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Martingale inequalities in Banach spaces
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1 Banach vs. Hilbert spaces

A Banach space B is a complete normed vector space. In terms of generality, it lies somewhere
in between a metric spaceM (that has a metric, but no norm) and a Hilbert space H (that
has an inner-product, and hence a norm, that in turn induces a metric). More formally,
if a space is endowed with an inner-product 〈·, ·〉, then it induces a norm ‖ · ‖ as ‖x‖ =√
〈x, x〉, and if a space is endowed with a norm, then it induces a metric d(x, y) = ‖x− y‖.

By “complete” normed vector space, one usually means that every Cauchy sequence (with
respect to the norm) converges to a point that lies in the space. A metric space is called
“separable” if it has a dense subset that is countable. A Hilbert space is separable iff it has
a countable orthonormal basis.

When the underlying space is simply Cn or Rn, any choice of norm ‖·‖p for 1 ≤ p ≤ ∞ yields
a Banach space, while only the choice ‖.‖2 leads to a Hilbert space. Similarly, if (X ,Ω, µ) is
a probability space, then the following space is a Banach space

Lp(X ,Ω, µ) := {f : X → C such that f is Ω-measurable and

∫
|f(x)|pdµ(x) <∞}

with norm ‖f‖p := (
∫
|f(x)|pdµ(x))1/p (with f = g meaning that they are equal µ-a.e.).

When X = R or X = C and µ is the Lebesgue measure, we sometimes just write

Lp := {f : C → C such that

∫
|f(x)|pdx <∞}.

As another example, we write

`∞ := {(xn)n∈N : sup
n
|xn| <∞}

and the finite-dimensional variant as

`∞d := {(xn)1≤n≤d : sup
1≤n≤d

|xn| <∞}.

Similarly, for matrices, the Frobenius norm induces a Hilbert space structure, but almost
any of the other Schatten norms yield Banach spaces (the Schatten p-norm of a matrix is
just the p-norm of its singular values).
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2 Bounded/continuous linear operators

An operator A is linear if A(αx + βy) = αA(x) + βA(y) for x, y in its domain. For linear
operators, we denote A(x) by just Ax for brevity, and is not to be confused with matrix-vector
multiplication (which is nevertheless a useful special case). A linear operator A : B → B′ is
called bounded if

‖A‖ := sup
x∈B,x 6=0

‖Ax‖B′
‖x‖B

<∞.

The above definition is then called the operator norm of A (it is the largest singular value
for finite matrices, that is when B and B′ are Rn and Rm). Obviously, ‖A‖ is the smallest
number such that ‖Ax‖B′ ≤ ‖A‖‖x‖B.

The set of all such bounded linear operators L(B,B′) is itself a Banach space with the above
norm. Of course, if the domain of A is D ⊆ B, the definition can be adjusted accordingly.
A is said to be a continuous linear operator if xn → x implies Axn → Ax, meaning that

if lim
n→∞

‖xn − x‖B = 0 =⇒ lim
n→∞

‖Axn − Ax‖B′ = 0

For linear operators A, we have the following important fact:

A is continuous iff A is bounded.

3 Dual space

A linear functional on B is a linear operator f : B → C for which

sup
x∈B,x 6=0

|f(x)|
‖x‖

<∞.

The dual space B∗ of a Banach space B is defined as the set of bounded linear functionals
on B. Clearly, B∗ is itself a Banach space, and its norm is called the dual norm:

‖f‖∗ := sup
x∈B,x 6=0

|f(x)|
‖x‖

.

A reflexive Banach space is one such that B∗∗ = B. Interestingly, `∞ is not reflexive, even
though `p and `q are dual and reflexive whenever 1/p+ 1/q = 1 and p, q /∈ {1,∞}, and even
though for d-dimensional sequences, `∞d is dual to `1d.

As a matter of notation,

for f ∈ B∗ and x ∈ B, we write 〈f, x〉 := f(x),

but this is not to be confused with the usual inner-product in which both elements are
from a Hilbert space. By definition of the operator norm of f , which is the dual norm of
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‖ · ‖, we have |f(x)| = |〈f, x〉| ≤ ‖f‖∗‖x‖, which can be interpreted as a version of Holder’s
inequality. When equality holds, f, x are called “aligned”, and when it equals zero, f, x are
called “orthogonal”, and this is how in Banach spaces one defines the orthogonal complement
U⊥ ∈ B∗ of a set U ∈ B.

All Hilbert spaces are self-dual, meaning that its dual space is isomorphic to itself (Riesz
representation theorem). Every finite dimensional Hilbert space with dimension n is isomor-
phic to Cn (the set of n-dimensional complex vectors with Euclidean inner product). If H
is infinite-dimensional and separable, then it is isomorphic to the set of square summable
sequences `2 := {(xn)n∈N :

∑
n∈N x

2
n < ∞} endowed with the inner-product 〈(xn), (yn)〉 =∑

n x̄nyn. Further, for every infinite-dimensional Hilbert space W , there is a linear operator
W : H → H that is defined everywhere but is not bounded. The adjoint A∗ of an operator
A : H → H′ is defined as follows: A∗y is the unique vector such that 〈Ax, y〉 = 〈x,A∗y〉.

4 Derivatives

Bounded linear operators are used to extend the concept of derivatives to Banach spaces.
A map f : B → B′ is said to be Fréchet differentiable at x if there exists a bounded linear
operator A : B → B′ such that

lim
h→0

‖f(x+ h)− f(x)− Ah‖B′
‖h‖B

= 0.

If such an A exists, then it is unique and we write Df(x) := Ax. When B′ = R and f is a
function, then ∇f := Df is a bounded linear functional, we hence we say that

the gradient ∇f of function f is an element of the dual space.

A map f is called Gateaux differentiable at x if has directional derivatives for every direction
u ∈ B, that is if there exists a function g : B → B′ such that

g(u) = lim
h→0

f(x+ hu)− f(x)

u
.

Fréchet differentiability implies Gateau differentiability but not vice versa (like over the reals,
existence of directional derivatives at x does not imply differentiability at x).

5 Convexity and Smoothness

Using the above notions of differentiability and mnemonic for dot-product in Banach spaces,
we are now prepared to define convex and smooth functions on Banach spaces. A function
f : B → R is said to be (q, λ)-uniformly convex with respect to the norm ‖ · ‖ if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− λt(1− t)
q

‖x− y‖q
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for all x, y ∈ B (or in the relative interior of the domain of f) and t ∈ (0, 1). It is a fact
that a convex function is differentiable almost everywhere (except at a countable number of
points). Hence, an equivalent definition is to require

f(y) ≥ f(x) + 〈y − x,∇f(x)〉+
λ

q
‖x− y‖q,

or even
‖∇f(x)−∇f(y)‖∗ ≥ λ‖x− y‖

Strong convexity is simply uniform convexity with q = 2.

A function f is said to be (2, L)-strongly smooth if it is everywhere differentiable and

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖

for all x, y ∈ B or equivalently if

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
L

2
‖x− y‖2,

or even

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)− Lt(1− t)
2

‖x− y‖2.

Recall that the Legendre-Fenchel dual f ∗ : B∗ → R of a function f : B → R is defined as

f ∗(u) = sup
x∈B
〈u, x〉 − f(x),

where the supremum can be taken over the domain of f if it has a restricted domain.

As a consequence of both convex duality and Banach space duality, we have f ∗∗ = f iff f is
closed and convex, and for such a function

f is (2, λ)-strongly-convex wrt ‖ · ‖ iff f ∗ is (2, 1/λ)-strongly-smooth wrt ‖ · ‖∗.

As examples, f(w) := 1/2‖w‖2q for w ∈ Rd is (2, q − 1)-strongly convex w.r.t. ‖ · ‖q for
q ∈ (1, 2]. An analogous result holds for matrices due to a complex-analysis proof by Ball
et al. (1994). (Recall that the Schatten q-norm of a matrix A ∈ Rm×n is the q-norm of the
singular values of A, denoted as ‖A‖S(q) = ‖σ(A)‖q.) For q ∈ (1, 2], the function 1

2
‖σ(A)‖2q

is (2, q − 1)-strongly-convex with respect to the ‖σ(X)‖q norm. For q = 1, the following
result is known (Kakade, Shalev-Shwartz, Tiwari): defining q′ = ln d

ln d−1 , we have that 1
2
‖w‖2q′

is (2, 1/(3 ln d))-strongly convex wrt ‖ · ‖1, with an analogous result holding for Schatten
norms using d = min{m,n}.
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6 Martingale type and co-type of a Banach space

Let (Zt) be a martingale difference sequence (mds) taking values in a Banach space B,
meaning that (

∑t
i=1 Zi) is a martingale.

A Banach space B is said to be of martingale type p if for any n ≥ 1 and any mds (Zt), we
have

E‖
n∑

i=1

Zi‖ ≤ C(E
n∑

i=1

‖Zi‖p)1/p

for some constant C > 0. Defining p∗ := sup{p : B has martingale type p}, we say p∗ is the
best martingale type of B. It is a fact that

B has martingale type p iff B∗ has martingale co-type q, where 1/p+ 1/q = 1,

where B∗ having co-type q means that for any n ≥ 1 and any mds (Yt) ∈ B∗, we have

(E
n∑

i=1

‖Zi‖q)1/q ≤ CE‖
n∑

i=1

Zi‖

Theorem 1 (Pisier) A Banach space B∗ has martingale co-type q iff there exists a (q, λ)-

uniformly convex function on B∗ for some λ > 0. As an important corollary for q = 2, a

Banach space B has martingale type 2 iff there exists a (2, L) strongly smooth function on B
for some L > 0.

There are other equivalent definitions of a strongly smooth functions, as we shall see in the
next section.

7 Concentration for (2, D)-strongly smooth functions

The applications presented thus far allow us to uniformly bound the operator norm deviations
of a sequence of random Hermitian matrices in Cd×d. A different approach is due to Pinelis
(1992, 1994). For this section, let (Yt)t∈N be a martingale with respect to (Ft) taking
values in a separable Banach space (X , ‖·‖). We can use Pinelis’s device to uniformly bound
the process (Ψ(Yt)) for any function Ψ : X → R which satisfies the following smoothness
property:

Definition 1 (Pinelis 1994) A function Ψ : X → R is called (2, D)-smooth for some

D > 0 if, for all x, v ∈ X , we have

Ψ(0) = 0 (1a)

|Ψ(x+ v)−Ψ(x)| ≤ ‖v‖ (1b)

Ψ2(x+ v)− 2Ψ2(x) + Ψ2(x− v) ≤ 2D2‖v‖2. (1c)
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A Banach space is called (2, D)-smooth if its norm is (2, D)-smooth; in such a space we may
take Ψ(·) = ‖·‖ to uniformly bound the deviations of a martingale. In this case, observe that
property (1a) is part of the definition of a norm, property (1b) is the triangle inequality, and
property (1c) can be seen to hold with D = 1 for the norm induced by the inner product
in any Hilbert space, regardless of the (possibly infinite) dimensionality of the space. Note
also that setting x = 0 shows that D ≥ 1 whenever Ψ(·) = ‖·‖.

Corollary 2 Consider a martingale (Yt)t∈N taking values in a separable Banach space (X , ‖·‖).

Let the function Ψ : X → R be (2, D)-smooth and define D? := 1 ∨D.

1. Suppose ‖∆Yt‖ ≤ ct a.s. for all t ∈ N for some constants (ct)t∈N , and let Vt :=
∑t

i=1 c
2
i .

Then for any x,m > 0, we have

P
(
∃t ∈ N : Ψ(Yt) ≥ x+

D2
?x

2m
(Vt −m)

)
≤ 2 exp{− x2

2D2
?m
}. (2)

This strengthens Theorem 3.5 from Pinelis (1994) [B].

2. Suppose ‖∆Yt‖ ≤ c a.s. for all t ∈ N for some constant c, and let Vt :=
∑t

i=1 Ei−1‖∆Yi‖2.
Then for any x,m > 0, we have

P
(
∃t ∈ N : Ψ(Yt) ≥ x+D2

?sP

( x
m

)
· (Vt −m)

)
≤ 2 exp{−D2

?mψ
?
P

(
x

D2
?m

)
}

≤ 2 exp{− x2

2(D2
?m+ cx/3)

}. (3)

This strengthens Theorem 3.4 from Pinelis (1994) [B].

As before, the Hoeffding-style bound in part (a) and the Bennett-style bound in part (b) are
not directly comparable: Vt may be smaller in part (b), but the exponent is also smaller.

We briefly highlight some of the strengths and limitations of this approach. Since the Eu-
clidean l2-norm is induced by the standard inner product in Rd, the above corollary gives
a dimension-free uniform bound on the l2-norm deviations of a vector-valued martingale
in Rd which exactly matches the form for scalars. Compare this to bounds based on the
operator norm of a Hermitian dilation: the bound of Tropp (2012) includes dimension
dependence [B,E] while the bound of Minsker (2017, Corollary 4.1) incurs an extra con-
stant factor of 14 [B,E]. Our bounds extend to martingales taking values in sequence space
{(ai)i∈N :

∑
i |ai|2 < ∞} or function space L2[0, 1], and we may instead use the lp norm,

p ≥ 2, in which case D =
√
p− 1. These cases follow from Pinelis (1994, Proposition 2.1).

Similarly, the above corollary gives dimension-free uniform bounds for the Frobenius norm
deviations of a matrix-valued martingale. This extends to martingales taking values in a
space of Hilbert-Schmidt operators on a separable Hilbert space, with deviations bounded
in the Hilbert-Schmidt norm; compare Minsker (2017, S3.2), which gives operator-norm
bounds. The method of the above corollary does not extend directly to operator-norm
bounds because the operator norm is not (2, D)-smooth for any D.
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