
Margins, Kernels and Non-linear Smoothed Perceptrons

Aaditya	
 Ramdas	
 and	
 Javier	
 Peña	

Normalized Margins and
Perceptron Algorithm

Smoothed Normalized
Kernel Perceptron (NKP)

Von-Neumann (VN) and
Gordan’s Theorem

Primal-dual Iterated
Smoothed NKP-VN

Non-­‐linear	
 Feasibility	
 Problems	

Given n points x1, . . . , xn 2 Rd

and labels y1, . . . , yn 2 {�1,+1}

Goal: find unit vector w 2 Rd
s.t.

yi(w
T
xi) � 0 i.e. sign(w

T
xi) = yi

Nonlinear Goal: find unit norm function f 2 FK s.t.

yif(xi) � 0 i.e. sign(f(xi)) = yi

Unnormalized	
 Margin	

Nonlinear Goal: find unit norm function f 2 FK s.t.

yif(xi) � 0 i.e. sign(f(xi)) = yi

This has unnormalized margin ⇢ > 0 if 9f s.t.

yif(xi) � ⇢

or correspondingly in the linear case,

yiw
T
xi � ⇢

Normalized	
 >	
 Unnormalized	
 Margin	

Denote X2 = [x1/kx1k2, . . . , xn/kxnk].
Define ⇢ := max

kwk2=1
min

p2�n

hY X

T
w, pi

⇢2 := max

kwk2=1
min

p2�n

hY X

T
2 w, pi

where Y = diag(y), X = [x1, . . . , xn].

...

Then

⇢

maxi kxik2
 ⇢2

Simple example given in the paper.

Normalized	
 Perceptron	

Margins, Kernels and Non-linear Smoothed Perceptron

Our work builds on (Soheili & Peña, 2012; 2013a) from the
field of optimization - we generalize the setting to learn-
ing functions in RKHSs, extend the algorithms, simplify
proofs, and simultaneously bring new perspectives to it.
There is extensive literature around the Perceptron algo-
rithm in the learning community; we restrict ourselves to
discussing only a few directly related papers, in order to
point out the several differences from existing work.

We provide a general unified proof in the Appendix which
borrows ideas from accelerated smoothing methods devel-
oped by Nesterov (Nesterov, 2005) - while this algorithm
and others by (Nemirovski, 2004), (Saha et al., 2011) can
achieve similar rates for the same problem, those algo-
rithms do not possess the simplicity of the Perceptron or
Von-Neumann algorithms and our variants, and also don’t
look at the infeasible setting or primal-dual algorithms.

Accelerated smoothing techniques have also been seen in
the learning literature like in (Tseng, 2008) and many oth-
ers. However, most of these deal with convex-concave
problems where both sets involved are the probability sim-
plex (as in game theory, boosting, etc), while we deal with
hard margins where one of the sets is a unit `

2

ball. Hence,
their algorithms/results are not extendable to ours trivially.
This work is also connected to the idea of ✏-coresets (Clark-
son, 2010), though we will not explore that angle.

A related algorithm is called the Winnow (Littlestone,
1991) - this works on the `

1

margin and is a saddle point
problem over two simplices. One can ask whether such
accelerated smoothed versions exist for the Winnow. The
answer is in the affirmative - however such algorithms look
completely different from the Winnow, while in our setting
the new algorithms retain the simplicity of the Perceptron.

1.2. Paper Outline

Sec.2 will introduce the Perceptron and Normalized Per-
ceptron algorithm and their convergence guarantees for lin-
ear separability, with specific emphasis on the unnormal-
ized and normalized margins. Sec.3 will then introduce
RKHSs and the Normalized Kernel Perceptron algorithm,
which we interpret as a subgradient algorithm for a regu-
larized normalized hard-margin loss function.

Sec.4 describes the Smoothed Normalized Kernel Percep-
tron algorithm that works with a smooth approximation to
the original loss function, and outlines the argument for its
faster convergence rate. Sec.5 discusses the non-separable
case and the Von-Neumann algorithm, and we prove a ver-
sion of Gordan’s theorem in RKHSs.

We finally give an algorithm in Sec.6 which terminates with
a separator if one exists, and with a dual certificate of near-
infeasibility otherwise, in time inversely proportional to the
margin. Sec.7 has a discussion and some open problems.

2. Linear Feasibility Problems
2.1. Perceptron

The classical perceptron algorithm can be stated in many
ways, one is in the following form

Algorithm 1 Perceptron
Initialize w

0

= 0

for k = 0, 1, 2, 3, ... do
if sign(w>

k

x
i

) 6= y
i

for some i then
w

k+1

:= w
k

+ y
i

x
i

else
Halt: Return w

k

as solution
end if

end for

It comes with the following classic guarantee as proved by
(Block, 1962) and (Novikoff, 1962): If there exists a unit
vector u 2 Rd such that Y X>u � ⇢ > 0, then a perfect
separator will be found in max

i

kx
i

k2
2

⇢

2 iterations/mistakes.

The algorithm works when updated with any arbitrary point
(x

i

, y
i

) that is misclassified; it has the same guarantees
when w is updated with the point that is misclassified by
the largest amount, argmin

i

y
i

w>x
i

. Alternately, one can
define the probability distribution over examples

p(w) = arg min

p2�

n

hY X>w, pi, (4)

where �

n

is the n-dimensional probability simplex.

Intuitively, p picks the examples that have the lowest mar-
gin when classified by w. One can also normalize the up-
dates so that we can maintain a probability distribution over
examples used for updates from the start, as seen below:

Algorithm 2 Normalized Perceptron
Initialize w

0

= 0, p
0

= 0

for k = 0, 1, 2, 3, ... do
if Y X>w

k

> 0 then
Exit, with w

k

as solution
else
✓
k

:=

1

k+1

w
k+1

:= (1� ✓
k

)w
k

+ ✓
k

XY p(w
k

)

end if
end for

Remark. Normalized Perceptron has the same guaran-
tees as perceptron - the Perceptron can perform its up-
date online on any misclassified point, while the Normal-
ized Perceptron performs updates on the most misclassified
point(s), and yet there does not seem to be any change in
performance. However, we will soon see that the ability to
see all the examples at once gives us much more power.

p(w) = arg min

p2�n

hY XTw, pi

where �n is the n-dimensional probability simplex.

If ⇢2 > 0, then it finds a perfect separator in

1
⇢2
2
iterations.

Normalized	
 (Kernel)	
 Margin	

Let K : Rd ⇥ Rd ! R be a psd kernel, giving rise to RKHS F

K

.

At each x 2 Rd, let �
x

: Rd ! R be the associated feature map,
where �

x

(y) = K(x, y) and inner product h�
x

,�

y

i
K

= K(u, v).

Define the normalized feature map

�̃

x

=
�

xp
K(x, x)

2 F
K

and �̃

X

= [�̃
x1 , . . . , �̃xn].

We use the notation

Y f̃(X) =

"
y

i

f(x
i

)p
K(x

i

, x

i

)

#
n

i=1

.

Finally, the normalized margin is defined as

⇢

K

:= sup
kfkK=1

inf
p2�n

hY f̃(X), pi.

Normalized	
 Kernel	
 Perceptron	

Margins, Kernels and Non-linear Smoothed Perceptron

3.1. Some Interesting and Useful Lemmas

The first lemma justifies our algorithms’ exit condition.
Lemma 1. L(↵) < 0 implies G↵ > 0 and there exists a
perfect classifier iff G↵ > 0.
Proof. L(↵) < 0) sup

p2�

n

h�G↵, pi < 0 , G↵ > 0.
G↵ > 0) f

↵

:= h↵, Y ˜�
X

i is perfect since

y
j

f
↵

(x
j

)

p

K(x
j

, x
j

)

=

n

X

i=1

↵
i

y
i

y
j

K(x
i

, x
j

)

p

K(x
i

, x
i

)K(x
j

, x
j

)

= G
j

↵ > 0.

If a perfect classifier exists, then ⇢
K

> 0 by definition and

L(f⇤
) = L(↵⇤

) = � 1

2

⇢2
K

< 0) G↵ > 0,

where f⇤,↵⇤ are the optimizers of L(f), L(↵).

The second lemma bounds the G-norm of vectors.
Lemma 2. For any ↵ 2 Rn, k↵k

G

 k↵k
1


p
nk↵k

2

.
Proof. Using the triangle inequality of norms, we get
p
↵>G↵ =

r

D

h↵, Y ˜�
X

i, h↵, Y ˜�
X

i
E

K

= k
X

i

↵
i

y
i

˜�
x

i

k
K


X

i

k↵
i

y
i

˜�
x

i

k
K


X

i

|↵
i

|

�

�

�

�

�

y
i

�
x

i

p

K(x
i

, x
i

)

�

�

�

�

�

K

=

X

i

|↵
i

|,

where we used h�
x

i

,�
x

i

i
K

= K(x
i

, x
i

).

The third lemma gives a new perspective on the margin.
Lemma 3. When ⇢

K

> 0, f maximizes the margin iff ⇢
K

f
optimizes L(f). Hence, the margin is equivalently

⇢
K

= sup

k↵k
G

=1

inf

p2�

n

h↵, pi
G
 kpk

G

for all p 2 �

n

.

Proof. Let f
⇢

be any function with kf
⇢

k
K

= 1 that
achieves the max-margin ⇢

K

> 0. Then, it is easy to plug
⇢
K

f
⇢

into Eq. (6) and verify that L(⇢
K

f
⇢

) = � 1

2

⇢2
K

and
hence ⇢

K

f
⇢

minimizes L(f).

Similarly, let f
L

be any function that minimizes L(f),
i.e. achieves the value L(f

L

) = � 1

2

⇢2
K

. Defin-
ing t := kf

L

k
K

, and examining Eq. (7), we see that
L(f

L

) cannot achieve the value � 1

2

⇢2
K

unless t = ⇢
K

and sup

p2�

n

D

�Y ˜f
L

(X), p
E

= �⇢2
K

which means that
f
L

/⇢
K

must achieve the max-margin.

Hence considering only f =

P

i

↵
i

y
i

˜�
x

i

is acceptable for
both. Plugging this into Eq. (5) gives the equality and

⇢
K

= inf

p2�

n

sup

k↵k
G

=1

h↵, pi
G
 sup

k↵k
G

=1

h↵, pi
G

 kpk
G

by applying Cauchy-Schwartz

(can also be seen by going back to function space).

4. Smoothed Normalized Kernel Perceptron
Define the distribution over the worst-classified points

p(f) := arg min

p2�

n

D

Y ˜f(X), p
E

or p(↵) := arg min

p2�

n

h↵, pi
G
. (10)

Algorithm 3 Normalized Kernel Perceptron (NKP)
Set ↵

0

:= 0

for k = 0, 1, 2, 3, ... do
if G↵

k

> 0
n

then
Exit, with ↵

k

as solution
else
✓
k

:=

1

k+1

↵
k+1

:= (1� ✓
k

)↵
k

+ ✓
k

p(↵
k

)

end if
end for

Implicitly f
k+1

= (1� ✓
k

)f
k

+ ✓
k

hY ˜�
X

, p(f
k

)i

= f
k

� ✓
k

⇣

f
k

� hY ˜�
X

, p(f
k

)i
⌘

= f
k

� ✓
k

@L(f
k

)

and hence the Normalized Kernel Perceptron (NKP) is a
subgradient algorithm to minimize L(f) from Eq. (6).

Remark. Lemma 3 yields deep insights. Since NKP can
get arbitrarily close to the minimizer of strongly convex
L(f), it also gets arbitrarily close to a margin maximizer. It
is known that it finds a perfect classifier in 1/⇢2

K

iterations
- we now additionally infer that it will continue to improve
to find an approximate max-margin classifier. While both
classical and normalized Perceptrons find perfect classifiers
in the same time, the latter is guaranteed to improve.

Remark. ↵
k+1

is always a probability distribution. Cu-
riously, a guarantee that the solution will lie in �

n

is not
made by the Representer Theorem in Eq. (8) - any ↵ 2 Rn

could satisfy Lemma 1. However, since NKP is a subgra-
dient method for minimizing Eq. (6), we know that we will
approach the optimum while only choosing ↵ 2 �

n

.

Define the smooth minimizer analogous to Eq. (10) as

p
µ

(↵) := arg min

p2�

n

n

h↵, pi
G
+ µd(p)

o

(11)

=

e�G↵/µ

ke�G↵/µk
1

,

where d(p) :=

X

i

p
i

log p
i

+ log n (12)

is 1-strongly convex with respect to the `
1

-norm (Nesterov,
2005). Define a smoothened loss function as in Eq. (9)

L
µ

(↵) = sup

p2�

n

⇢

� h↵, pi
G
� µd(p)

�

+

1

2

k↵k2
G

.

Note that the maximizer above is precisely p
µ

(↵).

G
ji

= G
ij

:=

yiyjK(xi,xj)p
K(xi,xi)K(xj ,xj)

= hy
i

˜�
xi , yj ˜�xj iK , and

p(↵) := arg min

p2�n

h↵, pi
G

, hp,↵i
G

:= p>G↵, k↵k
G

:=

p
↵>G↵

If ⇢
K

> 0, then it finds a perfect separator in

1
⇢

2
K

iterations.

NKP turns out to be a subgradient algorithm for minimizing

L(f) =

⇢
sup
p2�n

D
�Y f̃(X), p

E�
+ 1

2kfk
2
K

.

By Representer theorem, f⇤ =
P

i

↵
i

y
i

�
xi , so we can consider

L(↵) :=

⇢
sup
p2�n

h�↵, pi
G

�
+

1

2
k↵k2

G

Lemma 1. L(↵) < 0 implies G↵ > 0 and there exists a
perfect classifier i↵ G↵ > 0.

Lemma 2. For any ↵ 2 Rn, k↵k
G

 k↵k1 
p
nk↵k2.

Lemma 3. When ⇢
K

> 0, f maximizes the margin i↵
⇢
K

f optimizes L(f). Hence, the margin is equivalently

⇢
K

= sup
k↵kG=1

inf
p2�n

h↵, pi
G

 kpk
G

for all p 2 �
n

.

Smoothed	
 NKP	
 Margins, Kernels and Non-linear Smoothed Perceptron

Algorithm 4 Smoothed Normalized Kernel Perceptron
Set ↵

0

= 1
n

/n, µ
0

:= 2, p
0

:= p
µ0(↵0

)

for k = 0, 1, 2, 3, ... do
if G↵

k

> 0
n

then
Halt: ↵

k

is solution to Eq. (8)
else
✓
k

:=

2

k+3

↵
k+1

:= (1� ✓
k

)(↵
k

+ ✓
k

p
k

) + ✓2
k

p
µ

k

(↵
k

)

µ
k+1

= (1� ✓
k

)µ
k

p
k+1

:= (1� ✓
k

)p
k

+ ✓
k

p
µ

k+1(↵k+1

)

end if
end for

Lemma 4 (Lower Bound). At any step k, we have

L
µ

k

(↵
k

) � L(↵
k

)� µ
k

log n.

Proof. First note that sup
p2�

n

d(p) = log n. Also,

sup

p2�

n

�

� h↵, pi
G
� µd(p)

� sup

p2�

n

�

� h↵, pi
G

� sup

p2�

n

�

µd(p)

.

Combining these two facts gives us the result.

Lemma 5 (Upper Bound). In any round k, SNKP satisfies

L
µ

k

(↵
k

)  � 1

2

kp
k

k2
G

.

Proof. We provide a concise, self-contained and unified
proof by induction in the Appendix for Lemma 5 and
Lemma 8, borrowing ideas from Nesterov’s excessive gap
technique (Nesterov, 2005) for smooth minimization of
structured non-smooth functions.

Finally, we combine the above lemmas to get the following
theorem about the performance of SNKP.
Theorem 1. The SNKP algorithm finds a perfect classifier
f 2 F

K

when one exists in O
⇣p

logn

⇢

K

⌘

iterations.

Proof. Lemma 4 gives us for any round k,

L
µ

k

(↵
k

) � L(↵
k

)� µ
k

log n.

From Lemmas 3, 5 we get

L
µ

k

(↵
k

)  � 1

2

p>
k

Gp
k

 � 1

2

⇢2
K

.

Combining the two equations, we get that

L(↵
k

)  µ
k

log n� 1

2

⇢2
K

.

Noting that µ
k

=

4

(k+1)(k+2)

< 4

(k+1)

2 , we see that
L(↵

k

) < 0 (and hence we solve the problem by Lemma 1)
after at most k = 2

p
2 log n/⇢

K

steps.

5. Infeasible Problems
What happens when the points are not separable by any
function f 2 F

K

? We would like an algorithm that termi-
nates with a solution when there is one, and terminates with
a certificate of non-separability if there isn’t one. The idea
is based on theorems of the alternative like Farkas’ Lemma,
specifically a version of Gordan’s theorem (Chvatal, 1983):

Lemma 6 (Gordan’s Thm). Exactly one of the following
two statements can be true

1. Either there exists a w 2 Rd such that for all i,

y
i

(w>x
i

) > 0,

2. Or, there exists a p 2 �

n

such that

kXY pk
2

= 0, (13)

or equivalently
P

i

p
i

y
i

x
i

= 0.

As mentioned in the introduction, the primal problem can
be interpreted as finding a vector in the interior of the dual
cone of cone{y

i

x
i

}, which is infeasible the dual cone is
flat i.e. if cone{y

i

x
i

} is not pointed, which happens when
the origin is in the convex combination of y

i

x
i

s.

We will generalize the following algorithm for linear fea-
sibility problems, that can be dated back to Von-Neumann,
who mentioned it in a private communication with Dantzig,
who later studied it himself (Dantzig, 1992).

Algorithm 5 Normalized Von-Neumann (NVN)
Initialize p

0

= 1
n

/n,w
0

= XY p
0

for k = 0, 1, 2, 3, ... do
if kXY p

k

k
2

 ✏ then
Exit and return p

k

as an ✏-solution to (13)
else
j := argmin

i

y
i

x>
i

w
k

✓
k

:= argmin

�2[0,1]

k(1� �)w
k

+ �y
j

x
j

k
2

p
k+1

:= (1� ✓
k

)p
k

+ ✓
k

e
j

w
k+1

:= XY p
k+1

= (1� ✓
k

)w
k

+ ✓
k

y
j

x
j

end if
end for

This algorithm comes with a guarantee: If the problem (3)
is infeasible, then the above algorithm will terminate with
an ✏-approximate solution to (13) in 1/✏2 iterations.

(Epelman & Freund, 2000) proved an incomparable bound
- Normalized Von-Neumann (NVN) can compute an ✏-
solution to (13) in O

⇣

1

⇢

2
2
log

�

1

✏

�

⌘

and can also find a solu-

tion to the primal (using w
k

) in O
⇣

1

⇢

2
2

⌘

when it is feasible.

We derive a smoothed variant of NVN in the next section,
after we prove some crucial lemmas in RKHSs.

pµ(↵) := arg min

p2�n

n

h↵, piG + µd(p)
o

=

e�G↵/µ

ke�G↵/µk1
,

where d(p) :=

P

i pi log pi + log n

Lµ(↵) = sup

p2�n

⇢

� h↵, piG � µd(p)

�

+

1
2k↵k

2
G.

Lemma 4. (Lower Bound) At any step k, we have

Lµk(↵k) � L(↵k)� µk log n.

Lemma 5. (Upper Bound) In any round k, SNKP satisfies

Lµk(↵k)  �1

2

kpkk2G.

Theorem 1. The SNKP algorithm finds a perfect classifier

f 2 FK when one exists in O
⇣p

logn
⇢K

⌘
iterations.

Gordan’s	
 Theorem	

Exactly one of the following two statements can be true

1. Either there exists a w 2 Rd such that for all i,

yi(w
T
xi) > 0,

2. Or, there exists a p 2 �n such that

kXY pk2 = 0, or equivalently
P

i piyixi = 0.

Von-­‐Neumann-­‐Gilbert	
 Algorithm	

Margins, Kernels and Non-linear Smoothed Perceptron

Algorithm 4 Smoothed Normalized Kernel Perceptron
Set ↵

0

= 1
n

/n, µ
0

:= 2, p
0

:= p
µ0(↵0

)

for k = 0, 1, 2, 3, ... do
if G↵

k

> 0
n

then
Halt: ↵

k

is solution to Eq. (8)
else
✓
k

:=

2

k+3

↵
k+1

:= (1� ✓
k

)(↵
k

+ ✓
k

p
k

) + ✓2
k

p
µ

k

(↵
k

)

µ
k+1

= (1� ✓
k

)µ
k

p
k+1

:= (1� ✓
k

)p
k

+ ✓
k

p
µ

k+1(↵k+1

)

end if
end for

Lemma 4 (Lower Bound). At any step k, we have

L
µ

k

(↵
k

) � L(↵
k

)� µ
k

log n.

Proof. First note that sup
p2�

n

d(p) = log n. Also,

sup

p2�

n

�

� h↵, pi
G
� µd(p)

� sup

p2�

n

�

� h↵, pi
G

� sup

p2�

n

�

µd(p)

.

Combining these two facts gives us the result.

Lemma 5 (Upper Bound). In any round k, SNKP satisfies

L
µ

k

(↵
k

)  � 1

2

kp
k

k2
G

.

Proof. We provide a concise, self-contained and unified
proof by induction in the Appendix for Lemma 5 and
Lemma 8, borrowing ideas from Nesterov’s excessive gap
technique (Nesterov, 2005) for smooth minimization of
structured non-smooth functions.

Finally, we combine the above lemmas to get the following
theorem about the performance of SNKP.
Theorem 1. The SNKP algorithm finds a perfect classifier
f 2 F

K

when one exists in O
⇣p

logn

⇢

K

⌘

iterations.

Proof. Lemma 4 gives us for any round k,

L
µ

k

(↵
k

) � L(↵
k

)� µ
k

log n.

From Lemmas 3, 5 we get

L
µ

k

(↵
k

)  � 1

2

p>
k

Gp
k

 � 1

2

⇢2
K

.

Combining the two equations, we get that

L(↵
k

)  µ
k

log n� 1

2

⇢2
K

.

Noting that µ
k

=

4

(k+1)(k+2)

< 4

(k+1)

2 , we see that
L(↵

k

) < 0 (and hence we solve the problem by Lemma 1)
after at most k = 2

p
2 log n/⇢

K

steps.

5. Infeasible Problems
What happens when the points are not separable by any
function f 2 F

K

? We would like an algorithm that termi-
nates with a solution when there is one, and terminates with
a certificate of non-separability if there isn’t one. The idea
is based on theorems of the alternative like Farkas’ Lemma,
specifically a version of Gordan’s theorem (Chvatal, 1983):

Lemma 6 (Gordan’s Thm). Exactly one of the following
two statements can be true

1. Either there exists a w 2 Rd such that for all i,

y
i

(w>x
i

) > 0,

2. Or, there exists a p 2 �

n

such that

kXY pk
2

= 0, (13)

or equivalently
P

i

p
i

y
i

x
i

= 0.

As mentioned in the introduction, the primal problem can
be interpreted as finding a vector in the interior of the dual
cone of cone{y

i

x
i

}, which is infeasible the dual cone is
flat i.e. if cone{y

i

x
i

} is not pointed, which happens when
the origin is in the convex combination of y

i

x
i

s.

We will generalize the following algorithm for linear fea-
sibility problems, that can be dated back to Von-Neumann,
who mentioned it in a private communication with Dantzig,
who later studied it himself (Dantzig, 1992).

Algorithm 5 Normalized Von-Neumann (NVN)
Initialize p

0

= 1
n

/n,w
0

= XY p
0

for k = 0, 1, 2, 3, ... do
if kXY p

k

k
2

 ✏ then
Exit and return p

k

as an ✏-solution to (13)
else
j := argmin

i

y
i

x>
i

w
k

✓
k

:= argmin

�2[0,1]

k(1� �)w
k

+ �y
j

x
j

k
2

p
k+1

:= (1� ✓
k

)p
k

+ ✓
k

e
j

w
k+1

:= XY p
k+1

= (1� ✓
k

)w
k

+ ✓
k

y
j

x
j

end if
end for

This algorithm comes with a guarantee: If the problem (3)
is infeasible, then the above algorithm will terminate with
an ✏-approximate solution to (13) in 1/✏2 iterations.

(Epelman & Freund, 2000) proved an incomparable bound
- Normalized Von-Neumann (NVN) can compute an ✏-
solution to (13) in O

⇣

1

⇢

2
2
log

�

1

✏

�

⌘

and can also find a solu-

tion to the primal (using w
k

) in O
⇣

1

⇢

2
2

⌘

when it is feasible.

We derive a smoothed variant of NVN in the next section,
after we prove some crucial lemmas in RKHSs.

1. When (D) is feasible, Von-Neumann-Gibert

finds ✏-certificate in 1/✏2 steps.

2. Von-Neumann-Gilbert is a Frank-Wolfe method for:

minp2� kApk2

3. When (P) is feasible, Von-Neumann-Gilbert

finds satisfying w in 1/⇢+2
A steps.

4. When (D) is feasible, Von-Neumann-Gilbert

finds ✏-certificate in log(1/✏)/|⇢�A|2 steps.

Dantzig	
 (1992)	
 proved	
 (1),	
 Nesterov	
 verbally	
 menNoned	
 (2)	
 to	

Epelman	
 &	
 Freund	
 (1997)	
 who	
 proved	
 (3,4).	
 	

Von-­‐Neumann	
 described	
 this	
 algorithm	
 in	
 private	

communicaNon	
 with	
 Dantzig	
 in	
 1948,	
 who	
 then	
 analyzed	
 it	
 but	

only	
 published	
 his	
 proof	
 in	
 1992.	
 Independently,	
 Gilbert	

created	
 his	
 algorithm	
 in	
 1966.	

Gordan’s	
 Theorem	
 in	
 RKHSs	

Theorem 2 Exactly one of the following has a solution:

1. Either 9f 2 F
K

such that for all i,
yif(xi)p
K(xi,xi)

= hf, y
i

�̃
xiiK > 0 i.e. G↵ > 0,

2. Or 9p 2 �
n

such that
P

i

p
i

y
i

�̃
xi = 0 2 F

K

i.e. kpk
G

= 0.

Let us define the witness set as
W := {p 2 �

n

|
P

i

p
i

y
i

�̃
xi = 0} = {p 2 �

n

|kpk
G

= 0}

A	
 Hoffman-­‐bound	
 for	
 the	
 dual	

Lemma 7. For all q 2 �n, the distance to the witness set

dist(q,W) := min

w2W
kq � wk2  min

(

p
2,

p
2kqkG
|⇢K |

)

.

As a consequence, kpkG = 0 i↵ p 2 W .

Theorem 3. When the primal is infeasible, the margin is

|⇢K | = sup

n

�
�

� kfkK  � =) f 2 conv(Y ˜�X)

o

This quantity can be zero simply because an infinite

dimensional ball cannot fit inside a finite dimensional hull.

The right correction is to re-define the margin so that

the only allowed w, f is in the a�ne hull of the points.

Then, ↵ can be used in Theorem 3 (for the “a�ne-margin”,

which can be non-zero even when the margin is zero).

Smoothed	
 NKP-­‐VN	

Margins, Kernels and Non-linear Smoothed Perceptron

6. Kernelized Primal-Dual Algorithms
The preceding theorems allow us to write a variant of the
Normalized VonNeumann algorithm from the previous sec-
tion that is smoothed and works for RKHSs. Define

W :=

n

p 2 �

n

�

�

�

X

i

p
i

y
i

˜�
x

i

= 0

o

=

n

p 2 �

n

�

�

�

kpk
G

= 0

o

as the set of witnesses to the infeasibility of the primal.
The following lemma bounds the distance of any point in
the simplex from the witness set by its k.k

G

norm.

Lemma 7. For all q 2 �

n

, the distance to the witness set

dist(q,W) := min

w2W

kq � wk
2

 min

(

p
2,

p
2kqk

G

|⇢
K

|

)

.

As a consequence, kpk
G

= 0 iff p 2 W .

Proof. This is trivial for p 2 W . For arbitrary p 2 �

n

\W ,
let p̃ := � |⇢

K

|p
kpk

G

so that khY ˜�
X

, p̃ik
K

= kp̃k
G

 |⇢
K

|.

Hence by Theorem 3, there exists ↵ 2 �

n

such that

hY ˜�
X

,↵i = hY ˜�
X

, p̃i.

Let � = �↵+ (1� �)p where � =

kpk
G

kpk
G

+|⇢
K

| . Then

hY ˜�
X

,�i =

1

kpk
G

+ |⇢|
K

D

Y ˜�
X

, kpk
G

↵+ |⇢
K

|p
E

=

1

kpk
G

+ |⇢|
K

hY ˜�
X

, kpk
G

p̃+ |⇢
K

|pi

= 0,

so � 2 W (by definition of what it means to be in W) and

kp� �k
2

= �kp� ↵k
2

 �
p
2  min

(

p
2,

p
2kqk

G

|⇢
K

|

)

.

We take min with
p
2 because ⇢

K

might be 0.

Hence for the primal or dual problem, points with small G-
norm are revealing - either Lemma 3 shows that the margin
⇢
K

 kpk
G

will be small, or if it is infeasible then the
above lemma shows that it is close to the witness set.

We need a small alteration to the smoothing entropy prox-
function that we used earlier. We will now use

d
q

(p) = 1

2

kp� qk2
2

for some given q 2 �

n

, which is strongly convex with
respect to the `

2

norm. This allows us to define

pq
µ

(↵) = arg min

p2�

n

hG↵, pi+ µ

2

kp� qk2
2

,

Lq

µ

(↵) = sup

p2�

n

⇢

� h↵, pi
G

� µd
q

(p)

�

+

1

2

k↵k2
G

,

which can easily be found by sorting the entries of q� G↵

µ

.

Algorithm 6 Smoothed Normalized Kernel Perceptron-
VonNeumann (SNKPV N(q, �))
input q 2 �

n

, accuracy � > 0

Set ↵
0

= q, µ
0

:= 2n, p
0

:= pq
µ0
(↵

0

)

for k = 0, 1, 2, 3, ... do
if G↵

k

> 0
n

then
Halt: ↵

k

is solution to Eq. (8)
else if kp

k

k
G

< � then
Return p

k

else
✓
k

:=

2

k+3

↵
k+1

:= (1� ✓
k

)(↵
k

+ ✓
k

p
k

) + ✓2
k

pq
µ

k

(↵
k

)

µ
k+1

= (1� ✓
k

)µ
k

p
k+1

:= (1� ✓
k

)p
k

+ ✓
k

pq
µ

k+1
(↵

k+1

)

end if
end for

When the primal is feasible, SNKPVN is similar to SNKP.
Lemma 8 (When ⇢

K

> 0 and � < ⇢
K

). For any q 2 �

n

,

� 1

2

kp
k

k2
G

� Lq

µ

k

(↵
k

) � L(↵
k

)� µ
k

.

Hence SNKPVN finds a separator f in O
⇣p

n

⇢

K

⌘

iterations.

Proof. We give a unified proof for the first inequality and
Lemma 5 in the Appendix. The second inequality mimics
Lemma 4. The final statement mimics Theorem 1.

The following lemma captures the near-infeasible case.
Lemma 9 (When ⇢

K

< 0 or � > ⇢
K

). For any q 2 �

n

,

� 1

2

kp
k

k2
G

� Lq

µ

k

(↵
k

) � � 1

2

µ
k

dist(q,W)

2.

Hence SNKPVN finds a �-solution in at most
O
⇣

min

np
n

�

,
p
nkqk

G

�|⇢
K

|

o⌘

iterations.

Proof. The first inequality is the same as in the above
Lemma 8, and is proved in the Appendix.

Lq

µ

k

(↵
k

) = sup

p2�

n

⇢

� h↵, pi
G

� µ
k

d
q

(p)

�

+

1

2

k↵k2
G

� sup

p2W

⇢

� h↵, pi
G

� µ
k

d
q

(p)

�

= sup

p2W

⇢

� 1

2

µ
k

kp� qk2
2

�

= � 1

2

µ
k

dist(q,W)

2

� �µ
k

min

n

2,
kqk2

G

|⇢
K

|2

o

using Lemma 7.

Since µ
k

=

4n

(k+1)(k+2)

 4n

(k+1)

2 we get

kp
k

k
G

 2

p
n

(k + 1)

min

⇢p
2,

kqk
G

⇢
K

�

.

Hence kpk
G

 � after 2

p
n

�

min

np
2, kqk

G

⇢

K

o

steps.

dpq = 1
2kp� qk22

pqµ(↵) = arg min
p2�n

hG↵, pi+ µdpq ,

Lq
µ(↵) = sup

p2�n

⇢
� h↵, piG � µdq(p)

�
+ 1

2k↵k
2
G

Lemma 8. [When ⇢K > 0 and � < ⇢K] For any q 2 �n,

� 1
2kpkk

2
G � Lq

µk
(↵k) � L(↵k)� µk.

Hence SNKPVN finds a separator f in O
⇣p

n
⇢K

⌘

iterations.

Lemma 9. [When ⇢K < 0 or � > ⇢K] For any q 2 �n,

� 1
2kpkk

2
G � Lq

µk
(↵k) � � 1

2µkdist(q,W)2.

Hence SNKPVN finds a �-solution in at most O
⇣

min
np

n
� ,

p
nkqkG

�|⇢K |

o⌘

iterations.

Typically we would be happy - we have a primal-dual algorithm! However,
if we want the algorithm to have a linear convergence in �, then we need to
iterate it recursively as follows.

Iterated	
 Smoothed	
 NKP-­‐VN	

Margins, Kernels and Non-linear Smoothed Perceptron

Using SNKPVN as a subroutine gives our final algorithm.

Algorithm 7 Iterated Smoothed Normalized Kernel
Perceptron-VonNeumann (ISNKPV N(�, ✏))
input Constant � > 1, accuracy ✏ > 0

Set q
0

:= 1
n

/n
for t = 0, 1, 2, 3, ... do

�
t

:= kq
t

k
G

/�
q
t+1

:= SNKPV N(q
t

, �
t

)

if �
t

< ✏ then
Halt; q

t+1

is a solution to Eq. (14)
end if

end for

Theorem 4. Algorithm ISNKPVN satisfies

1. If the primal (2) is feasible and ✏ < ⇢
K

, then each call
to SNKPVN halts in at most 2

p
2n

⇢

K

iterations. Algo-

rithm ISNKPVN finds a solution in at most log(1/⇢

K

)

log(�)

outer loops, bounding the total iterations by

O

✓p
n

⇢
K

log

✓

1

⇢
K

◆◆

.

2. If the dual (14) is feasible or ✏ > ⇢
K

, then each call to
SNKPVN halts in at most O

⇣

min

np
n

✏

,
p
n

|⇢
K

|

o⌘

steps.
Algorithm ISNKPVN finds an ✏-solution in at most
log(1/✏)

log(�)

outer loops, bounding the total iterations by

O

✓

min

⇢p
n

✏
,

p
n

|⇢
K

|

�

log

✓

1

✏

◆◆

.

Proof. First note that if ISNKPVN has not halted, then we
know that after t outer iterations, q

t+1

has small G-norm:

kq
t+1

k
G

 �
t

 kq
0

k
G

�t+1

. (15)

The first inequality holds because of the inner loop return
condition, the second because of the update for �

t

.

1. Lemma 3 shows that for all p we have ⇢
K

 kpk
G

, so
the inner loop will halt with a solution to the primal
as soon as �

t

 ⇢
K

(so that kpk
G

< �
t

 ⇢
K

cannot
be satisfied for the inner loop to return). From Eq.
(15), this will definitely happen when kq0kG

�

t+1  ⇢
K

,

ie within T =

log(kq
o

k
G

/⇢

K

)

log(�)

iterations. By Lemma 8,

each iteration runs for at most 2

p
2n

⇢

K

steps.

2. We halt with an ✏-solution when �
t

< ✏, which
definitely happens when kq0kG

�

t+1 < ✏, ie within

T =

log(kq
o

k
G

/✏)

log(�)

iterations. Since kq
t

k
G

�

t

=

�, by Lemma 9, each iteration runs for at most
O
⇣

min

np
n

✏

,
p
n

|⇢
K

|

o⌘

steps.

7. Discussion
The SNK-Perceptron algorithm presented in this pa-
per has a convergence rate of

p
logn

⇢

K

and the It-
erated SNK-Perceptron-Von-Neumann algorithm has a
min

np
n

✏

,
p
n

|⇢
K

|

o

dependence on the number of points.
Note that both of these are independent of the underlying
dimensionality of the problem. We conjecture that it is pos-
sible to reduce this dependence to

p
log n for the primal-

dual algorithm also, without paying a price in terms of the
dependence on margin 1/⇢ (or the dependence on ✏).

It is possible that tighter dependence on n is possible if we
try other smoothing functions instead of the `

2

norm used
in the last section. Specifically, it might be tempting to
smooth with the k.k

G

semi-norm and define:

pq
µ

(↵) = arg min

p2�

n

h↵, pi
G

+

µ

2

kp� qk2
G

One can actually see that the proofs in the Appendix go
through with no dimension dependence on n at all! How-
ever, it is not possible to solve this in closed form - taking
↵ = q and µ = 1 reduces the problem to asking

pq(q) = arg min

p2�

n

1

2

kpk2
G

which is an oracle for our problem as seen by equation (14)
- the solution’s G-norm is 0 iff the problem is infeasible.

In the bigger picture, there are several interesting open
questions. The ellipsoid algorithm for solving linear fea-
sibility problems has a logarithmic dependence on 1/✏, and
a polynomial dependence on dimension. Recent algorithms
involving repeated rescaling of the space like (Dunagan &
Vempala, 2008) have logarithmic dependence on 1/⇢ and
polynomial in dimension. While both these algorithms are
poly-time under the real number model of computation of
(Blum et al., 1998), it is unknown whether there is any al-
gorithm that can achieve a polylogarithmic dependence on
the margin/accuracy, and a polylogarithmic dependence on
dimension. This is strongly related to the open question of
whether it is possible to learn a decision list polynomially
in its binary description length.

One can nevertheless ask whether rescaled smoothed per-
ceptron methods like (Dunagan & Vempala, 2008) can be
lifted to RKHSs, and whether using an iterated smoothed
kernel perceptron would yield faster rates. The recent work
(Soheili & Peña, 2013b) is a challenge to generalize - the
proofs relying on geometry involve arguing about volumes
of balls of functions in an RKHS - we conjecture that it is
possible to do, but we leave it for a later work.

Acknowledgements

We thank Negar Soheili, Avrim Blum for discussions and
the excellent reviewers for references and Footnote 1.

Algorithm ISNKPVN satisfies

1. If the primal is feasible and ✏ < ⇢K , then each call to SNKPVN halts in

at most

2

p
2n

⇢K
iterations. Algorithm ISNKPVN finds a solution in at most

log(1/⇢K)

log(�) outer loops, bounding the total iterations by

O

✓p
n

⇢K
log

✓

1

⇢K

◆◆

.

2. If the dual is feasible or ✏ > ⇢K , then each call to SNKPVN halts in at

most O
⇣

min

np
n
✏ ,

p
n

|⇢K |

o⌘

steps. Algorithm ISNKPVN finds an ✏-solution

in at most

log(1/✏)
log(�) outer loops, bounding the total iterations by

O

✓

min

⇢p
n

✏
,

p
n

|⇢K |

�

log

✓

1

✏

◆◆

.

It was unclear to us whether the

p
n can be made

p
log n while

1. The algorithm still visually looks like the perceptron.

2. The algorithm achieves linear convergence w.r.t ✏ (for the dual)

Builds	
 heavily	
 on	
 work	
 by	
 Negar	
 Soheili	
 +	
 Javier	
 Peña	
 ‘12,’13	

