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1 Spectral decomposition of Hermitian matrices Hd

They are a generalization of real-symmetric matrices to complex values: they satisfy the
property that A∗ = A, where A∗ is the conjugate-transpose of the matrix A. For the
standard Euclidean inner-product, this implies that 〈Ax, y〉 = 〈x,Ay〉.
As a result of the spectral theorem, Hermitian matrices can be diagonalized, and the eigen-
values are all real. Let Vλ := {v : Av = λv} be the subspace formed by (linearly independent)
eigenvectors with eigenvalue λ, and let Pλ denote the orthogonal projection onto this sub-
space. Then, one can write A in terms of its spectral decomposition:

A =
d∑
i=1

λiPλi .

2 Functions on matrices

The above spectral theorem is useful because one can extend functions over the reals to
functions of Hermitian matrices as

f(A) =
∑
i

f(λi)Pλi .

For any interval I ⊆ R, a function f : I 7→ R is operator monotone if A � B implies that
f(A) � f(B), it is operator convex if f(λA + (1 − λ)B) � λf(A) + (1 − λ)f(B), and it is
operator concave if −f is operator convex).

Theorem 1 (Lowner-Heinz) (a) For −1 ≤ p ≤ 0, the function f(t) = −tp is operator

monotone and operator concave.

(b) For 0 ≤ p ≤ 1, the function f(t) = tp is operator monotone and operator concave.

(c) For 1 ≤ p ≤ 2, the function f(t) = tp is operator convex.

(d) The function f(t) = log t is operator monotone and operator concave, while f(t) =

t log t is operator convex.
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Given any function f , the corresponding trace function is given by A 7→ Tr(f(A)) =∑
j f(λj). The trace function preserves monotonicity and convexity:

Lemma 2 (Trace-function preservation lemma) Let f : R 7→ R be continuous. If

the function t 7→ f(t) is monotone/convex/strictly-convex, then A 7→ Tr(f(A)) is also

monotone/convex/strictly-convex on Hd.

3 Matrix exponential

Unless otherwise mentioned, all matrices will be d × d. Recall that A � B denotes the
positive semidefinite (psd) ordering, and S+ denotes the psd cone. Define the exponential of
a matrix as

exp(A) :=
∑
k

Ak

k!
.

The exponential of a matrix effectively exponentiates its eigenvalues; that is, if A = PDP−1

is the eigenvalue decomposition of A, then we have:

exp(A) = Pdiag(exp(di))P
−1 = P exp(D)P−1.

Some properties include: exp(0) = I, exp(A)T = exp(AT ), and exp(A∗) = exp(A)∗ (where
A∗ is the conjugate transpose of A). If X and Y commute, that is XY = Y X, then
exp(X) exp(Y ) = exp(X + Y ). Hence exp(X) exp(−X) = I, and so the matrix exponential
is always invertible. Jacobi’s formula implies that

det(exp(A)) = exp(Tr(A)).

The matrix exponential appears naturally in the solution of ODEs. Indeed, the solution to
ẏ(t) = Ay(t), y(0) = 0 is given by y(t) = exp(At)y0.

The matrix exponential results in a psd matrix. While the trace-exponential is monotone and
strictly convex, the matrix exponential is neither operator monotone nor operator convex.

4 Lieb and Golden-Thompson

Theorem 3 (Lieb) For any fixed Hermitian matrix H, the function A 7→ Tr exp(H+logA)

is concave on S+.

Theorem 4 (Golden-Thompson) For Hermitian matrices A,B, we have

Tr(exp(A+B)) ≤ Tr(exp(A) exp(B)).
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4.1 Proof of Connector Lemma

Suppose (Yt) is sub-ψ with self-normalizing process (Ut) and variance process (Wt). Fixing
λ ∈ [0, λmax), Lieb’s theorem and Jensen’s inequality together imply

Et−1Tr exp{λYt − ψ(λ) · (Ut +Wt)} ≤ Tr exp{λYt−1 − ψ(λ) · (Ut−1 +Wt) + logEt−1e
λ∆Yt−ψ(λ)·∆Ut}.

Now we apply the sub-ψ property to the expectation, using the monotonicity of the matrix
logarithm and trace exponential to obtain

Et−1Tr exp{λYt − ψ(λ) · (Ut +Wt)} ≤ Tr exp{λYt−1 − ψ(λ) · (Ut−1 +Wt−1)}.

This shows that the process Lt := Tr exp{λYt−ψ(λ) · (Ut +Wt)} is a supermartingale, with
L0 = d. Next we show that Lt ≥ exp{λγmax(Yt) − ψ(λ)γmax(Ut + Wt)} a.s. for all t, which
is the canonical assumption. We repeat a short argument from Tropp (2012). First, by the
monotonicity of the trace exponential,

Tr exp{λYt − ψ(λ) · (Ut +Wt)} ≥ Tr exp{λYt − ψ(λ)γmax(Ut +Wt)Id}
≥ γmax(exp{λYt − ψ(λ)γmax(Ut +Wt)Id}) =: B.

using the fact that the trace of a positive semidefinite matrix is at least as large as its
maximum eigenvalue. Then the spectral mapping property gives

B = exp{γmax(λYt − ψ(λ)γmax(Ut +Wt)Id).

Finally, we use the fact that γmax(A− cId) = γmax(A)− c for any A ∈ Hd and c ∈ R to see
that B = exp{λγmax(Yt)− ψ(λ)γmax(Ut +Wt)}, completing the argument.

References

Tropp, J. A. (2012), ‘User-friendly tail bounds for sums of random matrices’, Foundations
of Computational Mathematics 12(4), 389–434.

3


