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PROBLEM

• We consider a novel setting where distinct agents re-
side on the nodes of an undirected graph, and each
agent possesses p-values corresponding to one or
more hypotheses local to its node.

• Each agent must individually decide whether to re-
ject one or more local hypotheses by only communi-
cating with its neighbors.

• The goal is to control the global FDR over the entire
graph at a predefined level.

• An example: Each node of the graph represents
a sensor over a widespread area, such as a forest.
Each sensor collects its own local data, but due to
power constraints, each sensor may only communi-
cate locally with nearby sensors. A rejected hypoth-
esis reflects a discovery, like a fire or pollution-spike.

NOTATIONS

• G = (V,E), a graph with an agent at each node who
may communicate with neighbors.

• Hi = {Hi,1, . . . ,Hi,ni
}: the set of ni hypotheses be-

ing tested by the agent at node i.
• H0

i represent the (unknown) subset of true null hy-
potheses at node i.

• H0 represent the overall set of true null hypotheses.
• P-values at each nodes: Pi,1, . . . , Pi,ni .
• R, the total number of discoveries.
• V , the total number of false discoveries.

PRELIMINARIES

• False Discovery Rate (FDR): FDR = E
[
V
R

]
.

• Positive Regression Dependence on a Subset
(PRDS): For any i ∈ H0 and nondecreasing set
D ⊆ [0, 1]n, the function t 7→ Pr{P ∈ D | Pi ≤ t}
is nondecreasing on the interval (0, 1].

• Benjamini and Hochberg (BH): Given N hypothesis
with corresponding p-values, reject the smallest k̂ p-
values, where k̂ is chosen by:

k̂ = max
{
k | P(k) ≤ α

k

N

}
.

It guarantees FDR ≤ α under independence, PRDS.

SINGLE-STEP QUTE ALGORITHM

Consider the following QuTE algorithm:

• Query: Each agent queries its neighbors and re-
ceives an ordered vector of p-values from each of
their neighbors, and keeps track of the source of
each p-value.

• Test: Let Si be the set p-values now in possession of
agent i. Agent i runs the BH procedure on its |Si|
p-values, at an adjusted target FDR of αi := α |Si|

N .

• Exchange: All agents exchange their rejection deci-
sions with their neighbors by sending back an or-
dered indicator vector, informing the neighbors to
reject every hypothesis that has its indicator location
set to unity.

In summary, an agent rejects a hypothesis whenever it
was rejected by its own test, or by any of its neighbors.

MULTI-STEP QUTE ALGORITHM

With c ≥ 1 rounds of communication, a node can ac-
cess p-values of all nodes that are at a distance ≤ c away
from it on the graph. After performing its local test, c
rounds of exchanging information can once again prop-
agate the results of its local test to nodes that are at dis-
tance ≤ c away. The fully dynamic algorithm is fully
asynchronous — each node is constantly receiving new
information, running local tests, and sharing its results.

QUTE GUARANTEES FDR CONTROL

Theorem 1. If the p-values are independent or positively de-
pendent, then regardless of the graph topology, the multi-step
QuTE algorithm achieves FDR control at level α for any c ≥ 1.

SIMULATIONS

We generate the p-values as:

X ∼ µ+N (0, 1); p-value = 1− Φ(X),

where Φ is the standard Gaussian CDF, with µ = 0 for
nulls and µ > 0 for alternatives. We consider the follow-
ing two types of graphs:

An example G(n, p) graph An example grid graph

Erdös-Rényi random graph

A graph with n nodes is randomly generated, where an
edge between any two distinct nodes is included in the
graph with probability p independently.
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Plots of FDR and power versus edge probability p for the
QuTE, BH and Bonferroni procedures applied to the ran-
dom graph model G(1000, p), with target FDR α = 0.2,
signal level µ = 2 and non-null frequency π1 = 0.3.
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Plots of FDR and power versus rounds of communication
with multi-step QuTE for a 16× 16 grid graph, multi-step
QuTE for a 2 × 128 grid graph, BH procedure, and Bon-
ferroni procedure, with target FDR α = 0.2, signal level
µ = 2 and the non-null frequency π1 = 0.3.

AN ILLUSTRATIVE EXAMPLE ON REAL DATA

Dataset and preprocessing

Intel Lab dataset contains temperature data collected from
54 sensors deployed in the Intel Berkeley Research Lab
across 36 days. Each pair of sensors has a communication
probability. We threshold the probability and put an edge
between two sensors if their communication probability
with each other is larger than a certain threshold specified
below.

At each node, the null hypothesis states that the current
temperature at the node is normal. Define the empirical
distribution of the temperature of the first 500 samples at
Sensor i as F̂n,i. The p-value at node i is

pi = 2 min(1− F̂n,i(ti), F̂n,i(ti)),

Results

The graphs are specified by choosing the threshold to be
0.1, 0.3, 0.5.

Threshold γ = 0.1 Threshold γ = 0.3 Threshold γ = 0.5

The nodes in red are rejected. Naturally, there are more
rejections on average with increasing density of edges.

IMPORTANT EXTENSIONS

The multi-step QuTE algorithm is very robust, and the
following extensions make it particularly practical.

Quantization

We designed a novel “quantized-BH” algorithm: Define
the p-rank Ri = Ceiling(piN/α) and find

k∗ = max{k : R(k) ≤ k}.

In the Test stage of QuTE, we assume all unknown p-
ranks equal N + 1 and run a local quantized-BH test on
all N p-ranks at level α.

Time-varying Data

Suppose each sensor received more data as time passes.
We define a false discovery to be a null that is wrongly
rejected at any time. We can often construct an always-
valid p-value at each node i, which is a stochastic process
{pti}t∈R such that for any stopping time T , we have

P{pTi ≤ x} ≤ x for any x ∈ [0, 1].

QuTE still guarantees FDR control if we replace static p-
values by always-valid p-values.

Time-varying Edges

In the setting where the edges may arbitrarily drop pack-
ets, or sensors (such as drones) move around to change
the graph topology, QuTE still guarantees FDR. Indeed,
QuTE is fully asynchronous, and a node may receive in-
formation from different neighbors at different times.


