Introduction

Central Question:

When testing n different null hypotheses simultaneously, how do we determine which effects are significant? **and** take prior structural knowledge into account while doing this?

When a null hypothesis is rejected, we say a discovery has been made.

False Discovery Rate (FDR)

Unknown set of true nulls : $\mathcal{H}^0 \subseteq [n]$. Declared set of rejected nulls (discoveries) : $\widehat{S} \subseteq [n]$.

• False discovery proportion:

 $\mathsf{FDP} = \frac{\# \text{ false discoveries}}{\mathsf{total} \ \# \ \mathsf{discoveries}} = \frac{|\mathcal{H}^0 \cap S|}{|\widehat{S}|}$

• False discovery rate $FDR = \mathbb{E}[FDP]$.

Aim: Make (many) discoveries with the guarantee that the FDR is smaller than pre-specified level α .

Benjamini-Hochberg (BH)

Let $P := \{P_1, ..., P_n\}$ denote our list of p-values.

Benjamini-Hochberg'95 (BH) procedure: Reject all P_i smaller than a data-dependent threshold $t_{BH} = t(P) \in [0, 1]$.

• Suppose we declare as a discovery all p-values below threshold t,

$$\mathsf{FDP}(t) = \frac{|\mathcal{H}^0 \cap \widehat{S}|}{|\widehat{S}|} \approx \frac{t \cdot |\mathcal{H}^0|}{\#\{i : P_i \le t\}} \le \frac{t \cdot n}{\#\{i : P_i \le t\}} =$$

- $t_{BH} := \max t \text{ with } \widehat{\mathsf{FDP}}(t) \le \alpha$ Rephrase: find largest j such that $P_{(j)} \leq \alpha j/n$, reject $P_{(1)}, ..., P_{(j)}$.
- Guaranteed to control FDR at level α if p-values are independent or positively dependent (PRDS)

Simes test for the global null

Global Null GH_0 : test if P is entirely null.

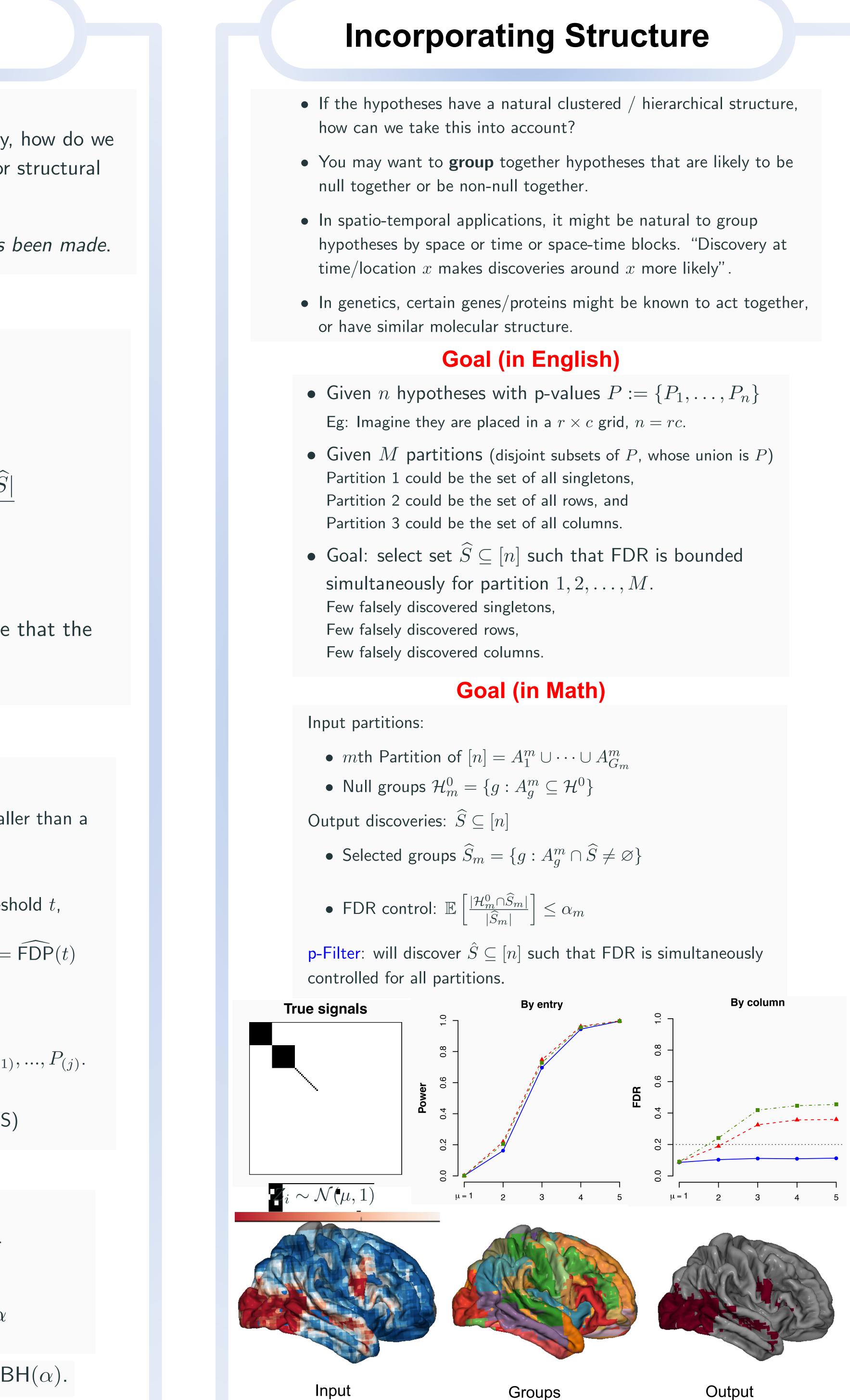
Simes'86 (Improved Bonferroni): we reject GH_0 if

$$\exists j : P_{(j)} \leq \frac{\alpha j}{n} \quad \text{iff} \quad \min_{1 \leq k \leq n} \frac{P_{(k)} \cdot n}{k} \leq \alpha$$

Closely related to BH: Simes rejects GH_0 iff P passes $BH(\alpha)$.

p-filter : Multilayer FDR control for grouped hypotheses

Aaditya Ramdas* (UC Berkeley), with Rina Foygel Barber* (U Chicago)



The p-filter algorithm

Single partition of G groups: Simes + threshold

Claim: This procedure controls group-FDR. Why? **Fact:** Simes (P^g) is a p-value! (if $P^g \subseteq \mathcal{H}^0$, Simes $(P^g) \sim U[0,1]$) Conservative under PRDS.

p-filter : Generalization to multiple partitions

Input: n p-values, M partitions, M FDR levels Let $t_1 = \alpha_1, \ldots, t_M = \alpha_M$. Repeat $m = 1, \ldots, M$, until no change:

If $\widehat{\mathsf{FDP}}_m > \alpha_m$, reduce t_m until $\widehat{\mathsf{FDP}}_m$ is $\leq \alpha_m$ (discrete search)

Note: Simes and BH are special cases when M = 1. **Assumptions and Guarantees**

Conservative null p-value assumption: for each $i \in \mathcal{H}^0$, $\frac{\mathbb{P}\left\{P_{i} \leq t\right\}}{\cdot}$ is an increasing function of t

PRDS assumption: for each $i \in \mathcal{H}^0$,

 $\mathbb{P}\left\{P \in \text{increasing set} \mid P_i = t\right\}$ is an increasing function of t

Theorem 2

p-Filter finds $\max(\hat{\mathcal{T}})$, and it controls FDR simultaneously $\forall m$:

Intuition from the one-partition case

• Summarize each group by its Simes p-value. Let

 $P^* = \{ \mathsf{Simes}(P^1), \mathsf{Simes}(P^2), \dots, \mathsf{Simes}(P^G) \}$

• Reject all groups with Simes p-value smaller than $t_{BH}(P^*, \alpha)$.

• For the *m*th partition, Simes+thresholding

— Calculate Simes p-values $P^m := \{P_1^m, \dots, P_G^m\}$ — Reject all groups whose $P_a^m \leq t_m$.

• $\widehat{S} := \{P_i : \text{in every partition}, P_i \text{'s group was selected}\}, \text{ intersect}$ Let \widehat{S}_m be the discovered groups in partition m, induced by \widehat{S} .

• Estimate FDP's for each partition: correction

 $\widehat{\mathsf{FDP}}_m = \frac{t_m \cdot G_m}{|\widehat{S}_m|} \quad \xleftarrow{} \operatorname{approx.} \ \# \text{ false discoveries}$

Let $\widehat{\mathcal{T}}$ be the set of legal thresholds $(t_1, ..., t_M)$, i.e. s.t. $\widehat{\mathsf{FDP}}_m \leq \alpha_m$

FDR for partition $m = \mathbb{E}\left|\frac{|\mathcal{H}_m^0 \cap \widehat{S}_m|}{|\widehat{S}_m|}\right| \leq \alpha_m \cdot \frac{|\mathcal{H}_m^0|}{G_m} \quad \forall m.$ Furthermore, it halts in $G_1 + G_2 + ... + G_M + 1$ outer loops.