1 Banach vs. Hilbert spaces

A Banach space B is a complete normed vector space. In terms of generality, it lies somewhere in between a metric space M (that has a metric, but no norm) and a Hilbert space H (that has an inner-product, and hence a norm, that in turn induces a metric). More formally, if a space is endowed with an inner-product $\langle \cdot, \cdot \rangle$, then it induces a norm $\| \cdot \|$ as $\| x \| = \sqrt{\langle x, x \rangle}$, and if a space is endowed with a norm, then it induces a metric $d(x, y) = \| x - y \|$. By “complete” normed vector space, one usually means that every Cauchy sequence (with respect to the norm) converges to a point that lies in the space. A metric space is called “separable” if it has a dense subset that is countable. A Hilbert space is separable iff it has a countable orthonormal basis.

When the underlying space is simply \mathbb{C}^n or \mathbb{R}^n, any choice of norm $\| \cdot \|_p$ for $1 \leq p \leq \infty$ yields a Banach space, while only the choice $\| \cdot \|_2$ leads to a Hilbert space. Similarly, if $(\mathcal{X}, \Omega, \mu)$ is a probability space, then the following space is a Banach space

$$L^p(\mathcal{X}, \Omega, \mu) := \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f \text{ is } \Omega\text{-measurable and } \int |f(x)|^p d\mu(x) < \infty \}$$

with norm $\| f \|_p := (\int |f(x)|^p d\mu(x))^{1/p}$ (with $f = g$ meaning that they are equal μ-a.e.). When $\mathcal{X} = \mathbb{R}$ or $\mathcal{X} = \mathbb{C}$ and μ is the Lebesgue measure, we sometimes just write

$$L^p := \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } \int |f(x)|^p dx < \infty \}.$$

As another example, we write

$$\ell^\infty := \{ (x_n)_{n \in \mathbb{N}} : \sup_n |x_n| < \infty \}$$

and the finite-dimensional variant as

$$\ell^\infty_d := \{ (x_n)_{1 \leq n \leq d} : \sup_{1 \leq n \leq d} |x_n| < \infty \}.$$

Similarly, for matrices, the Frobenius norm induces a Hilbert space structure, but almost any of the other Schatten norms yield Banach spaces (the Schatten p-norm of a matrix is just the p-norm of its singular values).
2 Bounded/continuous linear operators

An operator A is linear if $A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$ for x, y in its domain. For linear operators, we denote $A(x)$ by just Ax for brevity, and is not to be confused with matrix-vector multiplication (which is nevertheless a useful special case). A linear operator $A : \mathcal{B} \to \mathcal{B}'$ is called bounded if

$$\|A\| := \sup_{x \in \mathcal{B}, x \neq 0} \frac{\|Ax\|_{\mathcal{B}'}}{\|x\|_{\mathcal{B}}} < \infty.$$

The above definition is then called the operator norm of A (it is the largest singular value for finite matrices, that is when \mathcal{B} and \mathcal{B}' are \mathbb{R}^n and \mathbb{R}^m). Obviously, $\|A\|$ is the smallest number such that $\|Ax\|_{\mathcal{B}'} \leq \|A\| \|x\|_{\mathcal{B}}$.

The set of all such bounded linear operators $\mathcal{L}(\mathcal{B}, \mathcal{B}')$ is itself a Banach space with the above norm. Of course, if the domain of A is $D \subseteq \mathcal{B}$, the definition can be adjusted accordingly. A is said to be a continuous linear operator if $x_n \to x$, implies $Ax_n \to Ax$, meaning that

$$\text{if } \lim_{n \to \infty} \|x_n - x\|_{\mathcal{B}} = 0 \implies \lim_{n \to \infty} \|Ax_n - Ax\|_{\mathcal{B}'} = 0.$$

For linear operators A, we have the following important fact:

A is continuous iff A is bounded.

3 Dual space

A linear functional on \mathcal{B} is a linear operator $f : \mathcal{B} \to \mathbb{C}$ for which

$$\sup_{x \in \mathcal{B}, x \neq 0} \frac{|f(x)|}{\|x\|} < \infty.$$

The dual space \mathcal{B}^* of a Banach space \mathcal{B} is defined as the set of bounded linear functionals on \mathcal{B}. Clearly, \mathcal{B}^* is itself a Banach space, and its norm is called the dual norm:

$$\|f\|_* := \sup_{x \in \mathcal{B}, x \neq 0} \frac{|f(x)|}{\|x\|}.$$

A reflexive Banach space is one such that $\mathcal{B}^{**} = \mathcal{B}$. Interestingly, ℓ^∞ is not reflexive, even though ℓ_p and ℓ_q are dual and reflexive whenever $\frac{1}{p} + \frac{1}{q} = 1$ and $p, q \notin \{1, \infty\}$, and even though for d-dimensional sequences, ℓ^∞_d is dual to ℓ^*_d.

As a matter of notation,

for $f \in \mathcal{B}^*$ and $x \in \mathcal{B}$, we write $\langle f, x \rangle := f(x)$,

but this is not to be confused with the usual inner-product in which both elements are from a Hilbert space. By definition of the operator norm of f, which is the dual norm of
\[|f(x)| = |\langle f, x \rangle| \leq \|f\|_* \|x\|, \]
which can be interpreted as a version of Holder’s inequality. When equality holds, \(f, x\) are called “aligned”, and when it equals zero, \(f, x\) are called “orthogonal”, and this is how in Banach spaces one defines the orthogonal complement \(U^\perp \in B^*\) of a set \(U \in B\).

All Hilbert spaces are self-dual, meaning that its dual space is isomorphic to itself (Riesz representation theorem). Every finite dimensional Hilbert space with dimension \(n\) is isomorphic to \(\mathbb{C}^n\) (the set of \(n\)-dimensional complex vectors with Euclidean inner product). If \(H\) is infinite-dimensional and separable, then it is isomorphic to the set of square summable sequences \(\ell^2 := \{(x_n)_{n \in \mathbb{N}} : \sum_{n \in \mathbb{N}} x_n^2 < \infty\}\) endowed with the inner-product \(\langle (x_n), (y_n) \rangle = \sum_n x_n y_n\). Further, for every infinite-dimensional Hilbert space \(W\), there is a linear operator \(W : H \to H\) that is defined everywhere but is not bounded. The adjoint \(A^*\) of an operator \(A : H \to H'\) is defined as follows: \(A^* y\) is the unique vector such that \(\langle Ax, y \rangle = \langle x, A^* y \rangle\).

4 Derivatives

Bounded linear operators are used to extend the concept of derivatives to Banach spaces. A map \(f : B \to B'\) is said to be Fréchet differentiable at \(x\) if there exists a bounded linear operator \(A : B \to B'\) such that
\[
\lim_{h \to 0} \frac{\|f(x + h) - f(x) - Ah\|_{B'}}{\|h\|_B} = 0.
\]

If such an \(A\) exists, then it is unique and we write \(Df(x) := A\). When \(B' = \mathbb{R}\) and \(f\) is a function, then \(\nabla f := Df\) is a bounded linear functional, we hence we say that

the gradient \(\nabla f\) of function \(f\) is an element of the dual space.

A map \(f\) is called Gateaux differentiable at \(x\) if has directional derivatives for every direction \(u \in B\), that is if there exists a function \(g : B \to B'\) such that
\[
g(u) = \lim_{h \to 0} \frac{f(x + hu) - f(x)}{u}.
\]
Fréchet differentiability implies Gateau differentiability but not vice versa (like over the reals, existence of directional derivatives at \(x\) does not imply differentiability at \(x\)).

5 Convexity and Smoothness

Using the above notions of differentiability and mnemonic for dot-product in Banach spaces, we are now prepared to define convex and smooth functions on Banach spaces. A function \(f : B \to \mathbb{R}\) is said to be \((q, \lambda)\)-uniformly convex with respect to the norm \(\| \cdot \|\) if
\[
f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y) - \lambda t(1 - t)\|x - y\|^q / q.
\]
for all \(x, y \in B \) (or in the relative interior of the domain of \(f \)) and \(t \in (0, 1) \). It is a fact that a convex function is differentiable almost everywhere (except at a countable number of points). Hence, an equivalent definition is to require

\[
f(y) \geq f(x) + \langle y - x, \nabla f(x) \rangle + \frac{\lambda}{q} \| x - y \|^q,
\]

or even

\[
\| \nabla f(x) - \nabla f(y) \|_* \geq \lambda \| x - y \|
\]

Strong convexity is simply uniform convexity with \(q = 2 \).

A function \(f \) is said to be \((2, L)\)-strongly smooth if it is everywhere differentiable and

\[
\| \nabla f(x) - \nabla f(y) \|_* \leq L \| x - y \|
\]

for all \(x, y \in B \) or equivalently if

\[
f(y) \leq f(x) + \langle y - x, \nabla f(x) \rangle + \frac{L}{2} \| x - y \|^2,
\]

or even

\[
f(tx + (1 - t)y) \geq tf(x) + (1 - t)f(y) - \frac{Lt(1 - t)}{2} \| x - y \|^2.
\]

Recall that the Legendre-Fenchel dual \(f^* : B^* \to \mathbb{R} \) of a function \(f : B \to \mathbb{R} \) is defined as

\[
f^*(u) = \sup_{x \in B} \langle u, x \rangle - f(x),
\]

where the supremum can be taken over the domain of \(f \) if it has a restricted domain.

As a consequence of both convex duality and Banach space duality, we have \(f^{**} = f \) iff \(f \) is closed and convex, and for such a function

\[f \text{ is } (2, \lambda)-\text{strongly-convex wrt } \| \cdot \| \text{ iff } f^* \text{ is } (2, 1/\lambda)-\text{strongly-smooth wrt } \| \cdot \|_* .\]

As examples, \(f(w) := 1/2 \| w \|^2_q \) for \(w \in \mathbb{R}^d \) is \((2, q - 1)\)-strongly convex w.r.t. \(\| \cdot \|_q \) for \(q \in (1, 2] \). An analogous result holds for matrices due to a complex-analysis proof by Ball et al. (1994). (Recall that the Schatten \(q \)-norm of a matrix \(A \in \mathbb{R}^{m \times n} \) is the \(q \)-norm of the singular values of \(A \), denoted as \(\| A \|_{S(q)} = \| \sigma(A) \|_q \).) For \(q \in (1, 2] \), the function \(\frac{1}{2} \| \sigma(A) \|_q^2 \) is \((2, q - 1)\)-strongly-convex with respect to the \(\| \sigma(X) \|_q \) norm. For \(q = 1 \), the following result is known (Kakade, Shalev-Shwartz, Tiwari): defining \(g' = \frac{\ln d}{\ln d - 1} \), we have that \(\frac{1}{2} \| w \|_{g'}^2 \) is \((2, 1/(3 \ln d))\)-strongly convex wrt \(\| \cdot \|_1 \), with an analogous result holding for Schatten norms using \(d = \min\{m, n\} \).
6 Martingale type and co-type of a Banach space

Let \((Z_t)\) be a martingale difference sequence (mds) taking values in a Banach space \(B\), meaning that \(\sum_{i=1}^{n} Z_i\) is a martingale.

A Banach space \(B\) is said to be of martingale type \(p\) if for any \(n \geq 1\) and any mds \((Z_t)\), we have

\[
\mathbb{E}\left\|\sum_{i=1}^{n} Z_i\right\| \leq C \left(\mathbb{E}\sum_{i=1}^{n} \|Z_i\|^p\right)^{1/p}
\]

for some constant \(C > 0\). Defining \(p^* := \sup\{p : B\text{ has martingale type } p\}\), we say \(p^*\) is the best martingale type of \(B\). It is a fact that

\(B\) has martingale type \(p\) iff \(B^*\) has martingale co-type \(q\), where \(1/p + 1/q = 1\),

where \(B^*\) having co-type \(q\) means that for any \(n \geq 1\) and any mds \((Y_t)\in B^*\), we have

\[
\left(\mathbb{E}\sum_{i=1}^{n} \|Z_i\|^q\right)^{1/q} \leq C \mathbb{E}\sum_{i=1}^{n} \|Z_i\|
\]

Theorem 1 (Pisier) A Banach space \(B^*\) has martingale co-type \(q\) iff there exists a \((q,\lambda)\)-uniformly convex function on \(B^*\) for some \(\lambda > 0\). As an important corollary for \(q = 2\), a Banach space \(B\) has martingale type 2 iff there exists a \((2,L)\) strongly smooth function on \(B\) for some \(L > 0\).

There are other equivalent definitions of a strongly smooth functions, as we shall see in the next section.

7 Concentration for \((2,D)\)-strongly smooth functions

The applications presented thus far allow us to uniformly bound the operator norm deviations of a sequence of random Hermitian matrices in \(C^{d \times d}\). A different approach is due to Pinelis (1992, 1994). For this section, let \((Y_t)_{t \in \mathcal{N}}\) be a martingale with respect to \((\mathcal{F}_t)\) taking values in a separable Banach space \((X, \|\cdot\|)\). We can use Pinelis’s device to uniformly bound the process \((\Psi(Y_t))\) for any function \(\Psi : X \to \mathbb{R}\) which satisfies the following smoothness property:

Definition 1 (Pinelis 1994) A function \(\Psi : X \to \mathbb{R}\) is called \((2,D)\)-smooth for some \(D > 0\) if, for all \(x, v \in X\), we have

\[
\begin{align*}
\Psi(0) & = 0 \quad (1a) \\
|\Psi(x + v) - \Psi(x)| & \leq \|v\| \quad (1b) \\
\Psi^2(x + v) - 2\Psi^2(x) + \Psi^2(x - v) & \leq 2D^2\|v\|^2. \quad (1c)
\end{align*}
\]
A Banach space is called \((2,D)\)-smooth if its norm is \((2,D)\)-smooth; in such a space we may take \(\Psi(\cdot) = \|\cdot\|\) to uniformly bound the deviations of a martingale. In this case, observe that property (1a) is part of the definition of a norm, property (1b) is the triangle inequality, and property (1c) can be seen to hold with \(D = 1\) for the norm induced by the inner product in any Hilbert space, regardless of the (possibly infinite) dimensionality of the space. Note also that setting \(x = 0\) shows that \(D \geq 1\) whenever \(\Psi(\cdot) = \|\cdot\|\).

Corollary 2 Consider a martingale \((Y_t)_{t \in \mathbb{N}}\) taking values in a separable Banach space \((\mathcal{X}, \|\cdot\|)\). Let the function \(\Psi : \mathcal{X} \rightarrow \mathbb{R}\) be \((2,D)\)-smooth and define \(D^\star := 1 \lor D\).

1. Suppose \(\|\Delta Y_t\| \leq c_t\) a.s. for all \(t \in \mathbb{N}\) for some constants \((c_t)_{t \in \mathbb{N}}\), and let \(V_t := \sum_{i=1}^t c_i^2\). Then for any \(x, m > 0\), we have

\[
P\left(\exists t \in \mathbb{N} : \Psi(Y_t) \geq x + D^\star x D^2 m (V_t - m) \right) \leq 2 \exp\left\{ -\frac{x^2}{2D^2 m} \right\}.
\]

This strengthens Theorem 3.5 from Pinelis (1994) [B].

2. Suppose \(\|\Delta Y_t\| \leq c\) a.s. for all \(t \in \mathbb{N}\) for some constant \(c\), and let \(V_t := \sum_{i=1}^t \mathbb{E}_i \|\Delta Y_i\|^2\). Then for any \(x, m > 0\), we have

\[
P\left(\exists t \in \mathbb{N} : \Psi(Y_t) \geq x + D^\star s \psi^\star \left(\frac{x}{D^2 m} \right) (V_t - m) \right) \leq 2 \exp\left\{ -\frac{x^2}{2(D^2 m + cx/3)} \right\}.
\]

This strengthens Theorem 3.4 from Pinelis (1994) [B].

As before, the Hoeffding-style bound in part (a) and the Bennett-style bound in part (b) are not directly comparable: \(V_t\) may be smaller in part (b), but the exponent is also smaller.

We briefly highlight some of the strengths and limitations of this approach. Since the Euclidean \(l_2\)-norm is induced by the standard inner product in \(\mathbb{R}^d\), the above corollary gives a dimension-free uniform bound on the \(l_2\)-norm deviations of a vector-valued martingale in \(\mathbb{R}^d\) which exactly matches the form for scalars. Compare this to bounds based on the operator norm of a Hermitian dilation: the bound of Tropp (2012) includes dimension dependence [B,E] while the bound of Minsker (2017, Corollary 4.1) incurs an extra constant factor of 14 [B,E]. Our bounds extend to martingales taking values in sequence space \(\{(a_i)_{i \in \mathbb{N}} : \sum_i |a_i|^2 < \infty\}\) or function space \(L^2[0,1]\), and we may instead use the \(l_p\) norm, \(p \geq 2\), in which case \(D = \sqrt{p - 1}\). These cases follow from Pinelis (1994, Proposition 2.1).

Similarly, the above corollary gives dimension-free uniform bounds for the Frobenius norm deviations of a matrix-valued martingale. This extends to martingales taking values in a space of Hilbert-Schmidt operators on a separable Hilbert space, with deviations bounded in the Hilbert-Schmidt norm; compare Minsker (2017, S3.2), which gives operator-norm bounds. The method of the above corollary does not extend directly to operator-norm bounds because the operator norm is not \((2,D)\)-smooth for any \(D\).
References

