Margins, Kernels and Non-linear Smoothed Perceptrons

Normalized Margins and
Perceptron Algorithm

Non-linear Feasibility Problems

Given n points x1,...,z, € R?
and labels y1,...,y, € {—1,+1}

Goal: find unit vector w € R? s.t.

T

yi(whz;) >0 e  sign(wlz;) = y;

Nonlinear Goal: find unit norm function f € Fg s.t.
yi f(x;) >0 ie. sign(f(x;)) =y
Builds heavily on work by Negar Soheili + Javier Pefia ‘12,13

Unnormalized Margin

Nonlinear Goal: find unit norm function f € Fk s.t.

yif(r;) >0 ie. sign(f(z)) =y

This has unnormalized margin p > 0 if df s.t.

yif (xi) = p
or correspondingly in the linear case,

ywlz; > p

Normalized > Unnormalized Margin

Denote X5 = [x1/||z1|2,---,Zn/||Tn]|]-
Define p:= max min (Y X" w,p)
lwll2=1pEin
= max min YXTw,
P2 Hw||2:1p€An< 2 W, D)

where Y =diag(y), X = [z1,...,x5].

2 < p2
max; ||$ZH2

Then

Simple example given in the paper.

Normalized Perceptron

Algorithm 2 Normalized Perceptron

Initialize wg = 0,pg = 0
for k=0,1,2,3,...do
if Y X "w; > 0 then
Exit, with w; as solution

else
1
Or = 711
W41 = (1 — O )wp + 01 XY p(wy)
end if
end for

p(w) = arg min (Y X' w, p)
PEA,

where A,, is the n-dimensional probability simplex.

If po > 0, then it finds a perfect separator in p% iterations.
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Smoothed Normalized

Kernel Perceptron (NKP)

Normalized (Kernel) Margin

Let K : R? x R? — R be a psd kernel, giving rise to RKHS Fx.

At each x € R, let ¢, : R? — R be the associated feature map,
where ¢, (y) = K(z,y) and inner product (¢, ¢,)x = K(u,v).

Define the normalized feature map

~ Oy

¢a:: K(:C,.CE)EJ:K and ¢X:[¢£B17"'7¢93n]‘

We use the notation

Yf(X) = [yi \/kfgz)x)]

Finally, the normalized margin is defined as

px = sup inf (Yf(X),p).
I £l x=1PEAR

Normalized Kernel Perceptron

Algorithm 3 Normalized Kernel Perceptron (NKP)
Set ag : =0
fork=0,1,2,3,...do
if G, > 0,, then
Exit, with o, as solution

else
1
Ap4+1 = (1 — Qk;)()ék + Hkp(ozk)
end if
end for
Gji _ Gq;j — yiy; K(zi,75) _ <yig5m“ngg$j>K, and

o VE (zi,2:) K (z5,25)

p(e) = arg min (o, p)a, (p,a)c = p' Ga, ol == VaTGa

n

If pxg > 0, then it finds a perfect separator in p% iterations.
K

NKP turns out to be a subgradient algorithm for minimizing

L(p) ={ sup (~YF0.) | + 311

PEA,

By Representer theorem, f* = ). a;y;¢,,, so we can consider

1
L(@)i= { swp (~aup | + 5l
p n

Lemma 1. L(a) < 0 implies Ga > 0 and there exists a
perfect classifier iff Ga > 0.

Lemma 2. For any a € R", ||a|l¢ < |lali < vnllalls.

Lemma 3. When pg > 0, f maximizes the margin iff
px [ optimizes L(f). Hence, the margin is equivalently

pr = sup inf (a,p)g < ||p|l¢ for all p € A,,.
lollg=1PEAn

Smoothed NKP

Algorithm 4 Smoothed Normalized Kernel Perceptron
Setag = 1, /n, pio := 2, po := puo(ao)
for k=0,1,2,3,...do
if Gay, > 0,, then
Halt: « 1s solution to Eq. (8)

else

92
O = k+3

g1 := (1 — k) (o + Orpr) + 03y, (k)
prer1 = (1 — 0r)
Prt1 = (1 — O)pr + Orppuy o (k1)

end if
end for
J e_Ga/,u
= a i , —|— } = ,
p,u(Oé) TgpfglAfi {<CV p>G M (p) He_Ga/MHl

where d(p) := ), pilogp; +logn

Lu(e) = sup { ~asp)e - Md(p)} IEVINTES

Lemma 4. (Lower Bound) At any step k, we have
L,, (o) > L(ak) — px logn.
Lemma 5. (Upper Bound) In any round k, SNKP satisfies
1 2
Ly (o) < =5 el

Theorem 1. The SNKP algorithm finds a perfect classifier
f € Fx when one exists in O <—VLOI§"> iterations.

Aaditya Ramdas and Javier Pena

Primal-dual lterated
Smoothed NKP-VN

Smoothed NKP-VN

Von-Neumann (VN) and
Gordan’s Theorem

Gordan’s Theorem

Exactly one of the following two statements can be true

Algorithm 6 Smoothed Normalized Kernel Perceptron-
1. Either there exists a w € R? such that for all i, VonNeumann (SN K PV N(q, 6))
T input ¢ € A,,, accuracy 6 > 0
(W x; 0
yZ( Z) = ’ Set &g = (g, Ho = 2n7 Po = pZO (Ofo)
for k=0,1,2,3,...do
if Gay, > 0,, then

2. Or, there exists a p € A,, such that

XY — 0. or equivalentl o = 0. Halt: o, 1s solution to Eq. (8)
I XYpl2 ’ E Y 2 Piis else if ||px||¢ < ¢ then
Return py.
[ ] [ ] l
Von-Neumann-Gilbert Algorithm 2
k43
Algorithm 5 Normalized Von-Neumann (NVN) g1 = (1= 0k)(ar + Oxpr) + 03 P4, (o)
Initiali =1, — XY pr+1 = (1 — Ok) ik
fm 0 I—Ze ¢ /1 o bo Per1 = (1 = Ok)pr + 0, 1, (pt1)
ork=20,1,2,3,...do end if Mkt
if || XY pr||2 < e then end for
Exit and return p; as an e-solution to (13)
elsg . d’; = %HP—QHS
J = argmin; ¥;x,; W q _ : p
Ly pi (@) = arg min (Ga, p) + p?,
Or := argminyepo 17 |(1 — MNwy + Ay;z;2 a PEA, 1
Pr+1 = (1 — Ok )px + Ore; g/ _ B B 10012
Wi+1 = XY pry1 = (1 — Op)wy + Ory;x; L) = 'pSEuApn (@ ple = pdq(p) p + 5l
end if
end for

Lemma 8. [When px > 0 and § < pg] For any ¢ € A,
Von-Neumann described this algorithm in private

_1 2 q _
communication with Dantzig in 1948, who then analyzed it but ookl = L, (ok) 2> Llak) — pk.
only published his proof in 1992. Independently, Gilbert . Y .
created his algorithm in 1966. Hence SNKPVN finds a separator f in O (p—K> iterations.

1. When (D) is feasible, Von-Neumann-Gibert

L . h F A,
finds e-certificate in 1/¢* steps. emma 9. [When pr <0 ord > pg| For any g € A,

1 2 1 : 2
2. Von-Neumann-Gilbert is a Frank-Wolfe method for: —slpelle > LZk(O‘k) > — jugdist(qg, W)~
ming,ea || Ap||*

Hence SNKPVN finds a d-solution in at most O (min { ‘{Sﬁ, \/ggfjlf }) iterations.
3. When (P) is feasible, Von-Neumann-Gilbert

finds satisfying w in 1/ ij steps. Typically we would be happy - we have a primal-dual algorithm! However,

if we want the algorithm to have a [inear convergence in 9, then we need to

4. When (D) is feasible, Von-Neumann-Gilbert . . )
iterate it recursively as follows.

finds e-certificate in log(1/€)/|p|* steps.

Dantzig (1992) proved (1), Nesterov verbally mentioned (2) to
Epelman & Freund (1997) who proved (3,4).

lterated Smoothed NKP-VN

Gordan’s Theorem in RKHSs

Theorem 2 Exactly one of the following has a solution:

Algorithm 7 Iterated Smoothed Normalized Kernel
Perceptron-VonNeumann (/SN K PV N (v, €))

input Constant v > 1, accuracy € > 0

1. Either 3f € Fx such that for all i, Set o := 1,,/n
yif(z:) - . fort=0,1,2,3,...do
= (f,Yi0. )k >0 ie. Ga>0,
\/K(xz,xz) <f Y Qb z>K 1.€ @ 515 - HQtHG/’y

di+1 = SNKPVN(qt,5t)
if 9; < € then

Halt; q; 1 1s a solution to Eq. (14)
end if
end for

2. Or dp € A,, such that
> Pilide, =0 € Fx ie. |plle =0.

Let us define the wz’tnegs set as

W= {p < An\ Zip’iyigbxi — 0} = {p S AnIHp \G — 0}

A Hoffman-bound for the dua

Algorithm ISNKPVN satisfies

1. If the primal is feasible and € < pg, then each call to SNKPVN halts in
at most Qp\/—i_” iterations. Algorithm ISNKPVN finds a solution in at most

Lemma 7. For all g € A,,, the distance to the witness set —lo*‘i%{ ,g’)K ) outer loops, bounding the total iterations by
v2]dlc (ﬁ ( 1 ))
dist = min — wllo < min 2, ———— . O —log| — :
(¢, W) weWHCI 2 < {\[ o] PK PK

2. If the dual is feasible or € > pg, then each call to SNKPVN halts in at

As a consequence, ||p||g =0iff pc W. most O (min {@ ﬁ}) steps. Algorithm ISNKPVN finds an e-solution

€ 7 |pkl
. log(1/€) . . .
Theorem 3. When the primal is infeasible, the margin is in at most .77y outer loops, bounding the total iterations by
7 O VIEVE Ly (2] )
ol =sup {6 | Ifllc <6 = f € conv(¥dx)] (min {27 gy o (2

This quantity can be zero simply because an infinite It was unclear to us whether the \/n can be made y/logn while
dimensional ball cannot fit inside a finite dimensional hull.
The right correction is to re-define the margin so that

the only allowed w, f is in the affine hull of the points.
Then, a can be used in Theorem 3 (for the “affine-margin”,

which can be non-zero even when the margin is zero).

1. The algorithm still visually looks like the perceptron.

2. The algorithm achieves linear convergence w.r.t € (for the dual)



