Normalized Margins and Perceptron Algorithm

Non-linear Feasibility Problems

Given n points $x_1, \ldots, x_n \in \mathbb{R}^d$ and labels $y_1, \ldots, y_n \in \{-1, +1\}$

Goal: find unit vector $w \in \mathbb{R}^d$ s.t.

 $y_i(w^T x_i) \ge 0$ i.e. $\operatorname{sign}(w^T x_i) = y_i$

Nonlinear Goal: find unit norm function $f \in \mathcal{F}_K$ s.t.

 $y_i f(x_i) \ge 0$ i.e. $\operatorname{sign}(f(x_i)) = y_i$

Builds heavily on work by Negar Soheili + Javier Peña '12,'13

Unnormalized Margin

Nonlinear Goal: find unit norm function $f \in \mathcal{F}_K$ s.t.

 $y_i f(x_i) \ge 0$ i.e. $\operatorname{sign}(f(x_i)) = y_i$

This has unnormalized margin $\rho > 0$ if $\exists f$ s.t.

 $y_i f(x_i) \ge \rho$

or correspondingly in the linear case,

 $y_i w^T x_i \ge \rho$

Normalized > Unnormalized Margin

Denote $X_2 = [x_1/||x_1||_2, \dots, x_n/||x_n||].$ Define $\rho := \max_{\|w\|_2 = 1} \min_{p \in \Delta_n} \langle Y X^T w, p \rangle$ $\rho_2 := \max_{\|w\|_2 = 1} \min_{p \in \Delta_n} \langle Y X_2^T w, p \rangle$ where $Y = \operatorname{diag}(y), X = [x_1, \dots, x_n].$ Then $\frac{\rho}{\max_i \|x_i\|_2} \le \rho_2$ Simple example given in the paper.

Normalized Perceptron

Algorithm 2 Normalized Perceptron
Initialize $w_0 = 0, p_0 = 0$
for $k = 0, 1, 2, 3, \dots$ do
if $YX^{\top}w_k > 0$ then
Exit, with w_k as solution
else
$ heta_k := rac{1}{k+1}$
$w_{k+1} := (1 - \theta_k)w_k + \theta_k XYp(w_k)$
end if
end for
$p(w) = \arg\min_{p \in \Delta_n} \langle YX^T w, p \rangle$

where Δ_n is the *n*-dimensional probability simplex.

If $\rho_2 > 0$, then it finds a perfect separator in $\frac{1}{\rho_2^2}$ iterations.

Aaditya Ramdas and Javier Peña

Smoothed Normalized Kernel Perceptron (NKP)

Normalized (Kernel) Margin

Let $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a psd kernel, giving rise to RKHS \mathcal{F}_K .

At each $x \in \mathbb{R}^d$, let $\phi_x : \mathbb{R}^d \to \mathbb{R}$ be the associated feature map, where $\phi_x(y) = K(x, y)$ and inner product $\langle \phi_x, \phi_y \rangle_K = K(u, v)$.

Define the normalized feature map

$$\tilde{\phi}_x = \frac{\phi_x}{\sqrt{K(x,x)}} \in \mathcal{F}_K \text{ and } \tilde{\phi}_X = [\tilde{\phi}_{x_1}, \dots, \tilde{\phi}_{x_n}].$$

We use the notation

$$Y\tilde{f}(X) = \left[y_i \frac{f(x_i)}{\sqrt{K(x_i, x_i)}}\right]_{i=1}^n$$

Finally, the normalized margin is defined as

 $\rho_K := \sup_{\|f\|_K = 1} \inf_{p \in \Delta_n} \langle Y \tilde{f}(X), p \rangle.$

Normalized Kernel Perceptron

Algorithm 3 Normalized Kernel Perceptron (NKP) Set $\alpha_0 := 0$ for $k = 0, 1, 2, 3, \dots$ do if $G\alpha_k > \mathbf{0}_n$ then Exit, with α_k as solution else $\theta_k := \frac{1}{k+1}$ $\alpha_{k+1} := (1 - \theta_k)\alpha_k + \theta_k p(\alpha_k)$ end if end for $G_{ji} = G_{ij} := \frac{y_i y_j K(x_i, x_j)}{\sqrt{K(x_i, x_i) K(x_j, x_j)}} = \langle y_i \tilde{\phi}_{x_i}, y_j \tilde{\phi}_{x_j} \rangle_K$, and $p(\alpha) := \arg\min_{p \in \Delta_{\pi}} \langle \alpha, p \rangle_G, \langle p, \alpha \rangle_G := p^{\top} G \alpha, \|\alpha\|_G := \sqrt{\alpha^{\top} G \alpha}$ If $\rho_K > 0$, then it finds a perfect separator in $\frac{1}{\rho_K^2}$ iterations. NKP turns out to be a subgradient algorithm for minimizing $L(f) = \left\{ \sup_{p \in \Delta_{T}} \left\langle -Y\tilde{f}(X), p \right\rangle \right\} + \frac{1}{2} \|f\|_{K}^{2}.$ By Representer theorem, $f^* = \sum_i \alpha_i y_i \phi_{x_i}$, so we can consider $L(\alpha) := \left\{ \sup_{p \in \Lambda} \langle -\alpha, p \rangle_G \right\} + \frac{1}{2} \|\alpha\|_G^2$ **Lemma 1.** $L(\alpha) < 0$ implies $G\alpha > 0$ and there exists a perfect classifier iff $G\alpha > 0$. **Lemma 2.** For any $\alpha \in \mathbb{R}^n$, $\|\alpha\|_G \leq \|\alpha\|_1 \leq \sqrt{n} \|\alpha\|_2$. **Lemma 3.** When $\rho_K > 0$, f maximizes the margin iff $\rho_K f$ optimizes L(f). Hence, the margin is equivalently $\rho_K = \sup_{\|\alpha\|_G = 1} \inf_{p \in \Delta_n} \langle \alpha, p \rangle_G \le \|p\|_G \quad \text{for all } p \in \Delta_n.$ Smoothed NKP Algorithm 4 Smoothed Normalized Kernel Perceptron Set $\alpha_0 = \mathbf{1}_n / n$, $\mu_0 := 2$, $p_0 := p_{\mu_0}(\alpha_0)$ for $k = 0, 1, 2, 3, \dots$ do if $G\alpha_k > \mathbf{0}_n$ then Halt: α_k is solution to Eq. (8) $\theta_k := \frac{2}{k+3}$ $\alpha_{k+1} := (1 - \theta_k)(\alpha_k + \theta_k p_k) + \theta_k^2 p_{\mu_k}(\alpha_k)$ $\mu_{k+1} = (1 - \theta_k)\mu_k$ $p_{k+1} := (1 - \theta_k)p_k + \theta_k p_{\mu_{k+1}}(\alpha_{k+1})$ end if end for $p_{\mu}(\alpha) := \arg \min_{p \in \Delta_n} \left\{ \langle \alpha, p \rangle_G + \mu d(p) \right\} = \frac{e^{-G\alpha/\mu}}{\|e^{-G\alpha/\mu}\|_1},$ where $d(p) := \sum_{i} p_i \log p_i + \log n$ $L_{\mu}(\alpha) = \sup_{p \in \Lambda} \left\{ -\langle \alpha, p \rangle_{G} - \mu d(p) \right\} + \frac{1}{2} \|\alpha\|_{G}^{2}.$ **Lemma 4.** (Lower Bound) At any step k, we have $L_{\mu_k}(\alpha_k) \ge L(\alpha_k) - \mu_k \log n.$ **Lemma 5.** (Upper Bound) In any round k, SNKP satisfies $L_{\mu_k}(\alpha_k) \le -\frac{1}{2} \|p_k\|_G^2.$ **Theorem 1.** The SNKP algorithm finds a perfect classifier $f \in \mathcal{F}_K$ when one exists in $O\left(\frac{\sqrt{\log n}}{\rho_K}\right)$ iterations.

Von-Neumann (VN) and **Gordan's Theorem**

Gordan's Theorem Exactly one of the following two statements can be true 1. Either there exists a $w \in \mathbb{R}^d$ such that for all i, $y_i(w^T x_i) > 0,$ 2. Or, there exists a $p \in \Delta_n$ such that $||XYp||_2 = 0$, or equivalently $\sum_i p_i y_i x_i = 0$. Von-Neumann-Gilbert Algorithm Algorithm 5 Normalized Von-Neumann (NVN) Initialize $p_0 = \mathbf{1}_n / n, w_0 = XYp_0$ for $k = 0, 1, 2, 3, \dots$ do if $||XYp_k||_2 \leq \epsilon$ then Exit and return p_k as an ϵ -solution to (13) $j := \arg\min_i y_i x_i^\top w_k$ $\theta_k := \arg\min_{\lambda \in [0,1]} \| (1-\lambda)w_k + \lambda y_j x_j \|_2$ $p_{k+1} := (1 - \theta_k)p_k + \theta_k e_j$ $w_{k+1} := XYp_{k+1} = (1 - \theta_k)w_k + \theta_k y_j x_j$ end for

Von-Neumann described this algorithm in private communication with Dantzig in 1948, who then analyzed it but only published his proof in 1992. Independently, Gilbert created his algorithm in 1966.

- . When (D) is feasible, Von-Neumann-Gibert finds ϵ -certificate in $1/\epsilon^2$ steps.
- 2. Von-Neumann-Gilbert is a Frank-Wolfe method for: $\min_{p \in \Delta} \|Ap\|^2$
- 3. When (P) is feasible, Von-Neumann-Gilbert finds satisfying w in $1/\rho_A^{+2}$ steps.
- 4. When (D) is feasible, Von-Neumann-Gilbert finds ϵ -certificate in $\log(1/\epsilon)/|\rho_A^-|^2$ steps.

Dantzig (1992) proved (1), Nesterov verbally mentioned (2) to Epelman & Freund (1997) who proved (3,4).

Gordan's Theorem in RKHSs

Theorem 2 Exactly one of the following has a solution:

- 1. Either $\exists f \in \mathcal{F}_K$ such that for all i, $\frac{y_i f(x_i)}{\sqrt{K(x_i, x_i)}} = \langle f, y_i \tilde{\phi}_{x_i} \rangle_K > 0 \quad \text{i.e.} \quad G\alpha > 0,$
- 2. Or $\exists p \in \Delta_n$ such that $\sum_{i} p_i y_i \tilde{\phi}_{x_i} = 0 \in \mathcal{F}_K$ i.e. $\|p\|_G = 0$.
- Let us define the *witness set* as $W := \{ p \in \Delta_n | \sum_i p_i y_i \phi_{x_i} = 0 \} = \{ p \in \Delta_n | \| p \|_G = 0 \}$

A Hoffman-bound for the dual

Lemma 7. For all $q \in \Delta_n$, the distance to the witness set

$$\operatorname{list}(q, W) := \min_{w \in W} \|q - w\|_2 \le \min\left\{\sqrt{2}, \frac{\sqrt{2}\|q\|_G}{|\rho_K|}\right\}$$

As a consequence, $||p||_G = 0$ iff $p \in W$.

Theorem 3. When the primal is infeasible, the margin is

 $|\rho_K| = \sup \left\{ \delta \mid ||f||_K \le \delta \implies f \in \operatorname{conv}(Y\tilde{\phi}_X) \right\}$

This quantity can be zero simply because an infinite dimensional ball cannot fit inside a finite dimensional hull. The *right* correction is to re-define the margin so that the only allowed w, f is in the affine hull of the points. Then, α can be used in Theorem 3 (for the "affine-margin", which can be non-zero even when the margin is zero).

Typically we would be happy - we have a primal-dual algorithm! However, if we want the algorithm to have a *linear* convergence in δ , then we need to iterate it recursively as follows.

Algorithm 7 Iterated Smoothed Normalized Kernel Perceptron-VonNeumann $(ISNKPVN(\gamma, \epsilon))$ input Constant $\gamma > 1$, accuracy $\epsilon > 0$

Primal-dual Iterated Smoothed NKP-VN

Smoothed NKP-VN

Algorithm 6 Smoothed Normalized Kernel Perceptron-VonNeumann $(SNKPVN(q, \delta))$ input $q \in \Delta_n$, accuracy $\delta > 0$ Set $\alpha_0 = q$, $\mu_0 := 2n$, $p_0 := p_{\mu_0}^q(\alpha_0)$ for $k = 0, 1, 2, 3, \dots$ do if $G\alpha_k > \mathbf{0}_n$ then Halt: α_k is solution to Eq. (8) else if $||p_k||_G < \delta$ then Return *p*₁ $\theta_k := \frac{2}{k+3}$ $\alpha_{k+1} := (1 - \theta_k)(\alpha_k + \theta_k p_k) + \theta_k^2 p_{\mu_k}^q(\alpha_k)$ $\mu_{k+1} = (1 - \theta_k)\mu_k$ $p_{k+1} := (1 - \theta_k)p_k + \theta_k p_{\mu_{k+1}}^q(\alpha_{k+1})$ end if end for $d_q^p = \frac{1}{2} \|p - q\|_2^2$ $p^q_{\mu}(\alpha) = \arg\min_{p \in \Delta_n} \langle G\alpha, p \rangle + \mu d^p_q,$

 $L^{q}_{\mu}(\alpha) = \sup_{p \in \Delta} \left\{ -\langle \alpha, p \rangle_{G} - \mu d_{q}(p) \right\} + \frac{1}{2} \|\alpha\|^{2}_{G}$

Lemma 8. [When $\rho_K > 0$ and $\delta < \rho_K$] For any $q \in \Delta_n$,

$$-\frac{1}{2} \|p_k\|_G^2 \ge L^q_{\mu_k}(\alpha_k) \ge L(\alpha_k) - \mu_k.$$

Hence SNKPVN finds a separator f in $O\left(\frac{\sqrt{n}}{\rho_K}\right)$ iterations.

Lemma 9. [When $\rho_K < 0$ or $\delta > \rho_K$] For any $q \in \Delta_n$,

 $-\frac{1}{2} \|p_k\|_G^2 \geq L^q_{\mu_k}(\alpha_k) \geq -\frac{1}{2} \mu_k \operatorname{dist}(q, W)^2.$

Hence SNKPVN finds a δ -solution in at most $O\left(\min\left\{\frac{\sqrt{n}}{\delta}, \frac{\sqrt{n}\|q\|_G}{\delta|\rho_K|}\right\}\right)$ iterations.

Iterated Smoothed NKP-VN

Set $q_0 := 1_n / n$ for $t = 0, 1, 2, 3, \dots$ do $\delta_t := \|q_t\|_G / \gamma$ $q_{t+1} := SNKPVN(q_t, \delta_t)$ if $\delta_t < \epsilon$ then Halt; q_{t+1} is a solution to Eq. (14) end if end for

Algorithm ISNKPVN satisfies

1. If the primal is feasible and $\epsilon < \rho_K$, then each call to SNKPVN halts in at most $\frac{2\sqrt{2n}}{\alpha_{K}}$ iterations. Algorithm ISNKPVN finds a solution in at most $\frac{\log(1/\rho_K)}{\log(\gamma)}$ outer loops, bounding the total iterations by

$$O\left(\frac{\sqrt{n}}{\rho_K}\log\left(\frac{1}{\rho_K}\right)\right).$$

2. If the dual is feasible or $\epsilon > \rho_K$, then each call to SNKPVN halts in at most $O\left(\min\left\{\frac{\sqrt{n}}{\epsilon}, \frac{\sqrt{n}}{|\rho_K|}\right\}\right)$ steps. Algorithm ISNKPVN finds an ϵ -solution in at most $\frac{\log(1/\epsilon)}{\log(\gamma)}$ outer loops, bounding the total iterations by

$$O\left(\min\left\{\frac{\sqrt{n}}{\epsilon}, \frac{\sqrt{n}}{|\rho_K|}\right\}\log\left(\frac{1}{\epsilon}\right)\right)$$

- It was unclear to us whether the \sqrt{n} can be made $\sqrt{\log n}$ while
- 1. The algorithm still visually looks like the perceptron.
- 2. The algorithm achieves linear convergence w.r.t ϵ (for the dual)