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1 Spectral decomposition of Hermitian matrices H,

They are a generalization of real-symmetric matrices to complex values: they satisfy the
property that A* = A, where A* is the conjugate-transpose of the matrix A. For the
standard Euclidean inner-product, this implies that (Az,y) = (z, Ay).

As a result of the spectral theorem, Hermitian matrices can be diagonalized, and the eigen-
values are all real. Let V) := {v : Av = Av} be the subspace formed by (linearly independent)
eigenvectors with eigenvalue A\, and let P, denote the orthogonal projection onto this sub-
space. Then, one can write A in terms of its spectral decomposition:

d
A= NPy,
=1

2 Functions on matrices

The above spectral theorem is useful because one can extend functions over the reals to
functions of Hermitian matrices as

f(A) = Zf(A»PM.

For any interval I C R, a function f : I — R is operator monotone if A < B implies that
f(A) % f(B), it is operator convex if f(AA + (1 — A)B) < Af(A) + (1 — \)f(B), and it is
operator concave if —f is operator convex).

Theorem 1 (Lowner-Heinz) (a) For —1 < p < 0, the function f(t) = —t* is operator
monotone and operator concave.

(b) For 0 < p <1, the function f(t) = t* is operator monotone and operator concave.
(c) For 1 <p <2, the function f(t) =1t" is operator conver.

(d) The function f(t) = logt is operator monotone and operator concave, while f(t) =
tlogt is operator convex.



Given any function f, the corresponding trace function is given by A — Tr(f(A)) =
>_; J(A;). The trace function preserves monotonicity and convexity:

Lemma 2 (Trace-function preservation lemma) Let f : R — R be continuous. If
the function t — f(t) is monotone/convex/strictly-conver, then A +— Tr(f(A)) is also
monotone/convex/strictly-conver on H,.

3 Matrix exponential

Unless otherwise mentioned, all matrices will be d x d. Recall that A < B denotes the
positive semidefinite (psd) ordering, and S, denotes the psd cone. Define the exponential of
a matrix as

Ak
exp(4) = R
k
The exponential of a matrix effectively exponentiates its eigenvalues; that is, if A = PDP~1
is the eigenvalue decomposition of A, then we have:

exp(A) = Pdiag(exp(d;))P~! = Pexp(D)P".

Some properties include: exp(0) = I, exp(A)T = exp(AT), and exp(A*) = exp(A)* (where
A* is the conjugate transpose of A). If X and Y commute, that is XY = Y X, then
exp(X)exp(Y) = exp(X 4+ Y). Hence exp(X)exp(—X) = I, and so the matrix exponential
is always invertible. Jacobi’s formula implies that

det(exp(A)) = exp(Tr(A)).

The matrix exponential appears naturally in the solution of ODEs. Indeed, the solution to
y(t) = Ay(t),y(0) = 0 is given by y(t) = exp(At)yo.

The matrix exponential results in a psd matrix. While the trace-exponential is monotone and
strictly convex, the matrix exponential is neither operator monotone nor operator convex.

4 Lieb and Golden-Thompson

Theorem 3 (Lieb) For any fized Hermitian matriz H, the function A — Trexp(H+log A)
is concave on Sy.

Theorem 4 (Golden-Thompson) For Hermitian matrices A, B, we have
Tr(exp(A+ B)) < Tr(exp(A)exp(B)).
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4.1 Proof of Connector Lemma

Suppose (Y;) is sub-t with self-normalizing process (U;) and variance process (W;). Fixing
A € [0, Apax), Lieb’s theorem and Jensen’s inequality together imply

Ei_1 Trexp{\Y; — () - (Up + Wy)} < Trexp{\Yi_y — (N) - (Up_y + Wy) + log By A9 )-A0

Now we apply the sub-1) property to the expectation, using the monotonicity of the matrix
logarithm and trace exponential to obtain

Ei 1 Trexp{AY; —¢(A) - (Up + W)} < Trexp{AY,1 — () - (U1 + Wier) }

This shows that the process L; := Trexp{\Y; — () - (U, + W})} is a supermartingale, with
Lo = d. Next we show that L; > exp{Mmax(Y:) — ¥(A\)Ymax(Us + W3)} a.s. for all ¢, which
is the canonical assumption. We repeat a short argument from Tropp (2012). First, by the
monotonicity of the trace exponential,

Trexp{AY; = ¢¥(A) - (Uy + Wi)} = Trexp{AY: — ¥ (A)ymax(Ur + Wi)la}
> Yimax (€XP{AY; — V(M) Vmax(Ur + W) 1a}) =: B.

using the fact that the trace of a positive semidefinite matrix is at least as large as its
maximum eigenvalue. Then the spectral mapping property gives

B = exp{%nax(/\yt - ¢(A)7max(Ut + VVt)]d)

Finally, we use the fact that Yyma (A — ¢ly) = Ymax(A) — ¢ for any A € H? and ¢ € R to see
that B = exp{Mmax(Yz) — V(A Ymax (U + W)}, completing the argument.
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