
A Proofs of Propositions 1,2,3.
Before we look at the MMD calculations in various cases, we prove the following useful characterization of MMD for transla-
tion invariant kernels like the Gaussian and Laplace kernels.
Lemma 1. For translation invariant kernels, there exists a pdf s such that

MMD2(p, q) =

∫
s(w)|Φp(w)− Φq(w)|2dw,

where Φp,Φq denote the characteristic functions of p, q respectively.

Proof. From definition of MMD2, we have

MMD2(p, q) =

∫
x,x′

k(x, x′)p(x)p(x′)dxdx′ +

∫
x,x′

k(x, x′)q(x)q(x′)dxdx′ − 2

∫
x,x′

k(x, x′)p(x)q(x′)dxdx′.

From Bochner’s theorem (see (Rudin 1962)) for translation invariant kernels, we know k(x, x′) =
∫
w
s(w)eiw

>xe−iw
>x′dw

where s is the fourier transform of the kernel. Substituting the above equality in the definition of MMD2, we have the required
result.

Proof of Proposition 1
Proof. Since Gaussian kernel is a translation invariant kernel, we can use Lemma 1 to derive the MMD2 in this case. It is
well-known that the Fourier transform s(w) of Gaussian kernel is Gaussian distribution. Substituting the characteristic function
of normal distribution in Lemma 1, we have

MMD2(p, q) =

∫
w

(
γ2/2π

)d/2
exp

(
−γ2‖w‖2/2

) ∣∣exp(iµ>1 w − w>Σw/2)− exp(iµ>1 w − w>Σw/2)
∣∣2 dw

=
(
γ2/2π

)d/2 ∫
w

exp
(
−w>Σw

)
exp

(
−γ2‖w‖2/2

) ∣∣exp(iµ>1 w)− exp(iµ>2 w)
∣∣2 dw

=
(
γ2/2π

)d/2 ∫
w

exp
(
−w>(Σ + γ2I/2)w

) (
2− exp

(
−i(µ1 − µ2)>w

)
− exp

(
−i(µ2 − µ1)>w

))
dw

= 2
(
γ2/2π

)d/2 ∫
w

exp
(
−w>(Σ + γ2I/2)w

) (
1− exp

(
−i(µ1 − µ2)>w

))
dw (2)

The third step follows from definition of complex conjugate. In what follows, we do the following change of variable u =
(Σ + γ2I/2)1/2w. Consider the following term:∫

w

exp
(
−w>(Σ + γ2I/2)w

)
exp

(
−i(µ1 − µ2)>w

)
dw

=

∫
u

exp−
(
u>u+ i(µ1 − µ2)>(Σ + γ2I/2)−1/2u

)
|Σ + γ2I/2|−1/2du

= |Σ + γ2I/2|−1/2 exp(−(µ1 − µ2)>(Σ + γ2I/2)−1(µ1 − µ2)/4)×∫
u

exp−
(
‖u− i(Σ + γ2I/2)−1/2(µ1 − µ2)/2‖2

)
du

= πd/2|Σ + γ2I/2|−1/2 exp(−(µ1 − µ2)>(Σ + γ2I/2)−1(µ1 − µ2)/4)

The second step follows from well-known theory of change of variables (see Theorem 263D of (Fremlin 2000)). By substituting
the above equality in Equation 2, we get the required result.

Proof of Proposition 2
Before we delve into the details of the result, we prove the following useful propositions.
Proposition 4. Let σ, γ ∈ R+ and λ ∈ R. Suppose γ 6= σ, then we have,

∞∫
−∞

exp

(
−|x− λ|

γ

)
exp

(
−|x|
σ

)
dx =

e−|λ|/σ

1/γ + 1/σ
+

e−|λ|/γ

1/σ − 1/γ
− e−|λ|/σ

1/σ − 1/γ
+

e−|λ|/γ

1/γ + 1/σ

and when γ = σ, we have,
∞∫
−∞

exp

(
−|x− λ|

σ

)
exp

(
−|x|
σ

)
dx =

e−|λ|/σ

1/γ + 1/σ
+ |λ|e−|λ|/σ +

e−|λ|/γ

1/γ + 1/σ



Proof. We show this when λ ≤ 0 as an example proof:
∞∫
−∞

exp

(
−|x− λ|

γ

)
exp

(
−|x|
σ

)
dx =

λ∫
−∞

exp

(
x− λ
γ

)
exp

(x
σ

)
dx+

0∫
λ

exp

(
λ− x
γ

)
exp

(x
σ

)
dx

+

∞∫
0

exp

(
λ− x
γ

)
exp

(
−x
σ

)
dx

=
e−λ/γeλ/σ+λ/γ

1/γ + 1/σ
+
e−λ/γ(1− e−λ/γ+λ/σ)

1/σ − 1/γ
+

eλ/γ

1/γ + 1/σ

Also, when γ = σ, we obtain the same expression for the first and last terms. However, the middle term has the following
constant integrand, thereby, leading to the required expression.

0∫
λ

exp

(
λ− x
γ

)
exp

(x
σ

)
dx = |λ|e−|λ|/σ.

Proposition 5. Let σ, γ ∈ R+ and µ ∈ R. Then we have,
∞∫
−∞

∞∫
−∞

exp

(
−|x− x

′|
γ

)
1

4σ2
exp

(
−|x− µ|

σ

)
exp

(
−|x

′|
σ

)
dxdx′

= −1

2
e−|µ|/σ

(
ψ + |µ|/γ

1− ψ2

)
+

1

1− ψ2

(
−ψe

−|µ|/σ

1− ψ2
+
e−|µ|/γ

1− ψ2

)
= − µ2

4σγ(1 + ψ)2
+

2 + ψ

2(1 + ψ)2
+O

(
|µ|3

σ2γ(1− ψ2)2

)
−O

(
|µ|3

γ3(1− ψ2)2

)
where ψ = σ/γ.

Proof. We first integrate with respect to x′ using the Proposition 4 to get

1

4σ2

∞∫
−∞

(
e−|x|/σ

1/γ + 1/σ
+

e−|x|/γ

1/σ − 1/γ
− e−|x|/σ

1/σ − 1/γ
+

e−|x|/γ

1/γ + 1/σ

)
exp

(
−|x− µ|

σ

)
dx

We then integrate these terms once again using both parts of Proposition 4 to get the first equality. We simplify the second
equation in the following manner:

−1

2
e−|µ|/σ

(
ψ + |µ|/γ

1− ψ2

)
+

1

1− ψ2

(
−ψe

−|µ|/σ

1− ψ2
+
e−|µ|/γ

1− ψ2

)
= −1

2

(
1− |µ|

σ
+
|µ|2

2σ2

)(
ψ + |µ|/γ

1− ψ2

)
+

1

1− ψ2

(
− (σ/γ − |µ|/γ + µ2/2σγ)

1− ψ2
+

1− |µ|/γ + µ2/2γ2

1− ψ2

)
+O

(
|µ|3

σ2γ(1− ψ2)2

)
−O

(
|µ|3

γ3(1− ψ2)2

)
= − 1

2(1− ψ2)

(
ψ − µ2

2σγ
+
|µ|3

2σ2γ

)
+

1

(1− ψ2)2

(
1− ψ − µ2

2σγ
+

µ2

2γ2

)
+O

(
|µ|3

σ2γ(1− ψ2)2

)
−O

(
|µ|3

γ3(1− ψ2)2

)
= − 1

2(1− ψ2)

(
ψ − µ2

2σγ

)
+

(1− µ2/2σγ)(1− ψ)

(1− ψ2)2
+O

(
|µ|3

σ2γ(1− ψ2)2

)
−O

(
|µ|3

γ3(1− ψ2)2

)
=

1

1− ψ2

(
−ψ

2
+

1

2

µ2

2σγ

)
+

1

1− ψ2

(
1

1 + ψ
− µ2

(1 + ψ)2σγ

)
+O

(
|µ|3

σ2γ(1− ψ2)2

)
−O

(
|µ|3

γ3(1− ψ2)2

)
= − µ2

4σγ(1 + ψ)2
+

2 + ψ

2(1 + ψ)2
+O

(
|µ|3

σ2γ(1− ψ2)2

)
−O

(
|µ|3

γ3(1− ψ2)2

)



Proof (Proposition 2). Recall that we use Laplace kernel, i.e., k(x, x′) = exp(−‖x − x′‖1/γ). By using the definition of
MMD2, we have

MMD2 =

∫
x,x′

(p(x)p(x′) + q(x)q(x′)− 2p(x)q(x′))k(x, x′)dxdx′. (3)

Consider the term
∫
x,x′

p(x)q(x′)k(x, x′)dxdx′. The other terms can be calculated in a similar manner. Let ψ = σ/γ and
β = (1 + ψ/2)/(1 + ψ)2. We have,∫

x,x′
p(x)q(x′)k(x, x′)dxdx′ =

d∏
i=1

∫
xi,x′i

exp

(
−|x− x

′|
γ

)
1

4σ2
exp

(
−|x− µ|

σ

)
exp

(
−|x

′|
σ

)
dxidx)i′

=

d∏
i=1

β

(
1− µ2

i

4βσγ(1 + ψ)2
+O

(
|µi|3

βσ2γ(1− ψ2)2

)
−O

(
|µi|3

βγ3(1− ψ2)2

))
= βd

(
1− ‖µ‖2

4βσγ(1 + ψ)
+O

(
|µi|3

βσ2γ(1− ψ2)2

)
−O

(
|µi|3

βγ3(1− ψ2)2

))
The first step follows from the fact that both Laplace kernel and Laplace distribution decompose over the coordinates. The
second step follows from Proposition 5. Substituting the above expression in Equation 3, we get,

MMD2 =
βd−1‖µ‖2

2σγ(1 + ψ)
−O

(
βd−1‖µ‖33

σ2γ(1− ψ2)2

)
+O

(
βd−1‖µ‖33
γ3(1− ψ2)2

)
.

Proof of Proposition 3
Suppose P = ⊗di=1N(0, σ2)⊗N(0, a2) and Q = ⊗di=1N(0, σ2)⊗N(0, b2). If a, b are of the same order as σ then the median
heuristic will still pick γ ≈ σ

√
d for bandwidth γ of the Gaussian kernel. First we note that for distributions with the same

mean, by Taylor’s theorem,

KL(P,Q) =
1

2
(tr(Σ−11 Σ0 − d− log(det Σ0)/det Σ1)) =

1

2
(a2/b2 − 1− log(a2/b2))

≈ (a2/b2 − 1)2

4

The MMD2 can be derived (approximated using (1 + x)n ≈ 1 + nx for small x) as

1

(1 + 4σ2/γ2)d/2−1/2

(
1√

1 + 4a2/γ2
+

1√
1 + 4b2/γ2

− 2√
1 + 2(a2 + b2)/γ2

)

≈ 1

(1 + 4σ2/γ2)d/2−1/2

(
1

1 + 2a2/γ2
+

1

1 + 2b2/γ2
− 2

1 + (a2 + b2)/γ2

)

≈ 1

(1 + 4σ2/γ2)d/2−1/2

(
1√

1 + 2a2/γ2
− 1√

1 + 2b2/γ2

)2

≈ 1

(1 + 4σ2/γ2)d/2−1/2
(
(1− a2/γ2)− (1− b2/γ2)

)2
=

b4/γ4

(1 + 4σ2/γ2)d/2−1/2
(a2/b2 − 1)2

If γ is chosen by the median heuristic (optimal in this case), we see that this is smaller than KL by σ4d2e/b4. If it is chosen
as constant, it can be exponentially smaller than KL.



B Verifying accuracy of approximate MMDs calculated in Propositions 1,2,3.
In the proofs and corollaries of derivations of MMD in Propositions 1,2,3, we used many Taylor approximations in order to get
a more interpretable formula. Here we show that our approximate formulae, while being interpretable, are also very accurate.

We provide empirical results demonstrating the quality of the approximations used in Section 4. In particular, we compare the
estimated value of the MMD using large sample size (so that the sample MMD is a very good estimate of population MMD)
and the approximations provided in Section 4. As observed in Figure 8, the approximations are quite close to the estimated
value, thereby validating the quality of our approximations.
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Figure 8: Top left: MMD vs d, for Gaussian distributions and Gaussian kernel with optimal σ
√
d bandwidth, as estimated from

data and approximated by formula. Top right: same but for Log(MMD). Middle left: MMD vs d, for Laplace kernel with optimal
σd bandwidth, estimated from data and approximated by formula. Middle right: same but for Log(MMD). The Log Plots also
show the right scaling that decays as 1/dwith the right choice of bandwidth. Bottom: Log(MMD) vs d, for Gaussian kernel with
optimal σ

√
d bandwidth, for Gaussians with same mean and different variances. The straight line is our final approximation in

the theorem. The other two are the true MMD by formula, and the MMD from data.



C Biased MMD for Gaussian Distribution
In the previous sections, we provided results for unbiased MMD estimator and empirically proved that the power of the test
based on the estimator decreases with increasing dimension. We report results for the biased MMD estimator in this section and
show that it exhibits similar behavior.
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Figure 9: Plots for Biased MMD with Gaussian kernel, when the data is drawn from two Gaussians with σ2 = 1 and constant
mean separation ‖µ1−µ2‖2 = 1. With respect to the selection of bandwidth γ, the power of Biased MMD has similar behavior
as Unbiased MMD.

As seen in Figure 9, the power of the biased MMD decreases in exactly the same fashion as unbiased MMD. We also observed
similar behavior with other examples.




