
36-771 Fall 2018

Martingales 1 : Concentration inequalities

Improving Cramer-Chernoff & Freedman’s, Hermitian dilation

Lecturer : Aaditya Ramdas

In the discrete-time, scalar setting, a simple sufficient condition for Assumption 1 is that

Et−1 exp{λ∆St − ψ(λ)∆Vt} ≤ 1, ∀t,

which is the standard assumption for a martingale-method Cramér-Chernoff inequality (Mc-
Diarmid 1998, Chung & Lu 2006, Boucheron et al. 2013). When Vt is deterministic, the
fixed-time Cramér-Chernoff method gives, for fixed t and x,

P(St ≥ x) ≤ exp{−Vtψ?

(
x

Vt

)
}, (1)

so Theorem 1(b) is a uniform extension of the Cramér-Chernoff inequality, losing nothing
at the fixed time t [B; C or D]. A stopping time argument due to Freedman (1975) extends
this to the uniform bound

P(∃t ∈ T : St ≥ x and Vt ≤ m) ≤ exp{−mψ?
( x
m

)
}.

When Vt is deterministic, analogous uniform bounds follow from Doob’s maximal inequal-
ity for submartingales, as in Hoeffding (1963, eq. 2.17). Theorem 1(b) strengthens this
“Freedman-style” inequality [B; C or D], since it yields tighter bounds for all times t such
that Vt < m, and also extends the inequality to hold for all times t with Vt > m, as illustrated
by the figure.

Tropp (2011, 2012) extends the scalar Cramér-Chernoff approach to random matrices via
control of the matrix moment-generating function, giving matrix analogues of Hoeffding’s,
Bennett’s, Bernstein’s and Freedman’s inequalities. Following this approach, Theorem 1
gives corresponding strengthened versions of these inequalities for matrix-valued processes
[B].

We summarize explicit results for special cases below. Recall the definitions of sP , ψ
?
P , sG, ψ

?
G

from earlier.

Corollary 1 Let T = N and (Yt)t∈N be an adapted, Hd-valued martingale, or let T = (0,∞)

and (Yt)t∈(0,∞) be an adapted, real-valued local martingale. Let St := γmax(Yt).

(a) When T = N, suppose ∆Y 2
t � A2

t a.s. for all t for some Hd-valued predictable sequence

(At), and let either Vt := 1
2
γmax

(
〈Y 〉t +

∑t
i=1A

2
i

)
or Vt := γmax

(∑t
i=1A

2
i

)
. Then for
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Figure 1: Comparison of (i) fixed-time Cramér-Chernoff bound, which bounds the deviations

of Sm at a fixed time m; (ii) “Freedman-style” constant uniform bound, which bounds the

deviations of St for all t such that Vt ≤ m, with a constant boundary equal in value to the

fixed-time Cramér-Chernoff bound; and (iii) linear uniform bound from Theorem 1, which

bounds the deviations of St for all 1 ≤ n <∞, with a boundary growing linearly in Vt. Each

bound gives the same tail probability and thus implies the preceding one.

any x,m > 0, we have

P
(
∃t ∈ N : St ≥ x+

x

2m
(Vt −m)

)
≤ d exp{− x2

2m
}.

This strengthens Hoeffding’s inequality (Hoeffding 1963) [A,B,D] and its matrix ana-

logues in Tropp (2012, Theorem 7.1) [B,E] and Mackey et al. (2014, Corollary 4.2)

[A,B].

(b) Suppose γmax(∆Yt) ≤ c a.s. for all t for some constant c, and let Vt := γmax(〈Y 〉t).

Then for any x,m > 0, we have

P
(
∃t ∈ T : St ≥ x+ sP

( x
m

)
· (Vt −m)

)
≤ d exp{−mψ?

P

( x
m

)
} ≤ d exp{− x2

2(m+ cx/3)
}.

This strengthens Bennett’s and Freedman’s inequalities (Bennett 1962, Freedman 1975)

[B; C or D] for scalars and the corresponding matrix bounds from Tropp (2011, 2012)

[B].

(c) Suppose (Yt) is sub-gamma with self-normalizing process (Ut), variance process (Wt)

and scale parameter c, and let Vt := γmax(Ut +Wt). Then for any x,m > 0, we have

P
(
∃t ∈ T : St ≥ x+ sG

( x
m

)
· (Vt −m)

)
≤ d exp{−mψ?

G

( x
m

)
} ≤ d exp{− x2

2(m+ cx)
}.

2



This strengthens Bernstein’s inequality (Bernstein 1927) [B; C or D], along with the

matrix Bernstein inequality (Tropp 2012) [B].

The first setting of Vt in case (a) follows from the bound [Y+]t �
∑t

i=1A
2
i , and further

upper bounding 〈Y−〉t �
∑t

i=1A
2
i yields the second setting of Vt. As is well known, the

Hoeffding-style bound in part (a) and the Bennett-style bound in part (b) are not directly
comparable: Vt may be smaller in part (b), but ψ?

P ≤ ψ?
N , so neither subsumes the other.

Additionally, the Hoeffding-style bound requires two-sided boundedness of increments while
the Bennett-style bound requires only an upper bound on the deviations of increments above
their expectations. It is also worth remarking that ψ?

P (u) ≥ u
2c
arcsinh

(
cu
2

)
, so the Bennett-

style inequality in part (b) is an improvement on the inequality of Prokhorov (1959) for sums
of independent random variables, as noted by Hoeffding (1963), as well as its extension to
martingales in de la Peña (1999).

As an example of the Hermitian dilation technique, we give a bound for rectangular matrix
Gaussian and Rademacher series, following Tropp (2012); here ‖A‖op denotes the largest
singular value of A. The proof will be given later.

Corollary 2 Let T = N, consider a sequence (Bt)t∈N of fixed matrices with dimension

d1×d2, and let (εt)t∈N be a sequence of independent standard normal or Rademacher variables.

Let St := ‖
∑t

i=1 εiBi‖op and Vt := max{‖
∑t

i=1BiB
?
i ‖op, ‖

∑t
i=1B

?
iBi‖op}. Then for any

x,m > 0, we have

P
(
∃t ∈ N : St ≥ x+

x

2m
(Vt −m)

)
≤ (d1 + d2) exp{− x2

2m
}.

This strengthens Corollary 4.2 of Tropp (2012) [B].

Proof: Define the Hd1+d2-valued process (Yt) using the dilation of Bt:

∆Yt := εt

(
0 Bt

B?
t 0

)
.

Since the dilation operation is linear and preserves spectral information, γmax(Yt) = ‖
∑t

i=1 εiBi‖op
(Tropp 2012, Eq. 2.12). Furthermore, since each Bi is fixed and εi is 1-sub-Gaussian, (Yt) is
sub-Gaussian with variance process

Wt =
t∑

i=1

(
BiB

?
i 0

0 B?
iBi

)
,

which has ‖Wt‖op = max{‖
∑t

i=1BiB
?
i ‖op, ‖

∑t
i=1B

?
iBi‖op} (Tropp 2012, Lemma 4.3). The

result now follows the connector lemma and Theorem 1(b) applied to (Yt) and (Wt).
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