36-771 Martingales 1 : Concentration inequalities

The big reference table

Lecturer : Aaditya Ramdas

1 What conditions imply sub- ψ ?

In what follows, the matrix conditional variance is $\operatorname{Var}_t X := \mathbb{E}_t X^2 - (E_t X)^2$. We let I_d denote the $d \times d$ identity matrix. For a process $(Y_t)_{t \in \mathcal{T}}$, let $[Y]_t$ denote the quadratic variation and $\langle Y \rangle_t$ the conditional quadratic variation; in discrete time, $[Y]_t := \sum_{i=1}^t \Delta Y_i^2$ and $\langle Y \rangle_t := \sum_{i=1}^t \mathbb{E}_{i-1} \Delta Y_i^2$. In the discrete time case, we have the following known results.

Fact 1 Let $(Y_t)_{t \in \mathcal{N}}$ be any \mathcal{H}^d -valued martingale.

- 1. (Scalar parametric) If d = 1 and Y_t is a cumulative sum of i.i.d., real-valued random variables, each of which is mean zero with known cumulant generating function $\psi(\lambda)$ that is finite on $\lambda \in [0, \lambda_{\max})$, then (Y_t) is sub- ψ with variance process $W_t = t$.
- 2. (Bernoulli) If $-gI_d \preceq \Delta Y_t \preceq hI_d$ a.s. for all $t \in \mathcal{N}$, then (Y_t) is sub-Bernoulli with variance process $W_t = tI_d$ and range parameters g, h (Hoeffding 1963, Tropp 2012).
- 3. (Bennett) If $\Delta Y_t \preceq cI_d$ a.s. for all $t \in \mathcal{N}$ for some c > 0, then (Y_t) is sub-Poisson with variance process $W_t = \langle Y \rangle_t$ and scale parameter c (Bennett 1962, Hoeffding 1963, Tropp 2012).
- 4. (Bernstein) If $\mathbb{E}_{t-1}(\Delta Y_t)^k \preceq (k!/2)c^{k-2}\operatorname{Var}_{t-1}(\Delta Y_t)$ for all $t \in \mathcal{N}$ and $k = 2, 3, \ldots$, then (Y_t) is sub-gamma with variance process $W_t = \langle Y \rangle_t$ and scale parameter c (Bernstein 1927, Tropp 2012, Boucheron et al. 2013).
- 5. (Heavy on left) Let $T_a(y) := (y \land a) \lor -a$ for a > 0 denote the truncation of y. If d = 1and

$$\mathbb{E}_{t-1}T_a(\Delta Y_t) \le 0 \quad \text{for all } a > 0, t \in \mathcal{N},\tag{1}$$

then (Y_t) is sub-Gaussian with self-normalizing process $U_t = [Y]_t$. A random variable satisfying (1) is called heavy on left, and (Y_t) need not be a martingale in this case (Bercu & Touati 2008, Delyon 2015, Bercu et al. 2015). When $-\Delta Y_t$ satisfies (1) we say ΔY_t is heavy on right.

	Condition	ψ	U_t	W_t
Discrete time				
Parametric $(d = 1)$	$\Delta Y_t \stackrel{\text{i.i.d.}}{\sim} F$	$\log \mathbb{E} e^{\lambda \Delta Y_1}$		t
Bernoulli	$-gI_d \preceq \Delta Y_t \preceq hI_d$	ψ_B		tI_d
Bennett	$\Delta Y_t \preceq cI_d$	ψ_P		$\langle Y \rangle_t$
Bernstein	$\mathbb{E}_{t-1}(\Delta Y_t)^k \preceq \frac{k!}{2}c^{k-2}\mathbb{E}_{t-1}\Delta Y_t^2$	ψ_G		$\langle Y \rangle_t$
Heavy on left	$\mathbb{E}_{t-1}T_a(\Delta Y_t) \le 0 \text{ for all } a > 0$	ψ_N	$[Y]_t$	
Hoeffding I	$-G_t I_d \preceq \Delta Y_t \preceq H_t I_d$	ψ_N		$\sum_{i=1}^{t} \left(\frac{G_i + H_i}{2}\right)^2 I_d$
Symmetric	$\Delta Y_t \sim -\Delta Y_t \mid \mathcal{F}_{t-1}$	ψ_N	$[Y]_t$	
Bounded below	$\Delta Y_t \succeq -cI_d$	ψ_E	$[Y]_t$	
Self-normalized I	$\mathbb{E}_{t-1}\Delta Y_t^2 < \infty$	ψ_N	$[Y]_t/3$	$2\left\langle Y ight angle _{t}/3$
Self-normalized II	$\mathbb{E}_{t-1}\Delta Y_t^2 < \infty$	ψ_N	$[Y_{+}]_{t}/2$	$\left< Y_{-} \right>_{t} / 2$
Hoeffding II	$\Delta Y_t^2 \preceq A_t^2$	ψ_N		$\sum_{i=1}^{t} A_i^2$
Cubic self-normalized	$\mathbb{E}_{t-1} \Delta Y_t ^3 < \infty$	ψ_G	$[Y]_t$	$\sum_{i=1}^{t} \mathbb{E}_{i-1} \Delta Y_i ^3$
Continuous time $(d = 1)$				
Lévy	$\mathbb{E}e^{\lambda Y_1} < \infty$	$\log \mathbb{E} e^{\lambda Y_1}$		t
Bennett	$\Delta Y_t \le c$	ψ_P		$\langle Y \rangle_t$
Bernstein	$V_{m,t} \le \frac{m!}{2} c^{m-2} W_t$	ψ_G		W_t
Continuous paths	$\Delta Y_t \equiv 0$	ψ_N		$\langle Y \rangle_t$

Table 1: Summary of sufficient conditions for a martingale (Y_t) to be sub- ψ with the given self-normalizing and variance processes. See text for details of each case.

In addition, we give the following novel results for matrices by extending the corresponding scalar results. Here $[Y_+]_t := \sum_{i=1}^t \max(0, \Delta Y_i)^2$ and $\langle Y_- \rangle_t := \sum_{i=1}^t \mathbb{E}_{i-1} \min(0, \Delta Y_i)^2$, where the functions $\max(0, \cdot)$ and $\min(0, \cdot)$ extend to ^d by truncating the eigenvalues.

Lemma 2 Let $(Y_t)_{t \in \mathcal{N}}$ be any \mathcal{H}^d -valued martingale.

1. (Hoeffding I) If $-G_t I_d \preceq \Delta Y_t \preceq H_t I_d$ a.s. for all $t \in \mathcal{N}$ for some real-valued, pre-

dictable sequences (G_t) and (H_t) , then (Y_t) is sub-Gaussian with variance process $W_t = \left[\sum_{i=1}^t (G_i + H_i)^2 / 4\right] I_d.$

- 2. (Conditionally symmetric) If ΔY_t and $-\Delta Y_t$ have the same distribution conditional on \mathcal{F}_{t-1} for all $t \in \mathcal{N}$, then (Y_t) is sub-Gaussian with self-normalizing process $U_t = [Y]_t$. In this case, (Y_t) need not be a martingale, i.e., it need not be integrable.
- 3. (Bounded from below) If $\Delta Y_t \succeq -cI_d$ a.s. for all $t \in \mathcal{N}$ for some c > 0, then (Y_t) is sub-exponential with self-normalizing process $U_t = [Y]_t$ and scale parameter c.
- 4. (General self-normalized I) If $\mathbb{E}_{t-1}\Delta Y_t^2$ is finite for all $t \in \mathcal{N}$, then (Y_t) is sub-Gaussian with self-normalizing process $U_t = [Y]_t/3$ and variance process $W_t = 2 \langle Y \rangle_t/3$.
- 5. (General self-normalized II) If $\mathbb{E}_{t-1}\Delta Y_t^2$ is finite for all $t \in \mathcal{N}$, then (Y_t) is sub-Gaussian with self-normalizing process $U_t = [Y_+]_t/2$ and variance process $W_t = \langle Y_- \rangle_t/2$.
- 6. (Hoeffding II) If $\Delta Y_t^2 \preceq A_t^2$ a.s. for all $t \in \mathcal{N}$ for some \mathcal{H}^d -valued predictable sequence (A_t) , then (Y_t) is sub-Gaussian with $W_t = \sum_{i=1}^t A_i^2$.
- 7. (Cubic self-normalized) If $\mathbb{E}_{t-1}|\Delta Y_t|^3$ is finite for all $t \in \mathcal{N}$, then (Y_t) is sub-gamma with self-normalizing process $U_t = [Y]_t$, variance process $W_t = \sum_{i=1}^t \mathbb{E}_{i-1} |\Delta Y_i|^3$, and scale parameter c = 1/6.

References

- Bennett, G. (1962), 'Probability Inequalities for the Sum of Independent Random Variables', Journal of the American Statistical Association 57(297), 33–45.
- Bercu, B., Delyon, B. & Rio, E. (2015), Concentration Inequalities for Sums and Martingales, Springer International Publishing, Cham.
- Bercu, B. & Touati, A. (2008), 'Exponential inequalities for self-normalized martingales with applications', *The Annals of Applied Probability* **18**(5), 1848–1869.
- Bernstein, S. (1927), Theory of probability, Gastehizdat Publishing House, Moscow.
- Boucheron, S., Lugosi, G. & Massart, P. (2013), Concentration inequalities: a nonasymptotic theory of independence, 1st edn, Oxford University Press, Oxford.
- Delyon, B. (2015), Exponential inequalities for dependent processes, Technical report.
- Hoeffding, W. (1963), 'Probability Inequalities for Sums of Bounded Random Variables', Journal of the American Statistical Association 58(301), 13–30.
- Tropp, J. A. (2012), 'User-friendly tail bounds for sums of random matrices', Foundations of Computational Mathematics 12(4), 389–434.