Convergence of MCMC

Definition (Total variation distance).Let X and Y be two random variables
taking values in a set {). The total variation distance between them is defined by

dT\/(X, Y) — sup ‘P(X c A) —P(Y c A)‘
AcCq)

Definition (Absolute spectral gap). If P € R?*? is the transition matrix of an
irreducible, aperiodic, and reversible Markov chain, with eigenvalues

1:)\1>)\22"'2)\d>_1;
the absolute spectral gap is defined by

v = 1 —max{s, [Ag|}.

Theorem 1. /f (X)) is an irreducible, aperiodic, and reversible Markov chain, and
m, denotes the distribution of X,,, then

Why is MCMC so hard?

Total variation is a worst-case measure of distance.

Theorem 2. /f X and Y are random variables taking values in a set (), the total
variation distance between them satisfies

I (X, V)= s [B[f(X)]~E[f (V)]

Yet often we only care about very simple functions.

e Posterior mean corresponds to f = x.
e Posterior covariance corresponds to f = 227 — E[X]E [X]".

e In a mixture model with cluster membership vector z, cluster co-membership
orobabilities correspond to f = 1 (z; = z;) for data indices 7 # 7.
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Function mixing

Instead, convergence with respect to individual functions.

Definition (Function variation distance). Let X and Y be two random vari-
ables taking values in a set 2 and let f: €2 — [0, 1|. The function variation distance
with respect to f is then defined by

dy (X, V)= [ELf(X)] -ELf(Y)].

Definition (Function absolute spectral gap). Let ¢; be the (left) eigenvectors
of the transition matrix P and let f: |[d| — |0, 1| be a function. Then the function
absolute spectral gap is defined by

V=1 j#fﬁfﬁ#o’)‘ﬂ-
In words, it is the gap between 1 and the largest absolute value of an eigenvalue
whose eigenspace f is not orthogonal to.

The function absolute spectral gap
controls the rate of convergence in d; .

Theorem 3. If (X)) is an irreducible, aperiodic, and reversible Markov chain with
state space |d|, T, denotes the distribution of X,,, and f: |d| — [0, 1|, then

(1 —p)"

\V T'min

df (ﬂ-nv 7T) <

- dy (mo, ).

Application: concentration of measure

Previous results give a single rate for all functions.

Theorem 4 (Uniform Hoeffding bound, Léon and Perron 2004). Let (X))

be an irreducible, aperiodic, and reversible Markov chain at equilibrium, and let
f:|d] — [0, 1] be a function. If u = E,|f]| is the equilibrium expectation of f,

then
1ZN "0
P(anf(Xn):u >€)<2€Xp< 2( >'€2N>7

2 — Y

where 7y = min (1 — Xy, 1).
We prove adaptive rates.

Theorem 5 (Function-dependent Hoeffding bound). With notation as above,

1 al 7f
]P)(N;f(X’n),u >€> SQGXP< 4/\(6, 0, 7_‘_)°€2N>7

where, letting v = min (p, 1 — ),

4
Ale, p, m) = log (V — ,€2>-

Furthermore, this holds even if the chain is not at equilibrium.
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Examples and simulations

Definition (Lazy random walk on Cy;). The lazy random walk on the cycle graph
with 2d vertices, (54, updates at each step according to the following rule:

e With probability % stay at the current location.
e Otherwise, with probability % move to the next node in clockwise order.

e Otherwise, move to the previous node in clockwise order.

We view the states in this Markov chain as indexed by integers in {0,...,2d — 1}.
For this chain, we have

time until dpy (7,, m) < 4 is on the order of d“log (1/6) .

Example (Parity function). Let f be the parity function defined by

(1 ifiis odd.

0 otherwise.

Fi) =

\

Since both neighbors of any vertex have the opposite of its parity, it is easy to see
that

E(f (X)) | Xo=i]=3

so the function mixes in a single step.

Example (Trigonometric functions). For 0 < j < 2d, the trigonometric functions

_ 1+ cos (ZL
g; (1) = Q(d)

have

Therefore, when j = d & ¢ for some constant ¢ > 0, the function absolute spectral
gap is on the order of a constant, and the chain mixes with respect to g; in constant
time.

Example (Random binary functions). Consider a random binary function obtained
by sampling f (i) ~ Bern (1/2) iid for each ¢ € {0,...,2d — 1}. With probability
> 1 128\/210@, we have that for any constant 0 < 0 < 1,

time until |E[f (X,)] — i| < J is at most on the order of dlog”d.



