Sequential Nonparametric Two-sample Testing by Betting

IISA Conference, 2022

Shubhanshu Shekhar
Aaditya Ramdas

Department of Statistics and Data Science
Carnegie Mellon University
Sequential Two-Sample Testing

- Given a stream of paired observations on $\mathcal{X} \times \mathcal{X}$

\[(X_1, Y_1), (X_2, Y_2), \ldots \sim P_X \times P_Y \text{ i.i.d.},\]

- decide between the hypotheses:

\[H_0 : P_X = P_Y \quad \text{and} \quad H_1 : P_X \neq P_Y.\]

Goal

For $\alpha \in (0, 1)$, construct a level-α sequential test of power one.

- Under H_0: continue forever w.p. $\geq 1 - \alpha$.
- Under H_1: stop sampling, and reject the null as soon as possible.
Here, we have batches of observations: \((X_1, \ldots, X_n)\) and \((Y_1, \ldots, Y_m)\) drawn i.i.d. from \(P_X\) and \(P_Y\) respectively.

A popular class of batch tests based on statistical distances \(d : \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}\).

- Define a test statistic \(T_{n,m} = d(\hat{P}_{X,n}, \hat{P}_{Y,m}).\)
- Reject the null, if \(T_{n,m}\) is large.

E.g., \(\chi^2\)-test, Kolmogorov-Smirnov (KS) test, kernel-MMD test.

Theoretical and empirical properties have been well studied.

No such general framework for constructing sequential two-sample tests of power one.
Prior Sequential Nonparametric Tests of Power One

- Darling & Robbins (1968): based on time-uniform DKW inequalities for univariate observations.
- Balsubramani & Ramdas (2016): based on a confidence sequence (CS) for linear-time kernel-MMD statistic
- Lheritier & Cazals (2017): based on sequential binary classifiers
- Howard & Ramdas (2021): based on CSs using forward supermartingales
- Manole & Ramdas (2021): based on CSs using reverse submartingales.
All existing methods either have strong theoretical guarantees or good empirical performance; but not both.
All existing methods either have strong theoretical guarantees or good empirical performance; but not both.

This Talk

- A fundamentally new framework for designing powerful sequential two-sample tests.
- We take the perspective of a fictitious bettor, repeatedly betting on the observations to disprove the null.
 - **Constraints:** The bets must be fair under \(H_0 \), and the bettor cannot borrow money.
- The gain in the bettor’s wealth (i.e., \(W_t/W_0 \)) is a measure of evidence collected against the null.
Bettor begins with an initial wealth, $W_0 = 1$.

For $t = 1, 2, \ldots$:

- Bettor selects a function $g_t : \mathcal{X} \rightarrow [-1/2, 1/2]$.
 - defines a fair payoff function under H_0, $h_t(x, y) = g_t(x) - g_t(y)$.
- Bettor chooses a fraction, $\lambda_t \in [0, 1]$, of his current wealth, W_{t-1}, to gamble.
- The next paired observation, (X_t, Y_t), is revealed.
- Bettor’s wealth is updated as follows:

\[
W_t = W_{t-1} \times (1 - \lambda_t) + W_{t-1}\lambda_t(1 + h_t(X_t, Y_t))
\]

\[
= W_0 \times \prod_{i=1}^{t} \left(1 + \lambda_i (g_i(X_i) - g_i(Y_i)) \right)
\]
Under H_0, we have $\mathbb{E}[g_t(X_t) - g_t(Y_t)|\mathcal{F}_{t-1}] = 0$. Hence, $\{W_t : t \geq 0\}$ is a test martingale — a non-negative martingale with an initial value 1.
Under H_0, we have $\mathbb{E}[g_t(X_t) - g_t(Y_t)|\mathcal{F}_{t-1}] = 0$. Hence, $\{W_t : t \geq 0\}$ is a test martingale — a non-negative martingale with an initial value 1.

Ville’s Inequality (1939)

For any test martingale $\{W_t : t \geq 0\}$ and an $\alpha \in (0, 1]$, we have

$$\mathbb{P} \left(\exists t \geq 0 : W_t \geq \frac{1}{\alpha} \right) \leq \alpha.$$
Under H_0, we have $\mathbb{E}[g_t(X_t) - g_t(Y_t) | \mathcal{F}_{t-1}] = 0$. Hence, $\{W_t : t \geq 0\}$ is a test martingale — a non-negative martingale with an initial value 1.

Ville’s Inequality (1939)

For any test martingale $\{W_t : t \geq 0\}$ and an $\alpha \in (0, 1]$, we have

$$\mathbb{P} \left(\exists t \geq 0 : W_t \geq \frac{1}{\alpha} \right) \leq \alpha.$$

• Define the test (i.e., a stopping time):

$$\tau := \min \{ t \geq 1 : W_t \geq 1/\alpha \}.$$

• For arbitrary (predictable) sequences $\{(g_t, \lambda_t) : t \geq 1\}$, Ville’s inequality implies

$$\mathbb{P} (\tau < \infty) \leq \alpha, \quad \text{under } H_0.$$
Performance of the test under H_1

Under H_1, we require $\{W_t : t \geq 0\}$ to grow rapidly to infinity.
Performance of the test under H_1

Under H_1, we require $\{W_t : t \geq 0\}$ to grow rapidly to infinity.

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ
Performance of the test under H_1

Under H_1, we require $\{W_t : t \geq 0\}$ to grow rapidly to infinity.

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ

- Consistency.

$$\mathbb{P}(\exists n \geq 1 : W_n \geq 1/\alpha) = 1 \ \Rightarrow \ \mathbb{P}(\tau < \infty) = 1.$$
Under H_1, we require $\{W_t : t \geq 0\}$ to grow rapidly to infinity.

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ

- **Consistency.**

 $$\mathbb{P}(\exists n \geq 1 : W_n \geq 1/\alpha) = 1 \quad \Rightarrow \quad \mathbb{P}(\tau < \infty) = 1.$$

- **Exponential consistency.**

 $$\liminf_{n \to \infty} -\frac{1}{n} \log (\mathbb{P}(W_n < 1/\alpha)) > 0 \quad \Rightarrow \quad \liminf_{n \to \infty} -\frac{1}{n} \log (\mathbb{P}(\tau > n)) > 0.$$
Performance of the test under H_1

Under H_1, we require $\{W_t : t \geq 0\}$ to grow rapidly to infinity.

Faster growth of $W_t \Rightarrow$ Stronger statistical properties of τ

- Consistency.

 $$\mathbb{P}(\exists n \geq 1 : W_n \geq 1/\alpha) = 1 \Rightarrow \mathbb{P}(\tau < \infty) = 1.$$

- Exponential consistency.

 $$\liminf_{n \to \infty} \frac{-1}{n} \log \left(\mathbb{P}(W_n < 1/\alpha) \right) > 0 \Rightarrow \liminf_{n \to \infty} \frac{-1}{n} \log \left(\mathbb{P}(\tau > n) \right) > 0.$$

- Finite Expected Stopping Time.

 $$\sum_{n \geq 0} \mathbb{P} \left(W_n < \frac{1}{\alpha} \right) < \infty \Rightarrow \mathbb{E}[\tau] = \sum_{n=0}^{\infty} \mathbb{P}(\tau > n) < \infty.$$
• We defined a sequential test: \(\tau = \min\{t \geq 1 : W_t \geq 1/\alpha\} \).

• \(\{W_t : t \geq 1\} \) is the wealth of a fictitious bettor, betting on the observations in a repeated game with \(W_0 = 1 \).

• Under \(H_0 \), for arbitrary predictable \(\{(g_t, \lambda_t) : t \geq 1\} \), we have \(\mathbb{P}(\tau < \infty) \leq \alpha \).

• Under \(H_1 \), statistical properties of \(\tau \) depend on how quickly \(W_t \) grows to infinity.
 • this depends strongly on the choice of \(\{(\lambda_t, g_t) : t \geq 1\} \).

• Rest of the talk: A principled approach for selecting \(\{(\lambda_t, g_t) : t \geq 1\} \).
Overview of our approach

- **Step 1:** Select an appropriate function class \mathcal{G}
 - Or equivalently, an Integral Probability Metric (IPM)

- **Step 2:** Design an “Oracle Test”
 - Uses terms, g^* and λ^*, depending on the unknown P_X and P_Y

- **Step 3:** Design a practical sequential test
 - Uses a sequence of predictable estimates of g^* and λ^*
Step 1 – Select a function class \mathcal{G}

- For simplicity, we assume that \mathcal{G} consists of functions taking values in $[-1/2, 1/2]$.
- Can define

$$d_\mathcal{G}(P_X, P_Y) = \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)],$$

which is a metric if \mathcal{G} is rich enough.
Step 1 – Select a function class \mathcal{G}

• For simplicity, we assume that \mathcal{G} consists of functions taking values in $[-1/2, 1/2]$.

• Can define

$$d_\mathcal{G}(P_X, P_Y) = \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)],$$

which is a metric if \mathcal{G} is rich enough.

• Witness function

$$g^* \in \arg \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)].$$
Step 1 – Select a function class \(\mathcal{G} \)

- For simplicity, we assume that \(\mathcal{G} \) consists of functions taking values in \([-1/2, 1/2]\).
- Can define
 \[
d_{\mathcal{G}}(P_X, P_Y) = \max_{g \in \mathcal{G}} E_{P_X}[g(X)] - E_{P_Y}[g(Y)],
 \]
 which is a metric if \(\mathcal{G} \) is rich enough.
- **Witness function**
 \[
g^* \in \arg \max_{g \in \mathcal{G}} E_{P_X}[g(X)] - E_{P_Y}[g(Y)].
 \]
- \(g^* \) provides the maximum contrast between \(P_X \) and \(P_Y \)
Step 1 – Select a function class \mathcal{G}

- For simplicity, we assume that \mathcal{G} consists of functions taking values in $[-1/2, 1/2]$.
- Can define

$$d_{\mathcal{G}}(P_X, P_Y) = \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)],$$

which is a metric if \mathcal{G} is rich enough.

- Witness function

$$g^* \in \arg \max_{g \in \mathcal{G}} \mathbb{E}_{P_X}[g(X)] - \mathbb{E}_{P_Y}[g(Y)].$$

- g^* provides the maximum contrast between P_X and P_Y
- If $P_X = P_Y$, then g^* is an arbitrary element of \mathcal{G}
Step 2 – Oracle Test

- Construct the ‘oracle’ process \(\{W_t^* : t \geq 0\} \), with \(W_0^* = 1 \), and

\[
W_t^* = W_{t-1}^* \times \left(1 + \lambda^*(g^*(X_t) - g^*(Y_t))\right),
\]

- Define the ‘oracle test’:

\[
\tau^* = \min_{t \geq 1} W_t^* \geq 1 - \alpha.
\]

The test \(\tau^* \) is exponentially consistent, and has a finite expected stopping time.
Step 2 – Oracle Test

• Construct the ‘oracle’ process \(\{W^*_t : t \geq 0\} \), with \(W^*_0 = 1 \), and

\[
W^*_t = W^*_{t-1} \times \left(1 + \lambda^* \left(g^*(X_t) - g^*(Y_t) \right) \right),
\]

• where \(\lambda^* \) is the log-optimal betting fraction:

\[
\lambda^* \in \arg \max_{\lambda \in (-1,1)} E \left[\log(1 + \lambda (g^*(X) - g^*(Y))) \right].
\]
Step 2 – Oracle Test

• Construct the ‘oracle’ process \(\{ W^*_t : t \geq 0 \} \), with \(W^*_0 = 1 \), and

\[
W^*_t = W^*_{t-1} \times (1 + \lambda^* (g^*(X_t) - g^*(Y_t))) ,
\]

• where \(\lambda^* \) is the log-optimal betting fraction:

\[
\lambda^* \in \arg \max_{\lambda \in (-1,1)} \mathbb{E} \left[\log(1 + \lambda (g^*(X) - g^*(Y))) \right] .
\]

• Define the ‘oracle test’: \(\tau^* = \min \{ t \geq 1 : W^*_t \geq \frac{1}{\alpha} \} \).
Step 2 – Oracle Test

• Construct the ‘oracle’ process \(\{W_t^* : t \geq 0\} \), with \(W_0^* = 1 \), and

\[
W_t^* = W_{t-1}^* \times (1 + \lambda^* (g^*(X_t) - g^*(Y_t)))
\]

• where \(\lambda^* \) is the log-optimal betting fraction:

\[
\lambda^* \in \arg \max_{\lambda \in (-1,1)} \mathbb{E} [\log(1 + \lambda (g^*(X) - g^*(Y)))]
\]

• Define the ‘oracle test’: \(\tau^* = \min \{t \geq 1 : W_t^* \geq \frac{1}{\alpha}\} \).

• The test \(\tau^* \) is exponentially consistent, and has a finite expected stopping time.
Step 3 – Practical Test

• g^* and λ^* in τ^* are not known \Rightarrow Use data-driven estimates.

• A prediction strategy (A_P) to select $\{g_t : t \geq 1\} \approx g^*$.
 - Specific choice of A_P will depend on G.

• A betting strategy (A_B) to select $\{\lambda_t : t \geq 1\} \approx \lambda^*$.
 - Existing methods, such as Online Newton Step (ONS), are sufficient for our purposes.

• Construct the wealth process

$$W_t = W_{t-1} \times (1 + \lambda_t(g_t(X_t) - g_t(Y_t))).$$

• Define the level-α test: $\tau = \min \{t \geq 1 : W_t \geq \frac{1}{\alpha}\}$
Summary: Steps of our sequential test

Initialization:

- A function class \(\mathcal{G} \)
- A prediction strategy \((\mathcal{A}_P)\) to select \(\{g_t : t \geq 1\}\)
- ONS betting strategy \((\mathcal{A}_B)\) to select \(\{\lambda_t : t \geq 1\}\)
- \(W_0 = 1\)

For \(t = 1, 2, \ldots\):

- Get the next \(g_t\) from the prediction strategy, \(\mathcal{A}_P\).
- Get the next \(\lambda_t\) from the betting strategy, \(\mathcal{A}_B\).
- Observe the next pair \((X_t, Y_t)\).
- Update \(W_t = W_{t-1} \times (1 + \lambda_t(g_t(X_t) - g_t(Y_t)))\).
- Reject \(H_0\), if \(W_t \geq \frac{1}{\alpha}\).
Smaller Regret of $A_p \implies$ Faster growth of $W_t \implies$ Stronger properties of the test τ.
Performance Guarantees

Regret of A_P

$$\mathcal{R}_n(\mathcal{A}_P) = \sup_{g \in G} \left[\left(\sum_{t=1}^{n} g(X_t) - g(Y_t) \right) - \left(\sum_{t=1}^{n} g_t(X_t) - g_t(Y_t) \right) \right].$$
Performance Guarantees

Regret of \mathcal{A}_P

$$
\mathcal{R}_n(\mathcal{A}_P) = \sup_{g \in G} \left[\left(\sum_{t=1}^{n} g(X_t) - g(Y_t) \right) - \left(\sum_{t=1}^{n} g_t(X_t) - g_t(Y_t) \right) \right].
$$

Regret-Power Connections under H_1 (Informal)

- If $\lim_{n \to \infty} \mathcal{R}_n/n$ is smaller than $d_G(P_X, P_Y)$ w.p. 1, the test τ is consistent.

- If $\mathcal{R}_n/n \to 0$ with sufficiently large probability, then $\mathbb{E}[\tau]$ is finite.

- If the $\mathcal{R}_n/n \to 0$ w.p. 1, then the test τ is exponentially consistent.
Application 1: Sequential KS Test

- \(\mathcal{X} = \mathbb{R} \), and \(\mathcal{G} = \{ 1_{(\infty, u]} - 0.5 : u \in \mathbb{R} \} \).

- Plug-in prediction strategy (\(\mathcal{A}_{\text{plug-in}} \)): \(g_t = 1_{(\infty, u_t]} - 0.5 \), where

 \[
 u_t \in \arg \max_{u \in \mathbb{R}} \hat{F}_{X,t-1}(u) - \hat{F}_{Y,t-1}(u).
 \]

- For any \(n \geq 1 \), \(R_n(\mathcal{A}_{\text{plug-in}})/n = O(1/\sqrt{n}) \), w.p. \(1 - 1/n^2 \).

- Hence, the resulting test is consistent, and satisfies \(\mathbb{E}[\tau] = \mathcal{O} \left(1/d_{\text{KS}}^2(P_X, P_Y) \right) \) under \(H_1 \).

- There exist distributions on which any test, \(\tau' \), must have \(\mathbb{E}[\tau'] = \Omega \left(1/d_{\text{KS}}^2(P_X, P_Y) \right) \).
Application 2: Sequential Kernel MMD Test

- General \mathcal{X}, and $\mathcal{G} = \{g \in \text{RKHS}(k) : \|g\|_k \leq 1\}$.

- Projected Gradient Ascent prediction strategy (A_{PGA})

- A_{PGA} satisfies $R_n(A_{PGA})/n = \mathcal{O}(1/\sqrt{n})$, w.p. 1.

- Hence, the resulting test is exponentially consistent, and satisfies $E[\tau] = \mathcal{O}(1/d^2_{\text{MMD}}(P_X, P_Y))$ under H_1.

- There exist distributions on which any test, τ', satisfies $E[\tau'] = \Omega(1/d^2_{\text{MMD}}(P_X, P_Y))$, under H_1.
Under H_0, the wealth process of the bettor rarely exceeds the level $1/\alpha$.

$$P_X = N(0, 1)$$

$$P_Y = N(0, 1)$$
Under H_1, the wealth process with the plug-in prediction strategy, grows at an exponential rate.

\[
P_X = N(0, 1) \\
P_Y = N(\varepsilon, 1)
\]
Extension to time-varying distributions

Our ideas easily extend to the following case:

For \(t = 1, 2, \ldots \) :

- Bettor selects \(g_t \) and \(\lambda_t \).
- Adversary selects distributions \(P_{X,t} \) and \(P_{Y,t} \).
- The pair, \((X_t, Y_t) \sim P_{X,t} \times P_{Y,t}\) is revealed.
- Update the wealth: \(W_t = W_{t-1} \times (1 + \lambda_t (g_t(X_t) - g_t(Y_t))) \).
- Reject the null if \(W_t \geq 1/\alpha \).

Under some mild assumptions on \(\mathcal{G} \), the test defined above is consistent.
Other Extensions and Generalizations

- Relaxing the assumption of paired observations.
- Relaxing the boundedness assumption on the functions in G.
- A general problem unifying several tasks such as two-sample testing, independence testing, and symmetry testing.
Thank you.
Details of Regret-Power Result

\[\limsup_{n \to \infty} \frac{R_n}{n} < d_g(P_X, P_Y) \text{ a.s.} \Rightarrow P_{P_{XY}}(\tau < \infty) = 1. \]

\[\text{For a sequence } r_n \to 0, \text{ define } E_n = \{R_n/n \leq r_n\}. \text{ Then,} \]

\[\sum_{n \geq 1} P_{P_{XY}}(E_n^c) < \infty \Rightarrow E_{P_{XY}}[\tau] < \infty. \]

\[\text{If } P_{P_{XY}}(E_n^c) = 0 \text{ for some } r_n \to 0, \text{ then we have} \]

\[\liminf_{n \to \infty} \frac{-1}{2n} P_{P_{XY}}(\tau > n) = \beta^*. \quad \text{(optimal exponent)} \]
Testing invariance to an operator

• Given a stream of observations: U_1, U_2, \ldots on \mathcal{U}, drawn i.i.d. from P_U.
• Let $T : \mathcal{U} \to \mathcal{U}$ be a known operator.
• Consider the problem:

$$H_0 : P_U = P_U \circ T^{-1}, \quad \text{versus} \quad H_1 : P_U \neq P_U \circ T^{-1}.$$

• This formulation unifies several problems such as two-sample testing, independence testing, and symmetry testing.
• For two-sample testing:

$$\mathcal{U} = \mathcal{X} \times \mathcal{X}, \quad U = (X, Y), \quad P_U = P_X \times P_Y$$

$$T : \mathcal{X} \times \mathcal{X} \to \mathcal{X} \times \mathcal{X}, \quad \text{such that} \quad T(x, y) = (y, x).$$