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1 What conditions imply sub-ψ?

In what follows, the matrix conditional variance is VartX := EtX2 − (EtX)2. We let Id
denote the d × d identity matrix. For a process (Yt)t∈T , let [Y ]t denote the quadratic
variation and 〈Y 〉t the conditional quadratic variation; in discrete time, [Y ]t :=

∑t
i=1 ∆Y 2

i

and 〈Y 〉t :=
∑t

i=1 Ei−1∆Y 2
i . In the discrete time case, we have the following known results.

Fact 1 Let (Yt)t∈N be any Hd-valued martingale.

1. (Scalar parametric) If d = 1 and Yt is a cumulative sum of i.i.d., real-valued random

variables, each of which is mean zero with known cumulant generating function ψ(λ)

that is finite on λ ∈ [0, λmax), then (Yt) is sub-ψ with variance process Wt = t.

2. (Bernoulli) If −gId � ∆Yt � hId a.s. for all t ∈ N , then (Yt) is sub-Bernoulli with

variance process Wt = tId and range parameters g, h (Hoeffding 1963, Tropp 2012).

3. (Bennett) If ∆Yt � cId a.s. for all t ∈ N for some c > 0, then (Yt) is sub-Poisson

with variance process Wt = 〈Y 〉t and scale parameter c (Bennett 1962, Hoeffding 1963,

Tropp 2012).

4. (Bernstein) If Et−1(∆Yt)
k � (k!/2)ck−2Vart−1(∆Yt) for all t ∈ N and k = 2, 3, . . . , then

(Yt) is sub-gamma with variance process Wt = 〈Y 〉t and scale parameter c (Bernstein

1927, Tropp 2012, Boucheron et al. 2013).

5. (Heavy on left) Let Ta(y) := (y∧a)∨−a for a > 0 denote the truncation of y. If d = 1

and

Et−1Ta(∆Yt) ≤ 0 for all a > 0, t ∈ N , (1)

then (Yt) is sub-Gaussian with self-normalizing process Ut = [Y ]t. A random variable

satisfying (1) is called heavy on left, and (Yt) need not be a martingale in this case

(Bercu & Touati 2008, Delyon 2015, Bercu et al. 2015). When −∆Yt satisfies (1) we

say ∆Yt is heavy on right.
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Condition ψ Ut Wt

Discrete time

Parametric (d = 1) ∆Yt
i.i.d.∼ F logEeλ∆Y1 t

Bernoulli −gId � ∆Yt � hId ψB tId

Bennett ∆Yt � cId ψP 〈Y 〉t
Bernstein Et−1(∆Yt)

k � k!
2
ck−2Et−1∆Y 2

t ψG 〈Y 〉t
Heavy on left Et−1Ta(∆Yt) ≤ 0 for all a > 0 ψN [Y ]t

Hoeffding I −GtId � ∆Yt � HtId ψN
∑t

i=1

(
Gi+Hi

2

)2
Id

Symmetric ∆Yt ∼ −∆Yt | Ft−1 ψN [Y ]t

Bounded below ∆Yt � −cId ψE [Y ]t

Self-normalized I Et−1∆Y 2
t <∞ ψN [Y ]t/3 2 〈Y 〉t /3

Self-normalized II Et−1∆Y 2
t <∞ ψN [Y+]t/2 〈Y−〉t /2

Hoeffding II ∆Y 2
t � A2

t ψN
∑t

i=1A
2
i

Cubic self-normalized Et−1|∆Yt|3 <∞ ψG [Y ]t
∑t

i=1 Ei−1|∆Yi|3

Continuous time (d = 1)

Lévy EeλY1 <∞ logEeλY1 t

Bennett ∆Yt ≤ c ψP 〈Y 〉t
Bernstein Vm,t ≤ m!

2
cm−2Wt ψG Wt

Continuous paths ∆Yt ≡ 0 ψN 〈Y 〉t

Table 1: Summary of sufficient conditions for a martingale (Yt) to be sub-ψ with the given

self-normalizing and variance processes. See text for details of each case.

In addition, we give the following novel results for matrices by extending the corresponding
scalar results. Here [Y+]t :=

∑t
i=1 max(0,∆Yi)

2 and 〈Y−〉t :=
∑t

i=1 Ei−1 min(0,∆Yi)
2, where

the functions max(0, ·) and min(0, ·) extend to d by truncating the eigenvalues.

Lemma 2 Let (Yt)t∈N be any Hd-valued martingale.

1. (Hoeffding I) If −GtId � ∆Yt � HtId a.s. for all t ∈ N for some real-valued, pre-
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dictable sequences (Gt) and (Ht), then (Yt) is sub-Gaussian with variance process

Wt =
[∑t

i=1(Gi +Hi)
2/4
]
Id.

2. (Conditionally symmetric) If ∆Yt and −∆Yt have the same distribution conditional on

Ft−1 for all t ∈ N , then (Yt) is sub-Gaussian with self-normalizing process Ut = [Y ]t.

In this case, (Yt) need not be a martingale, i.e., it need not be integrable.

3. (Bounded from below) If ∆Yt � −cId a.s. for all t ∈ N for some c > 0, then (Yt) is

sub-exponential with self-normalizing process Ut = [Y ]t and scale parameter c.

4. (General self-normalized I) If Et−1∆Y 2
t is finite for all t ∈ N , then (Yt) is sub-Gaussian

with self-normalizing process Ut = [Y ]t/3 and variance process Wt = 2 〈Y 〉t /3.

5. (General self-normalized II) If Et−1∆Y 2
t is finite for all t ∈ N , then (Yt) is sub-

Gaussian with self-normalizing process Ut = [Y+]t/2 and variance process Wt = 〈Y−〉t /2.

6. (Hoeffding II) If ∆Y 2
t � A2

t a.s. for all t ∈ N for some Hd-valued predictable sequence

(At), then (Yt) is sub-Gaussian with Wt =
∑t

i=1A
2
i .

7. (Cubic self-normalized) If Et−1|∆Yt|3 is finite for all t ∈ N , then (Yt) is sub-gamma

with self-normalizing process Ut = [Y ]t, variance process Wt =
∑t

i=1 Ei−1|∆Yi|3, and

scale parameter c = 1/6.
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