Sequential Nonparametric Two-sample Testing by Betting

IISA Conference, 2022

Shubhanshu Shekhar

Aaditya Ramdas

Department of Statistics and Data Science Carnegie Mellon University

Sequential Two-Sample Testing

+ Given a stream of paired observations on $\mathcal{X}\times\mathcal{X}$

 $(X_1, Y_1), (X_2, Y_2), \ldots \sim P_X \times P_Y$ i.i.d.,

• decide between the hypotheses:

$$H_0: P_X = P_Y$$
 and $H_1: P_X \neq P_Y$.

For $\alpha \in (0, 1)$, construct a level- α sequential test of power one.

- Under H_0 : continue forever w.p. $\geq 1 \alpha$.
- Under *H*₁: stop sampling, and reject the null as soon as possible.

Batch Two-Sample Testing

- Here, we have batches of observations: (X_1, \ldots, X_n) and (Y_1, \ldots, Y_m) drawn i.i.d.from P_X and P_Y respectively.
- A popular class of batch tests based on statistical distances $d: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}.$
 - Define a test statistic $T_{n,m} = d(\widehat{P}_{X,n}, \widehat{P}_{Y,m}).$
 - Reject the null, if $T_{n,m}$ is large.
- + E.g., χ^2 -test, Kolmogorov-Smirnov (KS) test, kernel-MMD test.
- · Theoretical and empirical properties have been well studied.
- No such general framework for constructing sequential two-sample tests of power one.

Prior Sequential Nonparametric Tests of Power One

- Darling & Robbins (1968): based on time-uniform DKW inequalitites for univariate observations.
- Balsubramani & Ramdas (2016): based on a confidence sequence (CS) for linear-time kernel-MMD statistic
- Lheritier & Cazals (2017): based on sequential binary classifiers
- Howard & Ramdas (2021): based on CSs using forward supermartingales
- Manole & Ramdas (2021): based on CSs using reverse submartingales.

All existing methods either have strong theoretical guarantees or good empirical performance; but not both.

All existing methods either have strong theoretical guarantees or good empirical performance; but not both.

This Talk

- A fundamentally new framework for designing powerful sequential two-sample tests.
- We take the perspective of a fictitious bettor, repeatedly betting on the observations to disprove the null.
 - **Constraints:** The bets must be fair under *H*₀, and the bettor cannot borrow money.
- The gain in the bettor's wealth (i.e., W_t/W_0) is a measure of evidence collected against the null.

The Betting Game

Bettor begins with an initial wealth, $W_0 = 1$.

For t = 1, 2, ...:

- Bettor selects a function $g_t : \mathcal{X} \to [-1/2, 1/2]$.
 - defines a fair payoff function under H_0 , $h_t(x,y) = g_t(x) - g_t(y)$.
- Bettor chooses a fraction, $\lambda_t \in [0, 1]$, of his current wealth, W_{t-1} , to gamble.
- The next paired observation, (X_t, Y_t) , is revealed.
- Bettor's wealth is updated as follows:

$$W_t = W_{t-1} \times (1 - \lambda_t) + W_{t-1}\lambda_t (1 + h_t(X_t, Y_t))$$
$$= W_0 \times \prod_{i=1}^t \left(1 + \lambda_i (g_i(X_i) - g_i(Y_i)) \right)$$

From Betting to Sequential Testing

Under H_0 , we have $\mathbb{E}[g_t(X_t) - g_t(Y_t)|\mathcal{F}_{t-1}] = 0$. Hence, $\{W_t : t \ge 0\}$ is a test martingale — a non-negative martingale with an initial value 1.

From Betting to Sequential Testing

Under H_0 , we have $\mathbb{E}[g_t(X_t) - g_t(Y_t)|\mathcal{F}_{t-1}] = 0$. Hence, $\{W_t : t \ge 0\}$ is a test martingale — a non-negative martingale with an initial value 1.

Ville's Inequality (1939)

For any test martingale $\{W_t : t \ge 0\}$ and an $\alpha \in (0, 1]$, we have

$$\mathbb{P}\left(\exists t \geq 0 : W_t \geq \frac{1}{\alpha}\right) \leq \alpha.$$

JEAN VILLE Étude critique de la notion de collectif

Thèses de l'entre-deux-guerres, 1939

From Betting to Sequential Testing

Under H_0 , we have $\mathbb{E}[g_t(X_t) - g_t(Y_t)|\mathcal{F}_{t-1}] = 0$. Hence, $\{W_t : t \ge 0\}$ is a test martingale — a non-negative martingale with an initial value 1.

Ville's Inequality (1939)

For any test martingale $\{W_t : t \ge 0\}$ and an $\alpha \in (0, 1]$, we have

$$\mathbb{P}\left(\exists t \geq 0 : W_t \geq \frac{1}{\alpha}\right) \leq \alpha.$$

• Define the test (i.e., a stopping time):

$$\tau \coloneqq \min\{t \ge 1 : W_t \ge 1/\alpha\}.$$

• For arbitrary (predictable) sequences $\{(g_t, \lambda_t) : t \ge 1\}$, Ville's inequality implies

$$\mathbb{P}(\tau < \infty) \le \alpha$$
, under H_0 .

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ

· Consistency.

 $\mathbb{P}\left(\exists n \geq 1 : W_n \geq 1/\alpha\right) = 1 \quad \Rightarrow \quad \mathbb{P}(\tau < \infty) = 1.$

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ

 \cdot Consistency.

$$\mathbb{P}\left(\exists n \geq 1 : W_n \geq 1/\alpha\right) = 1 \quad \Rightarrow \quad \mathbb{P}(\tau < \infty) = 1.$$

· Exponential consistency.

$$\liminf_{n\to\infty}\frac{-1}{n}\log\left(\mathbb{P}(W_n<1/\alpha)\right)>0\quad\Rightarrow\quad\liminf_{n\to\infty}\frac{-1}{n}\log\left(\mathbb{P}(\tau>n)\right)>0.$$

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ

• Consistency.

$$\mathbb{P}\left(\exists n \geq 1 : W_n \geq 1/\alpha\right) = 1 \quad \Rightarrow \quad \mathbb{P}(\tau < \infty) = 1.$$

· Exponential consistency.

$$\liminf_{n\to\infty}\frac{-1}{n}\log\left(\mathbb{P}(W_n<1/\alpha)\right)>0\quad\Rightarrow\quad\liminf_{n\to\infty}\frac{-1}{n}\log\left(\mathbb{P}(\tau>n)\right)>0.$$

· Finite Expected Stopping Time.

$$\sum_{n\geq 0} \mathbb{P}\left(W_n < \frac{1}{\alpha}\right) < \infty \quad \Rightarrow \quad \mathbb{E}[\tau] = \sum_{n=0}^{\infty} \mathbb{P}\left(\tau > n\right) < \infty.$$

Summary so far

- We defined a sequential test: $\tau = \min\{t \ge 1 : W_t \ge 1/\alpha\}.$
- { $W_t : t \ge 1$ } is the wealth of a fictitious bettor, betting on the observations in a repeated game with $W_0 = 1$.
- Under H_0 , for arbitrary predictable $\{(g_t, \lambda_t) : t \ge 1\}$, we have $\mathbb{P}(\tau < \infty) \le \alpha$.
- **Under** H_1 , statistical properties of τ depend on how quickly W_t grows to infinity.
 - this depends strongly on the choice of $\{(\lambda_t, g_t) : t \ge 1\}$.
- Rest of the talk: A principled approach for selecting $\{(\lambda_t, g_t) : t \ge 1\}.$

- \cdot Step 1: Select an appropriate function class ${\cal G}$
 - Or equivalently, an Integral Probability Metric (IPM)
- Step 2: Design an "Oracle Test"
 - Uses terms, g^* and λ^* , depending on the unknown P_X and P_Y
- **Step 3:** Design a practical sequential test
 - Uses a sequence of predictable estimates of g^* and λ^*

- For simplicity, we assume that $\mathcal G$ consists of functions taking values in [-1/2, 1/2].
- Can define

$$d_{\mathcal{G}}(P_{X}, P_{Y}) = \max_{g \in \mathcal{G}} \mathbb{E}_{P_{X}}[g(X)] - \mathbb{E}_{P_{Y}}[g(Y)],$$
(1)

which is a metric if \mathcal{G} is rich enough.

- For simplicity, we assume that \mathcal{G} consists of functions taking values in [-1/2, 1/2].
- Can define

$$d_{\mathcal{G}}(P_X, P_Y) = \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)], \tag{1}$$

which is a metric if \mathcal{G} is rich enough.

• Witness function

$$g^* \in \underset{g \in \mathcal{G}}{\arg \max} \ \mathbb{E}_{P_{X}}[g(X)] - \mathbb{E}_{P_{Y}}[g(Y)].$$
(2)

- For simplicity, we assume that \mathcal{G} consists of functions taking values in [-1/2, 1/2].
- Can define

$$d_{\mathcal{G}}(P_X, P_Y) = \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)], \tag{1}$$

which is a metric if \mathcal{G} is rich enough.

Witness function

$$g^* \in \underset{g \in \mathcal{G}}{\arg \max} \mathbb{E}_{P_{X}}[g(X)] - \mathbb{E}_{P_{Y}}[g(Y)].$$
(2)

• g^* provides the maximum contrast between P_X and P_Y

- For simplicity, we assume that \mathcal{G} consists of functions taking values in [-1/2, 1/2].
- Can define

$$d_{\mathcal{G}}(P_X, P_Y) = \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)], \tag{1}$$

which is a metric if \mathcal{G} is rich enough.

Witness function

$$g^* \in \underset{g \in \mathcal{G}}{\arg \max} \mathbb{E}_{P_{X}}[g(X)] - \mathbb{E}_{P_{Y}}[g(Y)].$$
(2)

- $\cdot g^*$ provides the maximum contrast between P_X and P_Y
- If $P_X = P_Y$, then g^* is an arbitrary element of \mathcal{G}

$$W_t^* = W_{t-1}^* \times (1 + \lambda^* (g^*(X_t) - g^*(Y_t))),$$

$$W_t^* = W_{t-1}^* \times (1 + \lambda^* (g^*(X_t) - g^*(Y_t))),$$

• where λ^* is the **log-optimal betting fraction**:

$$\lambda^* \in \underset{\lambda \in (-1,1)}{\operatorname{arg max}} \mathbb{E}\left[\log(1 + \lambda(g^*(X) - g^*(Y)))\right].$$

A New Interpretation of Information Rate $_{reproduced \ with \ permission \ of \ AT\&T}$

By J. L. Kelly, jr.

(Manuscript received March 21, 1956)

$$W_t^* = W_{t-1}^* \times (1 + \lambda^* (g^*(X_t) - g^*(Y_t))),$$

• where λ^* is the **log-optimal betting fraction**:

$$\lambda^* \in \underset{\lambda \in (-1,1)}{\operatorname{arg\,max}} \mathbb{E}\left[\log(1 + \lambda(g^*(X) - g^*(Y)))\right].$$

• Define the 'oracle test': $\tau^* = \min \{t \ge 1 : W_t^* \ge \frac{1}{\alpha}\}.$

$$W_t^* = W_{t-1}^* \times (1 + \lambda^* (g^*(X_t) - g^*(Y_t))),$$

• where λ^* is the **log-optimal betting fraction**:

$$\lambda^* \in \underset{\lambda \in (-1,1)}{\arg \max} \mathbb{E}\left[\log(1 + \lambda(g^*(X) - g^*(Y)))\right].$$

- Define the 'oracle test': $\tau^* = \min \{t \ge 1 : W_t^* \ge \frac{1}{\alpha}\}.$
- The test τ^* is exponentially consistent, and has a finite expected stopping time.

Step 3 – Practical Test

- $\cdot g^*$ and λ^* in τ^* are not known \Rightarrow Use data-driven estimates.
- A prediction strategy (A_P) to select $\{g_t : t \ge 1\} \approx g^*$.
 - Specific choice of \mathcal{A}_{P} will depend on \mathcal{G} .
- A betting strategy (\mathcal{A}_B) to select $\{\lambda_t : t \ge 1\} \approx \lambda^*$.
 - Existing methods, such as Online Newton Step (ONS), are sufficient for our purposes.
- Construct the wealth process

$$W_t = W_{t-1} \times \left(1 + \lambda_t (g_t(X_t) - g_t(Y_t))\right).$$

• Define the level- α test: $\tau = \min \{ t \ge 1 : W_t \ge \frac{1}{\alpha} \}$

Summary: Steps of our sequential test

Initialization:

- \cdot A function class ${\cal G}$
- a prediction strategy (A_P) to select $\{g_t : t \ge 1\}$
- ONS betting strategy (\mathcal{A}_B) to select $\{\lambda_t : t \geq 1\}$
- $W_0 = 1$

For t = 1, 2, ...:

- Get the next g_t from the prediction strategy, \mathcal{A}_{P} .
- Get the next λ_t from the betting strategy, $\mathcal{A}_{\scriptscriptstyle B}$.
- Observe the next pair (X_t, Y_t) .
- Update $W_t = W_{t-1} \times (1 + \lambda_t (g_t(X_t) g_t(Y_t))).$
- Reject H_0 , if $W_t \ge 1/\alpha$.

Performance Guarantees

Smaller Regret of $\mathcal{A}_P \Rightarrow$ Faster growth of $W_t \Rightarrow$ Stronger properties of the test τ .

Performance Guarantees

Regret of \mathcal{A}_P

$$\mathcal{R}_n(\mathcal{A}_P) = \sup_{g \in \mathcal{G}} \left[\left(\sum_{t=1}^n g(X_t) - g(Y_t) \right) - \left(\sum_{t=1}^n g_t(X_t) - g_t(Y_t) \right) \right].$$

Performance Guarantees

Regret of \mathcal{A}_{P}

$$\mathcal{R}_n(\mathcal{A}_P) = \sup_{g \in \mathcal{G}} \left[\left(\sum_{t=1}^n g(X_t) - g(Y_t) \right) - \left(\sum_{t=1}^n g_t(X_t) - g_t(Y_t) \right) \right].$$

Regret-Power Connections under **H**₁ (Informal)

- If $\lim_{n\to\infty} \mathcal{R}_n/n$ is smaller than $d_{\mathcal{G}}(P_X, P_Y)$ w.p. 1, the test τ is consistent.
- If $\mathcal{R}_n/n \to 0$ with sufficiently large probability, then $\mathbb{E}[\tau]$ is finite.
- If the $\mathcal{R}_n/n \to 0$ w.p. 1, then the test τ is exponentially consistent.

Application 1: Sequential KS Test

•
$$\mathcal{X} = \mathbb{R}$$
, and $\mathcal{G} = \{\mathbf{1}_{(-\infty,u]} - 0.5 : u \in \mathbb{R}\}.$

• Plug-in prediction strategy ($A_{plug-in}$): $g_t = \mathbf{1}_{(-\infty,u_t]} - 0.5$, where

$$u_t \in \underset{u \in \mathbb{R}}{\operatorname{arg\,max}} \ \widehat{F}_{X,t-1}(u) - \widehat{F}_{Y,t-1}(u).$$

- For any $n \ge 1$, $\mathcal{R}_n(\mathcal{A}_{plug-in})/n = O(1/\sqrt{n})$, w.p. $1 1/n^2$.
- Hence, the resulting test is consistent, and satisfies $\mathbb{E}[\tau] = \mathcal{O}\left(1/d_{\text{KS}}^2(P_X, P_Y)\right)$ under H_1 .
- There exist distributions on which any test, τ' , must have $\mathbb{E}[\tau'] = \Omega\left(1/d_{KS}^2(P_X, P_Y)\right).$

Application 2: Sequential Kernel MMD Test

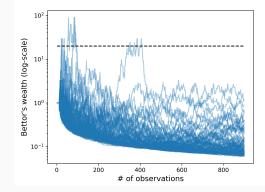
- General \mathcal{X} , and $\mathcal{G} = \{g \in \mathsf{RKHS}(k) : ||g||_k \le 1\}.$
- + Projected Gradient Ascent prediction strategy ($\mathcal{A}_{\text{PGA}})$
- \mathcal{A}_{PGA} satisfies $\mathcal{R}_n(\mathcal{A}_{PGA})/n = \mathcal{O}(1/\sqrt{n})$, w.p. 1.
- Hence, the resulting test is exponentially consistent, and satisfies $\mathbb{E}[\tau] = \mathcal{O}\left(1/d_{\text{MMD}}^2(P_X, P_Y)\right)$ under H_1 .
- There exist distributions on which any test, τ' , satisfies $\mathbb{E}[\tau'] = \Omega \left(1/d_{\text{MMD}}^2(P_X, P_Y) \right)$, under H_1 .

An Example

Under H_0 , the wealth process of the bettor rarely exceeds the level $1/\alpha$.

$$P_X = N(0, 1)$$

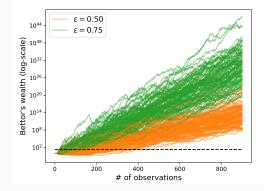
 $P_Y = N(0, 1)$



An Example

Under H_1 , the wealth process with the plug-in prediction strategy, grows at an exponential rate.

$$P_X = N(0, 1)$$
$$P_Y = N(\varepsilon, 1)$$



Extension to time-varying distributions

Our ideas easily extend to the following case:

For t = 1, 2, ...:

- Bettor selects g_t and λ_t .
- Adversary selects distributions $P_{X,t}$ and $P_{Y,t}$.
- The pair, $(X_t, Y_t) \sim P_{X,t} \times P_{Y,t}$ is revealed.
- Update the wealth: $W_t = W_{t-1} \times (1 + \lambda_t (g_t(X_t) g_t(Y_t))).$
- Reject the null if $W_t \ge 1/\alpha$.

Under some mild assumptions on \mathcal{G} , the test defined above is consistent.

- Relaxing the assumption of paired observations.
- $\cdot\,$ Relaxing the boundedness assumption on the functions in $\mathcal{G}.$
- A general problem unifying several tasks such as two-sample testing, independence testing, and symmetry testing.

Thank you.

•
$$\limsup_{n\to\infty} \frac{\mathcal{R}_n}{n} < d_{\mathcal{G}}(P_X, P_Y) \text{ a.s. } \Rightarrow \mathbb{P}_{P_{XY}}(\tau < \infty) = 1.$$

• For a sequence $r_n \rightarrow 0$, define $E_n = \{\mathcal{R}_n / n \leq r_n\}$. Then,

$$\sum_{n\geq 1}\mathbb{P}_{P_{XY}}(E_n^c)<\infty \ \Rightarrow \ \mathbb{E}_{P_{XY}}[\tau]<\infty.$$

• If $\mathbb{P}_{P_{XY}}(E_n^c) = 0$ for some $r_n \to 0$, then we have

$$\liminf_{n\to\infty}\frac{-1}{2n}\mathbb{P}_{P_{XY}}(\tau>n)=\beta^*.$$
 (optimal exponent)

Testing invariance to an operator

- Given a stream of observations: U_1, U_2, \ldots on \mathcal{U} , drawn i.i.d.from P_{U} .
- Let $T: \mathcal{U} \to \mathcal{U}$ be a known operator.
- Consider the problem:

 $H_0: P_U = P_U \circ T^{-1}$, versus $H_1: P_U \neq P_U \circ T^{-1}$.

- This formulation unifies several problems such as two-sample testing, independence testing, and symmetry testing.
- For two-sample testing:

$$\mathcal{U} = \mathcal{X} \times \mathcal{X}, \quad \mathcal{U} = (X, Y), \quad P_U = P_X \times P_Y$$

 $T : \mathcal{X} \times \mathcal{X} \to \mathcal{X} \times \mathcal{X}, \quad \text{such that} \quad T(x, y) = (y, x).$