) from (1), fix a, b ≥ 0 and choose λ ∈ [0, λmax) such that ψ(λ) ≤ bλ,
supposing for the moment that some such value of λ exists. Then

P (∃t ∈ T : St ≥ a+ bVt) = P
(
∃t ∈ T : exp {λSt − bλVt} ≥ eaλ

)
≤ P

(
∃t ∈ T : exp {λSt − ψ(λ)Vt} ≥ eaλ

)
≤ (EL0)e

−aλ,

applying (1) in the last step. This bound holds for all choices of λ in the set {λ ∈ [0, λmax) :
ψ(λ)/λ ≤ b}, so to minimize the final bound, we take the supremum over this set, recovering
the stated bound (EL0)e

−aD(b) by the definition of D(b). If no value λ ∈ [0, λmax) satisfies
ψ(λ) ≤ bλ, then D(b) = 0 by definition, so that the bound holds trivially. This shows that
Assumption 1 implies Theorem 1(a).

To complete the proof we will show that the four parts of Theorem 1 are equivalent whenever
ψ is CGF-like. We require some simple facts about ψ(λ)/λ:

Lemma 1 Suppose ψ is CGF-like with domain [0, λmax).

1. ψ(λ)/λ < ψ′(λ) for all λ ∈ (0, λmax).

2. λ 7→ ψ(λ)/λ is continuous and strictly increasing on λ > 0.

3. infλ∈(0,λmax) ψ(λ)/λ = 0

4. supλ∈(0,λmax) ψ(λ)/λ = b̄.
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5. ψ(D(b))/D(b) = b for any b ∈ [0, b̄). That is, D(b) is the inverse of ψ(λ)/λ.

Proof: To see (i), write ψ(λ) =
∫ λ
0
ψ′(t)dt < λψ′(λ), where the inequality follows since ψ is

strictly convex so that ψ′ is strictly increasing. For (ii), the function is continuous because ψ
is continuous, and differentiating reveals it to be strictly increasing by part (i). L’Hôpital’s
rule implies (iii) along with the assumptions ψ(λ) = ψ′(λ) = 0, and implies (iv) along with
the assumption supλ ψ(λ) = ∞. Part (v) follows from the definition of D(·) and parts (ii),
(iii) and (iv).

We also repeatedly use the well-known fact about the Legendre-Fenchel transform that
ψ′−1(u) = ψ?′(u), which follows by differentiating the identity ψ?(u) = uψ′−1(u)−ψ(ψ′−1(u)).

• (a) =⇒ (b): Fix m > 0 and x ∈ [0,mb̄). Any line with slope b ∈ [0, x/m] and
intercept x − mb passes through the point (m,x) in the (Vt, St) plane, and part (a)
yields

P (∃t ∈ T : St ≥ x+ b(Vt −m)) ≤ (EL0) exp {−(x−mb)D(b)}

= (EL0) exp
{
−m

( x
m
·D(b)− ψ(D(b))

)}
using 1(v) in the second step. Now we choose the slope b to minimize the probabil-
ity bound. The unconstrained optimizer b? satisfies ψ′(D(b?)) = x/m, and a solution
is guaranteed to exist by our restriction on x. This solution is given by D(b?) =
ψ′−1(x/m) = ψ?′(x/m). Hence b? = s(x/m) using the definition of s(·). 1(i) shows
x/m = ψ′(D(b?)) > ψ(D(b?))/D(b?) = b?, verifying that b? is in the allowed range for
part (a). Identify the Legendre-Fenchel transformation ψ?(x/m) = supb[(x/m)D(b)−
ψ(D(b))] to complete the proof of part (b). The fact that this bound is exact for Brow-
nian motion shows that, since we have optimized over the slope, the bound could not
hold in general for any other slope.

• (b) =⇒ (c): Fix m ≥ 0 and x ∈ [0, b̄) and observe that

P
(
∃t ∈ T :

St
Vt
≥ s(x) +

m(x− s(x))

Vt

)
= P (∃t ∈ T : St ≥ mx+ s(x) · (Vt −m)) .

Now applying part (b) with values m and mx yields part (c).

• (c) =⇒ (a): Fix a ≥ 0 and b ∈ [0, b̄). Set x = ψ′(D(b)) and m = a/(x − s(x)).
Recalling ψ?′ = ψ′−1 we see that s(x) = ψ(D(b))/D(b) = b. Now apply part (c) to
obtain

P (∃t ∈ T : St ≥ a+ bVt) ≤ (EL0) exp

{
−a · ψ?(x)

x− s(x)

}
= (EL0) exp

{
−a · ψ?(x) · ψ?′(x)

xψ?′(x)− ψ(ψ?′(x))

}
.
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Recognizing the Legendre-Fenchel transform in the denominator of the final exponent,
we see that the probability bound equals (EL0) exp {−aψ?′(x)}. Again using ψ?′(x) =
ψ′−1(x) = D(b) yields (a).

• (a, b) =⇒ (d): Clearly {∃t ∈ T : Vt ≥ m, St ≥ x + b(Vt − m)} ⊆ {∃t ∈ T :
St ≥ x + b(Vt − m)}, and the probability of the latter event is upper bounded by
(EL0) exp {−(x− bm)D(b)} from part (a); the intercept x− bm is nonnegative by our
restriction on b. However, if m > 0 and b ≥ s(x/m), then {∃t ∈ T : Vt ≥ m, St ≥
x+ b(Vt−m)} ⊆ {∃t ∈ T : Vt ≥ m, St ≥ x+ s(x/m)(Vt−m)}; that is, we may replace
the slope b by the smaller slope s(x/m). The probability of the latter event is upper
bounded by (EL0) exp {−mψ?(x/m)} by part (b).

• (d) =⇒ (a): set m = 0 and x = a to recover part (a).

It is worth noting here that, unlike the proofs of Freedman (1975), Khan (2009), Tropp
(2011), and Fan et al. (2015), we do not explicitly construct a stopping time in our proof.
While an optional stopping argument is hidden within the proof of Ville’s inequality, the
underlying stopping time here is different from that in the aforementioned citations.
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