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Multiple hypothesis testing

Testing problems often occur in large groups:

•Associations between disease and each site in a genome.

•Temperature fluctuations in astronomical data.

• Loci of infection in an epidemic.

Mathematically, we model this by n� 1 choices between nulls and alternatives:

H0i (null) vs. H1i (alt), 1 ≤ i ≤ n

Two error measures:

Type I: FDR =
# false positives

# rejections
,

Type II: FNR =
# false negatives

# signals

Sparse generalized Gaussians model

Assumption.

•n observations X1, . . . , Xn such that

Xi ∼ ψ0 ( ) if i is null,

Xi − µn ∼ ψ0 ( ) if i is non-null,

where

µn = (γr log n)1/γ

• For some 0 < β < 1, there are n1−β � n non-nulls.

• For some γ > 1, tails go like exp
(
−|x|

γ

γ

)
, so

logP0 (X ≥ x) = −|x|
γ

γ
±O (1)

Algorithms

We limit our attention to thresholding algorithms that are given a target FDR level
q:

reject i⇐⇒ Xi ≥ t (X1:n, q) for some threshold function t.

Two main choices of threshold:

•Benjamini-Hochberg (BH).

tBH (X1:n, q) = min

{
t : P0 (X ≥ t) ≤ q ·# (Xi ≥ t)

n

}
•Barber-Candès (BC).

tBC (X1:n, q) = min

{
t :

# (Xi ≤ −t)
n

≤ q ·# (Xi ≥ t)

n

}

Main results

•Describe the critical regime where good FDR implies 0 < FNR < 1.

•Determine the optimal rate for the feasible regime, which is n−κ
∗
, where

κ∗ solves a fixed point equation.

•Establish the optimal FDR-FNR tradeoff, which is described by the two
sides of the fixed point equation.

•Prove optimality of both BC and BH.

Proof strategy

•Analyze FDR-FNR tradeoff for procedures with data-independent thresholds.

•Establish a comparison principle showing that any thresholding procedure must
behave approximately like a data-independent thresholding procedure.

• Show that both BC and BH place their thresholds near the minimal value for
a given FDR.

Related work

•Asymptotic optimality (without rates) of BH and BC in the feasible regime—that
is, FDR + FNR→ 0 [Arias-Castro and Chen, 2016].

•Asymptotic phase transition for the single testing problem for the global null

H∗0 : all i are null vs. H∗1 : ∃i non-null,

which is statistically much easier (better rates, more favorable detection bound-
ary) [Donoho and Jin, 2004].

•Asymptotic Bayes optimality of FDR control procedures for binary classification
with class imbalance at the critical point µn = (γβ log n)1/γ [Neuvial et al., 2012].

Critical regime

In finite samples, there is a lower bound strictly above β such that shifts with r
smaller than that lower bound cannot be detected. This lower bound r−n depends
on the target FDR rate.

Theorem 1. There exists a constant c0 > 0 such that

r ≤ r−n =

β +
log 1

qn

log n +
log 1

c0

log n , if qn ≥ 8 log 4
3 ·

1
n1−β ,

1 +
log 1

c0

log n o.w.

then

FDR ≤ qn =⇒ FNR ≥ 1

32
.

Optimal rate and tradeoff

Here we assume r ≥ r−n , so we are in the regime where the problem is feasible. The
crucial quantity in defining the rates is the γ-distance:

dγ (a, b) =
∣∣∣a1/γ − b1/γ

∣∣∣γ
Theorem 2. Any threshold-based multiple testing procedure satisfies

FDR + FNR & n−κ
∗
,

where κ∗ is the unique solution to

κ = dγ (β + κ, r)

Theorem 3. More precisely, any threshold-based multiple testing procedure satisfies
the tradeoff

FDR . n−κ =⇒ FNR & n−dγ(β+κ,r).

Dense and barely feasible instances

In addition to addressing the classical problem, we analyze two interesting but chal-
lenging regimes:

Example (Dense case). Suppose the number of signals is αn for a sequence αn. If
the shift parameter 0 < r < 1 is a constant, then

FDR + FNR & n−r/2γ

and both BC and BH achieve the optimal rate.

Example (Barely feasible case). Suppose 0 < β < 1 is fixed. If

rn − β = ∆n→ 0,

then the optimal rate is given by

FDRn + FNRn ≥ exp (−cβ∆n log n± o (∆n log n)) ,

Further, BH and BC achieve this rate up to the constants in the little-o term.
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