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Abstract

We deal with two independent but related problems, those of graph similarity and subgraph

matching, which are both important practical problems useful in several fields of science, engineer-

ing and data analysis. For the problem of graph similarity, we develop and test a new framework

for solving the problem using belief propagation and related ideas. For the subgraph matching

problem, we develop a new algorithm based on existing techniques in the bioinformatics and data

mining literature, which uncover periodic or infrequent matchings. We make substantial progress

compared to the existing methods for both problems.

1 Problem Definitions and Statement of Contributions

1.1 Graph Similarity

Problem 1
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Given: two graphs G1(n1, e1) and G2(n2, e2), with possibly different number of nodes and edges, and

the mapping between the graphs’ nodes.

Find: (a) an algorithm to calculate the similarity of the two graphs, which returns (b) a measure of

similarity (a real number between 0 and 1) that captures intuition well.

Innovations: a) We develop a method involving belief propagation, unseen in literature, to solve this

problem b) The method (and its fast linearized approximate version) gives extremely agreeable results

c) Except for scalability, we know of no shortcomings of this method.

1.2 Subgraph Matching

Problem 2

Given: a graph time series, where there are T number of graphs.

Find: (a) An algorithm to find approximate subgraphs that occur in a subset of the T graphs. (b) Where

the approximate subgraphs may not occur in the majority of the time points, but in local sections

of the time series

Innovations: a) We develop a principled approach to selecting the important time components from

which subgraphs should be mined. Our method is also tailored for the problem of selecting subgraphs

in biological networks. For this, we use sparse PCA which has not been for this application domain. b)

Scalability: Our method is both fast and scalable to real biological data (1000s of nodes). However, it

has not been demonstrated whether it can scale to extremely large networks of more than 10 000 nodes.

c) The method gives results that are easy to interpret and biologically sensible.

Disclaimer of interests intersecting with course project

Aaditya may use the PhoneCall dataset for his DAP. Danai is interested in graph similarity and belief

propagation for research. Ankur has used tensors for his research, but in a different context. Jing has

used CODENSE before, and is interested in improving it for research purposes. None of the authors

have other course projects this term.

The following are the papers read for this course (refer to the numbering in the references section):

Jing [21], [28], [22], Ankur [20], [18], [9], Aaditya [5], [26], [27], Danai [10], [14], [15].
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2 Introduction

Graphs arise very naturally in many situations - examples vary from the web graph of documents, to a

social network graph of friends, to road-map graphs of cities. Over the last two decades, the field of

graph mining has grown rapidly, not only because the number and the size of graphs has been growing

exponentially (with billions of nodes and edges), but also because we want to extract much more com-

plicated information from our graphs (not just evaluate static properties, but infer structure and make

accurate predictions). This leads to challenges on several fronts - proposing meaningful metrics to

capture different notions of structure, designing algorithms that can calculate these metrics, and finally

finding approximations or heuristics to scale with graph size if the original algorithms are too slow. In

this project, we tackle several of these aspects of two very interesting and important problems, graph

similarity and subgraph mining, which we broadly introduce and motivate in the next few paragraphs.

First, we briefly introduce our two sample datasets (graphs), which will recur throughout this report.

2.1 Datasets

We call the PhoneCall dataset PC. Imagine users (indexed by phone number) being the nodes, and

there is an edge between two nodes if they spoke to each other, letting the total call duration be the

weight (or its inverse) on that edge. Summing up durations over a week or month would give us several

weighted graphs on the same set of nodes. The dataset consists of over 340, 000 people in one city

using one telephone service provider. It contains a list of all calls made from people in the network

to others in the same network over 6 months. We also have a list of SMS’s sent within the network

(call it dataset SMS), which we may also use. Other properties (like the distribution of call durations,

anomaly detection, reciprocity, etc) of this data have already been analyzed in [2, 1, 24].

We call the YeastCellCycle dataset YCC. In this setting, the genes are the nodes of each graph and

there exists an edge between two nodes if two genes interact. YCC is a sequence of graphs, one for

each of 24 time points. These graphs are generated by using Time-Varying dynamic Bayesian networks

algorithm [12] on yeast cell cycle microarray data. Thus, the graphs vary over the different phases of

the cell cycle, resulting in different patterns for each of the first growth (G1), synthesis (S), second

growth and mitosis (G2M) phases. Similar to the yeast dataset, the Drosophila dataset (DP) is also a

series of graphs that vary over time. Again, genes are the nodes of each graph and the edges represent

interactions. The dataset consists of 1 graph per time point for a total of 66 time points. The graphs

are generated using a kernel-reweighted logistic regression method [19]. Drosophila undergo several

3



stages of development which are the embryonic stage, larval stage, pupal stage, and adult stage. These

changing stages of development result in variations between the graphs especially during the transition

time points. The YCC and DP datasets will be referred to as GeneInteraction (GI) datasets.

List of Abbreviations

PC PhoneCall dataset

SMS SMS dataset

YCC Yeast Cell Cycle dataset

G1 Growth Phase of Cell Cycle

S Synthesis Phase of Cell Cycle

G2M Growth and Mitosis Phase of Cell Cycle

DP Drosophila dataset

GI Gene Interaction datasets

BP Belief Propagation

2.2 Graph Similarity

Our setting for graph similarity is as follows. We have two graphs on the same set of N nodes, but with

possibly different sets of edges (weighted or unweighted). We assume that we know the correspondence

between the nodes of the two graphs (like the people in PC don’t vary across graphs). Graph similarity

involves determining the degree of similarity between these two graphs (a number between 0 and 1).

Intuitively, since we know the node correspondences, the same node in both graphs would be similar

if its neighbors are similar (and its connectivity, in terms of edge weights, to its neighbors). Again, its

neighbors are similar if their neighborhoods are similar, and so on. This intuition guides the possibility

of using belief propagation (BP) as a method for measuring graph similarity, precisely because of the

nature of the algorithm and its dependence on neighborhood structure. We delve more into details of

BP in a later section.

This can be a great tool for data exploration and analysis. For example, we might conjecture that

the PC graphs are quite different during the day and night and also vary significantly from weekday to

weekend (talk to colleagues more in the day/weekdays, and family or close friends at night/weekends).

On the other hand, we may expect graphs of two consecutive months to be quite similar (family, close

friends, colleagues don’t change on such a short time scale).
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2.3 Subgraph Matching

Our setting for subgraph matching is as follows. Consider a series of T graphs, each of them over

the same set of N nodes, but with possibly different edges (weighted or unweighted). Assume that

we know the correspondence between the nodes (the genes in GI don’t change across time points).

Subgraph matching involves identifying the coherent or well-connected subgraphs that appear in some

or all of the T graphs. For example, the T time points may include several cell cycles, each involving

a growth, synthesis and mitosis phase. Different sets of genes (subgraphs) may interact (appear to be

strongly connected) in some phases and disappear during other phases. Of course, there may be some

genes that interact across all phases as well. We would like to identify these subgraphs, even if they

appear in a small number of time points (appear and disappear periodically).

When studying developmental processes in biology, it is important to identify the subsets of genes

that interact across time. These can represent functional processes that are specific to certain stages and

thus can help us elucidate the dynamic biological processes occurring. Such an automated way of pick-

ing out interacting subsets of genes (without manually examining large graphs over many time points)

would permit faster analysis with more uniform objectivity. In addition, if the algorithms are scalable,

they might be applicable to other domains. For example, it would be interesting to see if it is able to

select subgraphs from the PC dataset that are periodic in nature (night/day or weekday/weekend).

3 Survey

3.1 Graph Similarity

Graph similarity has numerous applications in diverse fields (such as social networks, image process-

ing, biological networks, chemical compounds, and computer vision), and therefore there have been

suggested many algorithms and similarity measures. The proposed techniques can be classified into

three main categories: edit distance/graph isomorphism, feature extraction, and iterative methods.

Edit distance/graph isomorphism One approach to evaluating graph similarity is graph isomor-

phism. Two graphs are similar if they are isomorphic [17], or one is isomorphic to a subgraph of the

other , or they have isomorphic subgraphs. The drawback of graph isomorphism is that the exact ver-

sions of the algorithms are exponential and, thus, not applicable to the large graphs that are of interest

today. The graph edit distance is a generalization of the graph isomorphism problem, where the target

is to transform one graph to the other by doing a number of operations (additions, deletions, substitu-
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tions of nodes or edges, and reversions of edges). This method associates each operation with a cost

and it attempts to find the sequence of operations that minimizes the cost of matching the two graphs.

Feature extraction The key idea behind these methods is that similar graphs probably share certain

properties, such as degree distribution, diameter, eigenvalues [25]. After extracting these features, a

similarity measure [5] is applied in order to assess the similarity between the aggregated statistics and,

equivalently, the similarity between the graphs. These methods are powerful and scale well, as they

map the graphs to several statistics that are much smaller in size than the graphs. However, depending

on the statistics that are chosen, it is possible to get results that are not intuitive. For instance, it is

possible to get high similarity between two graphs that have very different node set size, which is not

always desirable.

Iterative methods The philosophy behind the iterative methods is that “two nodes are similar if

their neighborhoods are also similar”. In each iteration, the nodes exchange similarity scores and this

process ends when convergence is achieved. Several successful algorithms belong to this category: the

similarity flooding algorithm by Melnik et al. [14] applies in database schema matching; this algorithm

solves the “matching” problem, that is, it attempts to find the correspondence between the nodes of two

given graphs. What is interesting about the paper is the way the algorithm is evaluated: humans check

whether the matchings are correct, and the accuracy of the algorithms is computed based on the number

of adaptations that have to be done in the solutions in order to get the right ones. Although we are not

solving the exact same problem (we are only interested in assessing the similarity of two given graphs

with given correspondence), the ideas behind our approach are very similar to the ones presented in this

paper. Another successful algorithm is SimRank [10], which measures the self-similarity of a graph,

ie. it assesses the similarities between all pairs of nodes in one graph. Again this is a different problem

from ours, but it is based on the notion that similar nodes have similar neighborhoods. The algorithm

computes iteratively all pairs similarity scores, by propagating similarity scores in theA2 matrix, where

A is the adjacency matrix of the graph; the process ends when convergence is achieved. Furthermore,

a recursive method related to graph similarity and matching is the algorithm proposed by Zager and

Verghese [27]; this method introduces the idea of coupling the similarity scores of nodes and edges

in order to compute the similarity between two graphs; the majority of the earlier proposed methods

focuses on the nodes’ scores. In this work, the node correspondence is unknown and the proposed

algorithm computes the similarity between all pairs of nodes, as well as all pairs of edges, in order to

find the mapping between the nodes in the graph. Finally, Bayati et al. in [3] proposed two approximate

sparse graph matching algorithms using message passing algorithms. Specifically, they formalized the
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problem of finding the correspondence between the nodes of two given graphs as an integer quadratic

problem and solved it using a Belief Propagation (BP) approach. Their problem formulation assumes

that one somehow knows which are the possible correspondences between the nodes of the two graphs

s(ie. because of intuition someone expects the 1st node of graph 1 to correspond to one the nodes

{1,5,1024,2048} of graph 2).

3.2 Subgraph matching

The subgraph matching problem occurs when you have a set of graphs and you’re trying to extract

a subset of nodes that are highly connected. Specifically, we are interested in approximate subgraph

matching, where the connectivity within each subset of nodes is not exactly consistent between graphs.

This problem comes up in several applications such as gene networks, social networks, and designing

molecular structures. We describe some of the current approaches below.

Approximate Constrained Subgraph Matching One possible approach is to build a declarative

framework for approximate graph matching where one can design various constraints on the match-

ing [28]. For example, one group worked on a method where the potential approximation had to satisfy

constraints such as mandatory and optional nodes and edges. In addition, there were also forbidden

edges which were not to be included in the matching. While this leads to a more well-defined search,

the user must have detailed information on the pattern he wants to match. The drawback of this method

is that many times, we are searching for subgraphs without any prior knowledge of the pattern to be

found. Thus, we may not have the prior knowledge necessary to effectively use such a method.

SAGA: Approximate Subgraph Matching using Indexing In response to existing graph matching

methods being too restrictive, a tool called Substructure Index-based Approximate Graph Alignment

(SAGA) [22] was developed. This technique allows for node gaps, node mismatches and graph struc-

tural differences and does not require any constraints to be designed in advance. To summarize, an

index on small substructures of the graphs are stored in a database. The query graph is broken up into

small fragments and then the database is probed using a matching algorithm to produce hits for sub-

structures in the query. The disadvantages are that one has to maintain a database of small structures

and that it is query based. In applications such as graph mining in biological networks, it’s possible that

we want to extract subgraphs without having identified queries.

7



Mining Coherent Dense Subgraphs The method called mining coherent dense subgraphs (CO-

DENSE) [9] is probably the most suitable method for our application. It constructs a summary graph

formed with edges that appear greater than k times in the set of graphs. It then mines subgraphs within

the summary graph using an algorithm that recursively partitions the graph into subgraphs based on

normalized cut. However, the limitations of this algorithm is that it finds subgraphs from a static graph

constructed from all time points. Thus, it is unable to capture interactions that occur locally to a few

time points.

Tensor Analysis Unlike the previous methods, Sun et al. [21] formulate the problem in the context of

tensors. The first and second modes of the tensor correspond to the adjacency matrix of a graph, while

the third mode corresponds to time. A tensor decomposition (i.e. a generalization of matrix PCA)

is proposed which can find “clusters” in the tensor (i.e. correlated dimensions within the same mode

and across different modes). The authors also present an incremental algorithm that can be applied in

the online setting. This work seems related to our goal of finding recurring subgraphs. However, it is

not entirely clear whether a “cluster” found across multiple time points by the tensor decomposition

is equivalent to a recurring subgraph in practice. A set of genes may be highly connected (clustered

together) in two time point t1 as well as t2 but the set of edges that connect them in t1 may be completely

different than those that connect them in t2. It also remains to be seen how the method performs for

sparse networks that are common in biology.

Graph Scope GraphScope [20] is another method for finding coherent clusters in graphs over time.

GraphScope assumes the sequence of graphs G1, ..., Gn are bipartite. It then partitions this sequence

of graphs into segments using an information theoretic criterion and then finds clusters within each

segment. This is an interesting approach but is limited by the fact that since it partitions the sequence

of graphs into segments, it can only find clusters in neighboring time points. However, we seek to find

recurring subgraphs that may not occur in adjacent or nearby time points.

Subgraph Matching via Convex Relaxation Schellewald et al. [18] propose a method for subgraph

matching based on convex relaxation. In their formulation, there is a large graph GL and a smaller

graph GK , and the goal is to find GK in GL (the correspondence of the vertices from GK to GL is not

known). However, they also assume the existence of a distance function d(i, j) where i is a node in

GK and j is a node in GL. Using both the adjacency structure of GK , GL, and the distance function

d they construct a quadratic integer program that is then relaxed to a convex program. This approach

is mathematically principled, but has the drawback that it is does not find subgraphs in GK that match
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those in GL but rather seeks to match all of GK in GL. Thus it cannot extend to finding recurring

subgraphs in a series of graphs (more than 2).

4 Proposed Method

4.1 Graph Similarity

As mentioned before, one of the key ideas in graph similarity is that “a node in one graph is similar to a

node in another graph if their neighborhoods are similar”. The methods that are based on this notion are

iterative and consist of “score-passing” between the connected nodes. The concept of “score-passing”

seems very related to one successful guilt-by-association technique, loopy belief propagation (BP).

The methods in the literature that solve the graph similarity problem yield results that are not very

intuitive. As we will see in the experiments section, our method manages to capture both the local and

global topology of the graphs; therefore, it is able to spot small differences between the graphs and

give results that agree with intuition. Also, our method is general and can be applied to both connected

and disconnected graphs - note that the proposed spectral methods are not applicable on disconnected

graphs.

4.1.1 Belief Propagation

Loopy belief propagation is an iterative message passing algorithm for performing approximate infer-

ence in graphical models, such as MRFs. It uses the propagation matrix and a prior state assignment

for a few nodes and attempts to infer the maximum likelihood state probabilities of all the nodes in the

Markov Random Field. Table 1 gives a list of symbols used.

Symbol Definition

mij(xk) message from node i to node j

φi(xk) prior belief of node i being in state xk
bi(xk) final belief of node i being in state xk
N(i) neighbors of node i

η normalizing constant

Table 1: Symbols and Definitions for BP

In belief propagation, nodes pass messages to their neighbors iteratively until convergence or for a
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maximum number of iterations that is specified by the user. The two main equations of BP are the

update equation for messages and beliefs:

mij(xl) =
∑
xk φi(xk) · ψij(xk, xl) ·

∏
n∈N(i)\jmni(xk)

bi(xk) = η · φi(xk) ·
∏
j∈N(i)mij(xk)

We skip the details of the method because of lack of space, but all the definitions and explanations can

be found in [26].

In graphs with loops, belief propagation might not converge and so can sometimes performs poorly.

However, in numerous applications, the algorithm is effective and converges quickly to accurate solu-

tions.

4.1.2 Belief Propagation for Graph Similarity

Original-BP graph similarity: The first BP-based algorithm we implemented for graph similarity

uses the original BP algorithm as it is proposed by Yedidia in [26]. The algorithm is naive and runs

in O(n2) time. We assume that the given graphs have the same number of nodes , n- if in the given

edge files there are nodes that are missing, we assume that these nodes form single node connected

components. The algorithm is the following:

for i = 1→ n do
initialize node’s i prior belief to p

run BP for graphs 1 and 2 and

get the bi1 and bi2 vectors of final beliefs

sim scorei = sim-measure{bi1, bi2}
end for
similarity of graphs← avg{sim score}

In our experimental setup, we set the prior belief p of the initialized nodes, as well as the entries of the

propagation matrix (which in our case can be summarized by only one number), to 0.9. Now, let’s focus

on the similarity measure that is mentioned in the above algorithm. We tried using various similarity

measures; the cosine similarity measure, that we had mentioned in our proposal, is not suitable in our

case, because the belief vectors that we are comparing do not have similar sizes and, so, measuring

the angle between the vectors is not informative about their distance in the n-dimensional space. As

a distance metric we used the euclidean distance (d), and we devised different ways of assessing the

similarity (s) of the vectors given their euclidean distance; the ultimate goal was to get a number

between 0 and 1, where 0 means completely dissimilar, while 1 means identical:
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• s = 1
1+d

• s = 1−
√
d/max{d}

We report some preliminary experiments on synthetic graphs in the experiments section. In our

experiments we used the second similarity function, because it seems to have more discriminative

power than the first one, and also agrees with our intuition.

As we mentioned in the previous report, our goal was to devise a more clever algorithm that does

fewer runs of BP in order to assess the similarity of the given graphs. Towards this goal, we tried a

variation of the naive algorithm which randomly picks a small number of nodes to be initialized, but it

does not perform well.

In the following subsection, we describe FABP, a scalable and fast approximation of BP, in the graph

similarity setting. This algorithm is preferable to BP, because we only need to do a matrix inversion

in order to find the final beliefs of all nodes and all “one-node” initializations, and thus the method

scales as well as the FABP method. Given that the FABP-based method is better than the original-BP

based method, we did not run more experiments using the latter method, nor did we try to devise a way

to achieve smaller computational complexity than the naive algorithm by carefully choosing the initial

nodes for running the BP algorithm.

Linearized BP (FaBP) graph similarity: The second BP-based algorithm we tried uses the FABP

algorithm proposed in [11]. In this paper, the original BP equations are approximated by the following

linear system:

[I+ aD− c′A] ~bh = ~φh

where hh is the “about-half” homophily factor, φh corresponds to the vector of the prior beliefs of the

nodes, bh is the vector of the nodes’ final beliefs, and a, c′ are the following constants a = 4h2h/(1 −
4h2h), and c′ = 2hh/(1 − 4h2h). Moreover, I is the identity matrix, A is the adjacency matrix of the

graph and D is the diagonal matrix of degrees.

As we briefly mentioned in the previous subsection, the advantage of this method is that we do not

have to run it n times, where n is the number of nodes in the graphs; inverting the matrix I+ aD− c′A
for each graph and comparing the matrices column-wise by a way similar to the one described in

the original BP graph similarity algorithm is enough, given that we initialize the same nodes in both

graphs – the initialization information is encoded in the φh vector. Moreover, FABP can trivially take

into account the importance of each edge, given that this information can be found in the adjacency

matrix, A, of a graph. In order to see how our graph similarity algorithm fares with weighted graphs,

we report some results in graphs with weights in 5.1.
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The experimental setup is the following: the prior belief of the initialized node is set to 0.51 (note

that the “uninitialized” nodes have prior belief 0.5), and the homophily factor is computed using the L2-

norm bound described in [11], so that the FABP method converges. As we mentioned in the previous

report, this method yields small beliefs (in the order of < 10−4) for the nodes, and so, we need a

similarity measure that takes into account the variance of the beliefs; comparing the beliefs as absolute

values results in high similarity between the vectors of beliefs, although the graphs we are comparing

have significant differences.

Next we discuss the similarity measures that have been proposed and give the similarity measure that

performs best in our application.
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Similarity Measures Types of vectors Applications Properties

Dot Product binary vectors text mining # of matched query terms in the document

unbounded

weighted vectors sum of products of weights of matched terms

favors long docs with many unique terms

measures matched terms BUT not unmatched terms

Cosine Similarity text mining normalized dot product

does not depend on the length of the vectors

[0,1]

Jaccard/ binary vectors sparse datasets normalized inner product

Intersection dice is highly related to jaccard

[0,1]

ignores the 0-0 matches

Tanimoto binary/non-binary extends Jaccard similarity

[0,1]

Dice / Sorensen/ binary vectors sparse datasets gives less weight to outliers than euclidean distance

Czekannowski/ sets X and Y a bit different from jaccard

Hodgkin-Richards IR: string similarity

Squared Chord paleontological & [0,2]

pollen data analysis

Pearson’S coefficient spots correlations in variables

Russell Rao binary used when there are big differences in magnitudes

Other: Harmonic mean, could not find useful information

Motyka, Kulczynski about these measures

Ruzicka,

Kumar-Hasserbrook

Table 2: Similarity measures proposed in the literature
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4.1.3 Discussion on similarity measures

There have been proposed numerous similarities measures, each of which has its advantages and dis-

advantages. The similarity measures can be classified based on the kind of data they are applicable to:

binary, continuous, categorical. In the case we are studying, we are interested in finding the similarity

measures between vectors of real numbers, which also happen to be small (order of < 10−4). In Table

2 we present some similarity measures and their properties and/or applications. All the similarity mea-

sures that are applied to binary vectors cannot be used in the graph similarity setting we are studying,

since the vectors we are comparing have real numbers.

One of the most commonly used similarity measures is the cosine similarity and the dot product.

The former measure takes values in [-1, 1] and the latter is unbounded. As you may see in table 2,

the cosine similarity is usually used in text mining for document comparison. When the vectors of the

documents are binary, the dot product represents the number of words that appear in both documents.

The cosine similarity computes the angle between the document vectors, without taking into account

their lengths. This is a desirable property in text mining, since we are interested in finding similar

documents no matter what their size is, and the cosine similarity assigns higher similarity to vectors

that point roughly to the same direction.

However, it seems that in our setting, the cosine similarity is not as effective, because the “beliefs”

of all the nodes are very small numbers (order of < 10−4), and therefore the angle between the belief

vectors of two different graphs is always very small. We will see in the experiments section that the

cosine similarity cannot recognize the differences in the graphs that we are comparing.

In the literature there have been proposed many ways of converting a distance metric (d) to similarity

measure (s). The most prevalent ways are the following:

• s = 1− d

• s = 1
d

• s = 1
1+d

for unbounded d

• s = e−d
2

In Section 5.1, we present the graph similarity results using 4 different measures: normalized-

euclidean-based, cosine similarity, sample linear correlation and Spearman’s rank correlation (finds

non-linear correlation between variables). The first measure is based on the euclidean distance (d) and

we used the third formula to convert it to a similarity measure in [0, 1]. The key is that we are using the
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following normalized version of the euclidean distance:

d =

√√√√ n∑
i=1

(b1,i − b2,i)2
(bclique,i − φhi)

2

. The idea underlying the normalization of the euclidean distance is that the nodes would be assigned

the maximum belief if all nodes were connected to each other forming a clique, and the minimum

belief if there were no edges in the graph, which would be described by a final vector of beliefs equal

to the prior beliefs. So, the denominator of our distance measure represents the maximum possible

difference (in beliefs) for each node, and is of the same order as the numerator. The latter fact boosts

the discriminative power of our measure by “solving” the issue of comparing very small numerical

values, as we will see in Section 5.1.

4.1.4 Other Methods for Graph Similarity

“Eigenvalue method” As mentioned in the survey, one big category of graph similarity methods is

based on feature extraction; admittedly, a feature that contains important information about a graph is

the vector of its eigenvalues. LetA1 andA2 be the adjacency matrices of graphsG1 andG2 respectively.

Let also L1 = D1 − A1 and L2 = D2 − A2 be the laplacians of the graphs, where D1 and D2 are the

corresponding diagonal matrices of degrees. In this method, we find the eigenvalues of the laplacians

and we define the similarity between the graphs as:

sim =
k∑
i=1

(λ1i − λ2i)2,

where k is chosen s.t.

min
j
{
∑k
i=1 λji∑n
i=1 λji

> 0.9}

for j = 1, 2 (corresponding to the two graphs that we are comparing) ; that is, we keep the top k

eigenvalues that contain 90% of the energy. Notice that the similarity this method gives is unbounded,

[0, inf), and values close to 0 mean that the graphs are very similar, while high values show dissimilarity.

Algorithms in [15] We are comparing our method to some of the feature extraction methods that

Papadimitriou et al. propose in [15] - vector similarity and signature similarity methods. The authors

claim that both methods capture the structural changes that occur in web graphs.

Other Our graph similarity method is not readily comparable to Zager’s method in [27], which cou-

ples the scores of the nodes and the edges, because we are solving a different problem. The algorithm
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described in this paper finds the similarity between all the pairs of nodes in the two graphs and outputs

the best matching between the nodes (general graph matching problem). However, in our setting, we

assume that the correspondence between the graphs’ nodes is known and we only assess how similar

are the two graphs.

4.2 Subgraph Matching

Recall that the problem of subgraph matching is how to find approximate subgraphs that recur over a

set of graphs. This problem is challenging from many perspectives. First, we are interested in a variety

of different patterns of recurring subgraphs in the graph data. An example of a simple pattern is a

subgraph recurring locally over a set of consecutive time points. However, more complex patterns are

possible such as in the case of periodic data, where subgraphs can occur in one period and then repeat

in the next period. We seek to design a method that can robustly find recurring subgraphs that follow a

variety of patterns.

Moreover, different subgraphs may share overlapping groups of nodes. For example, a subgraph that

recurs over time points 1 through 5 may contain nodes a, b, c, d, e, and f . Another subgraph that recurs

over time points 6 through 10 may contain nodes d, e, f , g, and h. Thus, d, e, and f are shared among

the two different subgraphs but a, b, c are unique to subgraph 1 while g and h are unique to subgraph

2. An even more complicated scenario could arise when a node is part of multiple subgraphs in the

same time point in addition to across different time points. This problem is nontrivial and as a result,

standard techniques are not equipped to handle overlapping subgraphs.

4.2.1 Method 1: Subgraph Mining with Hierarchical Summary Graph Construction and Spec-
tral Clustering

Constructing a Summary Graph with Local Information The existing method CODENSE [9]

constructs a summary graph consisting of edges that appear in more than k of the graphs (where k

is a threshold). However, this strongly favors subgraphs that appear in most of the time points and

thus cannot extract subgraphs that only recur in a small, but significant subset of the time points. For

example, the algorithm would not discover a subgraph if it appeared in 3 time points towards the

beginning of a time series, and then 3 time points half way through because such edges would not be

included in the summary graph if k > 6. However, lowering k would include many more false positives.

In addition, it is susceptible to noise because a particular edge would be included in the summary graph

if it appeared more than 6 times randomly throughout the series. Thus, it may be beneficial to try to

incorporate local information before mining for graphs.
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Period 2Period 1

Phase 1 Phase 1 Phase 2Phase 2

Figure 1: The hierarchical structure used to generate the summary graph. The leaf nodes represent

the adjacency matrix of the graph at each time point for a total of t time points. Each node stores the

weighted sum of the exponential of adjacency matrices stored at its children.

While creating multiple local summary graphs is a solution that was considered, it is not ideal be-

cause the amount of computation would increase with the number of summary graphs mined. Instead,

we construct a single summary graph generated by a hierarchical structure over all graphs in the time

series. The main objective is to include local information when selecting the edges in the summary

graph. An example of how we compute the summary graph is shown in Figure 1. Each leaf node rep-

resents the original adjacency matrices of the graphs at each time point from 1..t. We assume that the

time series is divided into phases and that these divisions are prior knowledge. We show a simple ex-

ample for illustration where the time series consists of 12 time points which are divided into 2 periods.

In each period, phase 1 repeats and phase 2 repeats. This is important because we assume that certain

subgraphs will be active in phase 1 while others will be active in phase 2. At each non-leaf node, we

exponentiate the sum of all the child graphs of that node as written below:

G(h,n) = wh exp(
∑
iεCh

G(i)); (1)

where G is the adjacency matrix, h is the height of the node, and n is the index of the node at that
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height. There is a different weight w for each height. We take the sum of all G(i), where the ith graph

is a child of the node n. We then exponentiate that value and weight it accordingly. We assign higher

weights to the nodes of lower height to encourage the propagation of signal up to the root tree.

The resulting summary graph should then contain subgraphs that appear globally throughout the

data and those that only occur in local consecutive segments. It will not contain noisy edges that appear

frequently but randomly through the time series.

Mining Approximate Subgraphs Once the summary graph is obtained, there still remains the task

of finding the subgraphs. For this we use spectral clustering [13]. There are many variants, but in

general, spectral clustering works by computing the first K eigenvectors u1, ..., uK , of some form of

the graph Laplacian. These eigenvectors are then organized as columns of an N by K matrix U. Each

node then ”corresponds” to a row (1 by K vector) in U and k-means can be used to cluster the nodes

in the new K dimensional space. If soft k-means is used, spectral clustering has the potential to find

overlapping clusters which we explore in our synthetic experiments.

Existing Challenges There are several limitations of this approach that can arise. One problem in-

volves mining the approximate subgraphs (clusters) in the summary graph. Since the edges in the

summary graph may appear in different sets of time points it is possible that a cluster in the summary

graph does not correspond to a cluster in any of the input graphs. Furthermore, if the hierarchy is

asymmetric, i.e. different nodes at the same level have different numbers of children, then appropriate

normalization needs to be done to ensure that the method is not biased towards the larger subtrees.

Effectively, using this method is not automatic and requires explicit domain knowledge. For instance,

the user must specify the structure of the tree. The leaves must be grouped correctly according to the

behavior of the time series. For example, for yeast cell cycle data, the user must know where in the

time series a phase begins and ends. In addition, the user is also responsible for selecting the weights

wh, because it is not clear how to select them automatically. Because of these challenges, we chose to

try other methods to do subgraph mining.

4.2.2 Method 2: Tensor Analysis for Mining Approximate Subgraphs

We investigate tensor analysis as an alternative method for mining subgraphs. A sequence of graphs of

V vertices over T time steps can be represented using a V × V × T tensor. The ability to represent

relationships between genes and their relationship with time simultaneously is an advantage of using

tensors. Tensor decompositions such as Tucker [23] and PARAFAC [8] can be used to characterize data
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by providing the important components. The Tucker decomposition decomposes a tensor into a set of

matrices and a core tensor however the results are difficult to interpret in the context of clusters. Thus,

in this study we investigate PARAFAC, which decomposes a third order tensor A as follows:

A ≈
K∑
k=1

λkU
(1)
:,k ◦U

(2)
:,k ◦U

(3)
:,k (2)

where K is specified by the user and determines the quality of the approximation. U(i)
:,k corresponds

to the kth column of matrix U(i) and ◦ corresponds to outer product. Thus PARAFAC is expressing A
as a sum of K rank one tensors.

One can then infer clusters as follows: let τ be a threshold and let S(1)
τ,k be a set of indices such that

j ∈ S(1)
τ,k if and only if U(1)

j,k is larger than τ (and similarly for S(2)
τ,k and S(3)

τ,k). Then we can conjecture

that the interactions of the vertices in S(1)
τ,k and S(2)

τ,k form an approximate subgraph for time points in

S
(3)
τ,k .

In the results section, we show that this approach works well on synthetic data to extract both non-

overlapping as well as overlapping subgraphs. However, it is also challenging to apply this to real

networks. One of the limitations of PARAFAC is that it is sensitive to the selection of the parameter k,

which specifies the number of components that the decomposition should produce. PARAFAC differs

from an SVD decomposition on 2D matrices in that it does not have the same properties. For SVD, the

decomposition is equivalent to λ1u1vT1 +λ1u1v
T
1 . . .+λnunv

T
n and irregardless of how many components

are requested, the first component returned will always be the same, as will the second, as will the mth.

However, the mth component returned by PARAFAC differs depending on how many components,

K, are selected. As we show in the succeeding section, if the selected K is correct, then PARAFAC

will divide the data into the right clusters. However, if K is incorrect, the resulting decomposition is

different and becomes difficult to interpret. In real settings, k is an unknown parameter which means

that sensitivity to K is problematic. We hoped to amend this issue by using sparse PARAFAC [16]

because imposing sparsity and non-negativity on the resulting components should provide more stable

extraction of clusters. However, the optimization is non-convex and thus, the solution can change

dramatically for small changes in the regularization parameters λ. In addition, it does not scale to the

YCC dataset which is approximately 3000× 3000× 24.

4.2.3 Method 3: Matricization and Sparse Principal Component Analysis

Because of the limitations of the previous methods, we changed the representation of the network and

reformulated the problem into two major tasks. Instead of decomposing a 3D tensor, we matricize the
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data so that it can be represented in a 2D framework. Each row in the matrix represents an edge and

each column represents a time point. For the YCC dataset, because the network is sparse, we have a

total of 66740 edges. Thus the data can be represented by a sparse matrix X of 66740 × 24. The two

major steps in this method are described below:

1. Find the Principal Components in Time In this step, we want to find components in time (vector

of size 1 × T ) which indicate where a significant fraction of edges occur. For instance, we might get

the following shown in Figure 2 where the 1st component shows that there is a concentration of edges

in the early section of the time series, the 2nd component shows activity towards the latter part of the

time series etc. We can then extract the edges during these time intervals and mine them for subgraphs.

Component 1 

Component 2 

Component 3 

Component 4 

Time 

t = 1                                                            T 

Figure 2: We use sparse PCA to find the principal components in time which shows where a significant

fraction of edges occur. For instance, component 1 shows that many edges occur during an interval in

the beginning of the time series, component 2 shows a significant number of edges occur in the latter

section, component 3 shows edges in the middle of the time series, and component 4 shows that a

significant amount of edges repeat in two intervals.

In general, we would use Principal Component Analysis (PCA) for this task since it finds linear com-

binations of the variables that correspond to directions of maximal variance. However, the principal

components are usually linear combinations of all variables. Thus all weights in the linear combination

(called loadings) are non-zero. However, in our application, the coordinates have a physical interaction,

they represent edges connecting two vertices. Thus we need to be able to interpret the principal compo-

nents and Sparse Principal Component Analysis (SPCA) allows us to do so because it involves very few

non-zero coordinates. There are various different approaches available to perform SPCA including a

method that solves a convex relaxation [6]. However, we use a greedy approach [6] because it provides

the whole regularization path in O(T 3) which allows us to choose the regularization parameter ρ easily.
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The greedy approach works by starting with a set of cardinality one that contains the element of max-

imum variance. The algorithm then iteratively adds to this set by adding the variable with maximum

variance contribution to generate the whole regularization path.

2. Subgraph Construction and Clustering Unlike PCA, SPCA only extracts one component at a

time. After we find a time component, we extract all the edges that appear more than some threshold m

percentage of times during that time component. The set of edges can be converted into an adjacency

matrix that represents a (possibly not connected) edge set. We then delete these edges from the matrix

and rerun SPCA to get a new sparse component. To make the results more interpretable, one can

perform clustering on each edge set that corresponds to a particular time component. We used the

Markov Cluster Algorithm (MCL) package for cluster extraction [7] because of its speed and popularity

in computational biology applications. While there are advantages to simultaneously performing edge

set extraction and clustering, we believe that treating each task separately leads to a faster and simpler

algorithm.

The algorithm terminates when no edge appears more than m percentage of the times in the time

component SPCA has most recently extracted. Thus K, the number of components that the user re-

quests just serves as an upper bound on the number of components that will be extracted.

5 Results

5.1 Graph Similarity

In this section we try to answer the following questions:

1. how do our proposed algorithms compare to other methods reported in the literature?

2. which similarity measure gives the most intuitive results?

3. is the FABP-based graph similarity approach scalable?

5.1.1 Synthetic Tests

We note that the results mentioned in the following tables (3 and 6 - 8) are extremely intuitive, and here

we provide short explanations why.
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Figure 3: [BP TEST GRAPHS] K-complete, C-cycle, P-path, S-star, B-barbelll, L-lollipop, R-random
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Figure 4: [WEIGHTED GRAPHS] The edges that are not annotated have unit weights.

Graph 1 Graph2 BP-Similarity

K5 eK5 0.97

K100 eK100 1

P5 eP5 0.6

P100 eP100 0.97

C5 eC5 0.62

C100 eC100 0.97

S5 eS5 0.62

S100 eS100 0.84

L5 eL5 0.97

L5 eeL5 0.51

B5 eB5 0.97

B5 eeB5 0.40

C5 S5 0.65

C100 S100 0.51

Table 3: Results of BP-similarity synthetic experiments
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Figure 5: [Random Kronecker graphs] Random graphs, and their Kronecker graph of the first power.

Here, instead of deleting an edge from the powered graph, we delete an edge from the base graph and

take its power, so the two powered graphs differ in many edges but are broadly similar.
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Graph # Nodes # Edges
R5 5 8

R25 25 238

R50 50 967

R75 75 2171

R100 100 3860

kron3 0 3 2

kron3 1 9 8

kron3 2 27 32

kron3 3 81 128

kron3 4 243 512

rKron5 0 5 7

rKron5 1 25 49

rKron5 2 125 343

rKron5 3 625 2401

rKron5 4 3125 16807

rKron5 0 5 6

rKron5 1 25 36

erKron5 2 125 216

erKron5 3 625 1296

erKron5 4 3125 7776

Table 4: Statistics for the random, kronecker, random-kronecker and edited-random-kronecker graphs.

Prefix Short Definition Description

e* -1 edge 1 edge removed from the graph with the same name, but without prefix

ee* - 2 edges 1 edge removed from the graph with the same name, but with the “e” prefix

e5* -5 edges 5 edges removed from the graph with the same name, but with the “ee” prefix

Table 5: Definition of prefixes in the names of the random and kronecker graphs.
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Graph Graph “Euclidean” Cosine Linear Spearman’s Eigenvalue
1 2 based Sim. Similarity Correlation Correlation Method

K5 eK5 0.7663 0.9955 0.9899 0.7374 4.0000

P5 eP5 0.7338 0.9799 0.9754 0.7929 0.9098

C5 eC5 0.7689 0.9850 0.9812 0.7976 2.0000

S5 eS5 0.7257 0.9766 0.9593 0.8798 2.0000

L5 eL5 0.8872 0.9978 0.9971 0.9525 2.2422

L5 eeL5 0.8822 0.9970 0.9968 0.8656 0.6501

B5 eB5 0.8928 0.9981 0.9977 0.9756 4.0000

B5 eeB5 0.8558 0.9972 0.9970 0.9494 2.8953

wB5 w2B5 0.6448 0.9830 0.9729 0.9980 33.2884

wB5 eeB5 0.5645 0.9501 0.9302 0.8979 86.5037

wB5 B5 0.6029 0.9696 0.9540 0.9724 57.7474

w2B5 ewB5 0.6205 0.9796 0.9667 0.9705 37.2884

K100 eK100 0.9852 1.0000 1.0000 -0.1094 0.0000

P100 eP100 0.9837 1.0000 1.0000 0.9780 0.0459

C100 eC100 0.9838 1.0000 1.0000 0.9736 0.0676

S100 eS100 0.9486 0.9999 0.9999 0.8184 1.0000

C5 S5 0.5921 0.9550 0.9353 0.5677 9.0557

C100 S100 0.3984 0.9905 0.9929 0.1797 9489.3670

Table 6: Similarity scores for simple synthetic graphs: Columns 3-6 refer to the similarity scores

obtained by applying the FABP method with different similarity measures. The last column presents

the similarity score obtained by the “eigenvalue” method.
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Graph Graph “Euclidean” Cosine Linear Spearman’s Eigenvalue
1 2 based Sim. Similarity Correlation Correlation Method

R5 eR5 0.7690 0.9914 0.9866 0.9169 2.0000

R5 eeR5 0.6654 0.9843 0.9815 0.8374 4.3573

R5 e5R5 0.4848 0.9329 0.9541 0.9288 27.1716

eR5 e5R5 0.5295 0.9509 0.9555 0.8910 18.1716

R25 eR25 0.9520 0.9999 0.9999 0.9790 0.4659

R25 eeR25 0.9228 0.9998 0.9997 0.9641 1.1386

R25 e5R25 0.8652 0.9995 0.9994 0.9391 4.7201

eR25 e5R25 0.8846 0.9996 0.9995 0.9484 2.9115

R50 eR50 0.9766 1.0000 1.0000 0.9952 0.2426

R50 eeR50 0.9654 1.0000 1.0000 0.9933 0.6353

R50 e5R50 0.9296 0.9999 0.9999 0.9783 2.8650

eR50 e5R50 0.9424 0.9999 0.9999 0.9868 2.0348

R75 eR75 0.9848 1.0000 1.0000 0.9983 0.1899

R75 eeR75 0.9767 1.0000 1.0000 0.9973 0.4266

R75 e5R75 0.9538 1.0000 1.0000 0.9913 1.9375

eR75 e5R75 0.9592 1.0000 1.0000 0.9926 1.2943

R100 eR100 0.9886 1.0000 1.0000 0.9992 0.1146

R100 eeR100 0.9809 1.0000 1.0000 0.9982 0.3031

R100 e5R100 0.9659 1.0000 1.0000 0.9956 1.3292

eR100 e5R100 0.9726 1.0000 1.0000 0.9971 0.9454

Table 7: Similarity scores for random graphs: Columns 3-6 refer to the similarity scores obtained by

applying the FABP method with different similarity measures. The last column presents the similarity

score obtained by the “eigenvalue” method.
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Graph Graph “Euclidean” Cosine Linear Spearman’s Eigenvalue
1 2 based Sim. Similarity Correlation Correlation Method

kron3 2 ekron3 2 0.9560 0.9995 0.9994 0.9993 1.4193

kron3 2 eekron3 2 0.9192 0.9989 0.9989 0.9973 2.8385

kron3 2 e5kron3 2 0.8262 0.9972 0.9971 0.9547 7.3252

ekron3 2 e5kron3 2 0.8499 0.9977 0.9976 0.9554 5.0110

kron3 3 ekron3 3 0.9836 1.0000 1.0000 1.0000 2.8340

kron3 3 eekron3 3 0.9674 0.9999 0.9999 0.9999 3.3222

kron3 3 e5kron3 3 0.9216 0.9998 0.9998 0.9837 5.2987

ekron3 3 e5kron3 3 0.9338 0.9998 0.9998 0.9838 2.3285

kron3 4 ekron3 4 0.9934 1.0000 1.0000 1.0000 1.6498

kron3 4 eekron3 4 0.9847 1.0000 1.0000 0.9944 2.6498

kron3 4 e5kron3 4 0.9662 1.0000 1.0000 0.9944 6.4609

ekron3 4 e5kron3 4 0.9719 1.0000 1.0000 0.9944 4.8111

rKron5 0 erKron5 0 0.7878 0.9911 0.9861 0.8622 1.5147

rKron5 1 erKron5 1 0.7652 0.9940 0.9944 0.8935 45.394

rKron5 2 erKron5 2 0.6951 0.9981 0.9982 0.9515 1462.3

rKron5 3 erKron5 3 0.6510 0.9995 0.9995 0.9805 38258.8

rKron5 4 erKron5 4 0.6603 0.9998 0.9998 0.9919 925825

Table 8: Similarity scores for kronecker graphs: Columns 3-6 refer to the similarity scores obtained by

applying the FABP method with different similarity measures. The last column presents the similarity

score obtained by the “eigenvalue” method. The first column is our preferred score measure.
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Synthetic Graphs Before we move on to the explanations, we briefly describe the synthetic graphs

that we generated for our experiments. We generated several graphs with few nodes and specific

“shapes” (Fig. 3 and 5), so that we can understand how each similarity algorithm behaves. Apart

from those graphs, we also generated some random and kronecker graphs, more information for which

is provided in Tables 4 and 5. The random graphs have each possible edge with probability 0.5. The

initial matrix we used to generate the kronecker graphs is

0 1 0

K1 = 1 0 1

0 1 0

and kron3 2 = K1 ⊗K1, kron3 2 = K1 ⊗K1 ⊗K1, and kron3 4 = K1 ⊗K1 ⊗K1 ⊗K1. The

meaning of the prefixes is explained in Table 5.

Finally, we also generated random kronecker graphs, rKron5 i, which start from a Erdos-Renyi

random graph on 5 nodes and probability of edge p, and take the i-th kronecker power of those graphs.

Here, erKron5 i is generated by changing the probability of edge p of the base graph, and taking i-th

kronecker power of this altered base graph. Hence, the larger powers may differ by many more edges

due to propagate changes in the kronecker powering.

Explanations of results in Table 3 (original BP method) Removing one edge from K5 hardly

changes anything, hence we expect a high similarity to eK5. Removing one edge from P5 disconnects

the graph, and so we expect a high dissimilarity from eP5. Removing an edge from S5 isolates one

node, so we expect low similarity. However, for all of these cases, moving to a graph on 100 nodes

increases the similarity. One can intuitively understand this by seeing that a missing edge is far more

noticeable when there are few edges and the graph is small, compared to when there are many edges

and the graph is large. Also, as expected, there is a big difference between S5 and C5, and between

S100 and C100.

Moving on to more complicated examples, we see how belief propagation captures the right intu-

ition about which edges are more or less important than others. Looking at the lollipop graph L5 (a

K5 connected to a P5), we see that deleting an edge from the K5 part made almost no difference, as

noted with the high similarity to eK5, but deleting an important edge like one in the P5 part made a
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big difference as noted by the small similarity to eeK5. Similarly, looking at the barbell graph (a K5

connected to a K5 by one edge), we see that deleting one of the K5 edges makes little difference (to

eB5), but deleting the connecting edge between the K5s causes a big decrease in similarity (to eeB5).

Explanations of results in Table 6 (FABP method) Let’s focus on the first column, which gives

the similarity scores when we use our proposed normalized euclidean based similarity measure. In the

first four rows of the table we observe that removing one edge from the clique, path, circle and star

of 5 nodes yields medium similarity, and the similarity is lower when the removal of the edge creates

disconnected components. The circle and the star consisting of 5 nodes have roughly the complemen-

tary edges and this is reflected by their similarity score (0.59). The corresponding similarity scores of

graphs of 100 nodes are higher, which is intuitive as the “importance” of each edge in a big graph is

smaller than its importance in a small graph with few edges.

In the case of the lollipop, although our method assigns smaller similarity to the pair L5− eeL5 than

to L5−eL5, the scores are very close. The barbell graph with one missing edge in the clique (eB5) has

higher similarity to B5, than the barbell graph with the missing bridge to B5, which is in accordance

with our intuition. Moreover, the barbell graph with bridge of weight 5 is more similar to the barbell

graph with weight 2, than to the graph without a bridge (eeB5). Note that the weight of the bridge

represents its “importance’, and this is captured by our proposed graph similarity method; B5− eeB5

have 0.86 similarity, but wB5 (bridge weight 5) is 0.56 similar to eeB5. Also, decrease in the weight

of the barbell graph (wB5) by 4 units leads to 0.6 similarity. As expected, when we change both the

weight of the barbell graph and remove an edge in the clique, we obtain smaller similarity than when

we change only the weight (see pairs wB5− w2B5 and w2B5− ewB5).

Explanations of results in Table 6 (other similarity measures) The cosine similarity and the

linear correlation capture the differences of the graphs we are comparing in the same way that the

normalized-euclidean based similarity measure does; that is, the order of the pairs by similarity scores

is the same when using these similarity measures. Notice that similarity 1.0000 is actually it is a bit

smaller than 1 (say 0.999999..). What we observe in this table, is that the cosine similarity, does not

have as big discriminative power, as our method. Also, linear correlation has better discriminative

power than the cosine similarity, but still smaller than our method. Notice for example that these two

methods do not “penalize” much the creation of disconnected components in a graph (see B5-eeB5),

unless we explicitly state the “importance” of the bridge by assigning a non-unit weight (capture of
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disconnected components is a desired property for a graph similarity algorithm).

Spearman’s correlation gives a slightly different order of pairs with respect to their similarity than

the previous three methods, and its similarity scores are not always intuitive; for instance the pair

K100 and eK100, which differ only in one edge have negative correlation/similarity! Finally, note

that the eigenvalue method assigns small scores to similar graphs and high scores to dissimilar graphs.

Although the results are intuitive when the graphs under comparison are connected, this method has

2 flaws: a) in case one of the graphs is disconnected, the results are not at all intuitive, since the

eigenvalues correspond only to the biggest component (they are not global features any more). Thus,

the graph similarity algorithm compares the graphs locally, which is not desirable. b) the similarity

scores are unbounded, which is not desirable again, since a single similarity score cannot really inform

us how much similar or dissimilar are the graphs (we only know that 0 means absolute similarity, but

we don’t know how much the (dis)similarity of the graphs can become.

Explanations of results in Table 7 As mentioned above, the cosine similarity and the linear cor-

relation have small discriminative power and fail to discern small differences in graphs with more than

25-50 nodes. Moreover, the Spearman’s correlation has better discriminative power than the previous

two methods, but the results are not always intuitive; the pairs R5−eeR5 and R5−e5R5 get similarity

scores 0.84 and 0.93 respectively, although in the first case they differ in two edges, and in the second

case they differ in 3 more edges (the same as the first pair and 3 extra edges). Finally, the eigenvalue

method is not satisfactory in the case of disconnected graphs as it only captures local structural differ-

ences.

On the other hand, we observe that our proposed method is able to spot small differences in graphs

and its performance is not affected by disconnected components. As we expected, the similarity drops

as we increase the number of missing edges, and the “importance” of each edge in a graph depends on

its size (the larger the graph is, the smaller is the importance of each edge); we obtain higher similarity

in large graphs that have the same number of missing edges as smaller graphs (see for exampleR5−eR5
and R100− eR100).

Explanations of results in Table 8 The observations are similar to the ones presented for the

random graphs in Table 7. Let’s consider the graphs R25 with 238 edges and the corresponding graphs

containing 1-5 fewer edges, as well as the kronecker graph kron3 2 which consists of 27 nodes, but

32 edges (see info in Table 4). Notice that the same difference in the number of edges for the random
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and the kronecker graphs results in slightly higher similarity measures for the random graphs; this is

normal, because the random graphs with almost the same number of nodes are denser, and therefore

the contribution of a missing edge to the similarity score is smaller than the contribution of a missing

edge in a sparse graph. Of course the similarity score depends on the “type” of edge that was removed

in each case - if an edge removal leads to the creation of a new disconnected component in one graph,

then our method “penalizes” this removal in a heavier way than it “penalizes” another edge.

5.1.2 Comparision to Papadimitriou-Molina

We obtained the code for two methods proposed in [15]. These were Perl scripts mainly under the

names of compare-shingles and compare-edit-distance. With all due respect to the authors, the code

obtained was of low standard. To be specific, none of the perl scripts worked without commenting an

import statement. After that, the compare-edit-distance gave a compile error, and this was because ’!=’

was used instead of ’ne’. On correcting this, it was found that compare-edit-distance always calcu-

lated the edge intersection to be zero. This was because the edges from the first graph were stored as

’node1.-.node2’ but were searched for as ’node1.node2’ with a missing hyphen. On correcting this, it

was found that it calculated the total number of nodes wrongly. The reason for this was also found, but

not corrected, and it is not worth going into the details here.

Both the methods perform poorly with respect to our method, as seen in 9 (we omit the second

one due to its mistakes). This is because both are broadly based on calculating node intersections and

unions, and edge intersections and unions, without taking into account the local importance of different

edges. For example, when tested on the Lollipop or Barbell graphs introduced earlier, they give the

same similarity whether eB5 or eeB5 is used (similarly when eL5 or eeL5 is used), because the number

of common edges and nodes is the same, even though a more important edge is missing from eeL5

and eeB5. We thus conclude that our method captures intuition better than simplistic formula-based

methods.

5.1.3 Scalability of FaBP and Evaluation on Phone Call data set

We regret to find that the FaBP algorithm in its present state is not scalable. As we see in table 10 and

figure 6, we find that the maximum size of the graph that it is able to handle is a few thousand nodes,

with tens of thousands of edges. Hence, we were unable to test it on larger graphs like those generated

in the phonecall dataset. For example, even 6 hours of PC dataset, on calls that last more than 120s,
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Graph 1 Graph2 Shingles-Similarity

C5 eC5 0.8

S5 eS5 0.75

L5 eL5 0.93

L5 eeL5 0.93

B5 eB5 0.95

B5 eeB5 0.95

Table 9: Results of the Papadimitriou-Molina Shingles similarity measure

generated an extremely large sparse graph of over 100,000 nodes and edges. Reducing it to one hour

still generated extremely sparse graphs over 20,000 nodes and edges, and we felt it did not make sense

to shrink the size further. However, we extensively tested it on synthetic and random graphs, to show

that it is, in principle, a very good method for testing graph similarity.

Nodes Graph1 Graph2 Adjacency1 Adjacency2 Kn Similarity Total
Edges Edges Inverse (s) Inverse (s) Inverse (s) calculation (s) Time (s)

100 15 15 0.0176 0.0007 0.0616 0.1880 0.27

500 226 218 0.0028 0.0020 0.0118 0.0716 0.088

1000 867 840 0.0074 0.0081 0.0764 0.1377 0.23

2000 3553 3437 0.2480 0.2382 0.3577 0.4818 1.33

3000 8160 7890 1.43 1.26 1.19 1.55 5.44

4000 14221 13751 3.17 3.024 2.27 3.77 12.23

5000 22341 21602 6.00 5.88 4.69 4.31232 20.88

6000 32383 31295 8.57 10.66 4.89 5.99 30.11

7000 44180 42715 15.01 24.69 34.436 9.48 83.61

8000 57736 54707 102.15 120.76 50.74 39.89 313.55

9000 73056 69192 257.30 201.11 123.99 89.12 671.52

Table 10: Scalability test on random graphs. All values represent time taken for that column’s operation

in seconds. Tested on machine with Intel Core I7, CPU 860 @ 2.8Ghz.
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Figure 6: [Scalability of FaBP on Random Graphs] Time (sec) vs Edges/Nodes
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5.2 Subgraph matching

5.3 Subgraph Matching Simulations with Spectral Clustering

In order to test the hierarchical summary graph approach, we simulated graphs in a time series with the

phase and period format shown in Figure 1. For each time point, we generated the adjacency matrix

of the graph and for each period, we selected 3 disjoint clusters of 100 nodes. If two nodes are in the

same cluster, then we generate an edge with probability 0.80. Otherwise an edge is generated with

probability 0.20. The resulting simulated graphs are shown in Figure 7.

(a) Graphs of time points 1-3, 7-9.
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(b) Graphs of time points 4-6, 10-12
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Figure 7: Shown above are the adjacency matrices of the graphs generated. Those time points that are

part of phase 1 (see Figure 1).

The summary graph constructed by propagating the edge signals upwards throughout the tree is

shown in Figure 8. The summary graph is able to incorporate both sets of clusters in each phase. If we

then apply spectral clustering to the summary graph, it correctly puts clusters the 6 different groups of

nodes and then places all other nodes into a separate clusters.

But often the data is more complex and nodes may be a member of multiple clusters at different

time points. We simulate this scenario and perform soft spectral clustering. The time points listed

in Figure 9a) exhibit a particular clustering pattern whereas, the time points that are part of phase 2

(Fig. 9b) are clustering differently. Soft spectral clustering does a decent job at finding the clusters as

shown in Figure 10a). Each column represents a different cluster and the rows indicate membership of

the nodes. The dark orange areas indicate a higher probability of membership whereas the blue areas

indicate low probability of membership. This matches what we see in the summary graph (Fig 10b).

For example, in column 2 of Figure 10a), the first 100 nodes have a high probability of membership
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Figure 8: The summary graph generated from combining two periods of 2 phases of graphs (Fig. 7.

From the figure, you can see that the summary graph incorporates both sets of clusters found in both

phase 1 and phase 2.

whereas the yellow area represents a group nodes that have mixed membership. However, spectral

clustering does not capture the cluster pattern perfectly because we are missing a cluster component

where the nodes 201 - 300 have high probability of membership.

(a) Graphs of time points 1-3, 11-13, 21-23.
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

(b) Graphs of time points 4-7, 17-20
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Figure 9: Shown above are the adjacency matrices of the graphs generated. Notice that nodes of

particular cluster during one phase (a) and also members of other clusters in another phase (b).
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Figure 10: (a) Soft assignment of nodes to clusters generated from spectral clustering. (b) Summary

graph of the time series with overlapping clusters.

5.4 Subgraph Matching Simulations with Matricized Sparse PCA method

For the matricized sparse PCA approach we have developed, we focus on our ability to discover the

subsets of time during which groups of edges occur. We output the common (possibly disconnected)

set of edges for these subsets. A clustering algorithm can then be used to cluster these edge sets to

construct dense subgraphs. We show results on three synthetic graphs shown in Figures 11, 12 and 13.

We set the number of components K equal to 10. However, the algorithm can terminate on its own

before then, so K merely serves as an upper bound.

(a) Graphs of time points 1-3, 7-9.
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(b) Graphs of time points 4-6, 10-12
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Figure 11: Synthetic Graph Series 1: Designed to test if algorithm can find small groups of highly

connected vertices. There are 300 vertices and a total of 12 time points.
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(a) Graphs of time points 4-6, 10-12
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(b) Graphs of time points 4-6, 10-12
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Figure 12: Synthetic Graph Series 2: Designed to test how algorithm performs in a lower signal to

noise ratio scenarios. There are 200 vertices and a total of 12 time points.

(a) Graphs of time points 1-8
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(b) Graphs of time points 9-16
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Figure 13: Synthetic Graph Series 3: Designed to test how algorithm performs in the case of overlap-

ping clusters. There are 300 vertices and a total of 30 time points
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As shown in Figure 5.4, our method obtains correct results for Synthetic Graph Series 1. The left

most subfigure (a) shows the subset of time points that constitute each recovered component. Recall

that these selected time points share a significant number of edges. Note that the method determines

that there should only be two components and therefore components 3-10 are empty. Furthermore

component 1 contains time points 1-3 and 4-6 while component 2 contains time points 4-6 and 10-12

which is correct. Subfigures (b) and (c) show the corresponding edge sets for each of these components.

A clustering algorithm can then be used to cluster these edges if desired.

Similarly, even in the case of lower signal-to-noise ratio as in Synthetic Graph Series 2 (Figure 12),

our method still finds the correct components as shown in Figure 15. However, some of the edge sets

returned are rather sparse.

The graph series in Figure 16 provides a more challenging case. In reality the clusters are overlap-

ping. However, our method will not be able to pick up the overlap explicitly because the data has been

matricized. Instead the first component consists of the vertices that are part of clusters from times 1-16

while the second and third components focus on times 1-8 and 9-16 respectively.
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Figure 14: Performance of matricized sparse PCA method on Synthetic Graph Series 1

(a) Components recovered
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(b) Edge set for component 1
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(c) Edge set for component 2
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Figure 15: Performance of matricized sparse PCA method on Synthetic Graph Series 2
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(a) Time components recovered
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Figure 16: Performance of matricized sparse PCA method on Synthetic Graph Series 3
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5.5 Subgraph Matching Simulations with PARAFAC Tensor Analysis

For completeness, we evaluated how nonnegative PARAFAC and sparse (nonnegative) PARAFAC

(SPARAFAC) tensor decomposition perform on the above tasks. Both are significantly slower than

the matricized sparse PCA approach. SPARAFAC in particular is not scalable. However, note that

these methods do tensor decomposition which means that they simultaneously find time components

and cluster vertices.

The results for (nonnegative) PARAFAC for all the datasets are shown in Figures 17, 18, 19. It can

be seen that the first component returned is consistently not useful (i.e. it contains all the time points

and all the vertices). However, the rest of the time components tend to be correct when PARAFAC is

given either the correct number of components or less than the correct number. However, if it is given

considerably more than the correct number, the resulting components are not correct. For example,

in Figure 18 the algorithm performs well when 3 clusters are specified, but poorly if 7 are specified.

One other problem is that all the coefficients are non-zero so there is no principled way to choose a

threshold.
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Figure 17: Performance of PARAFAC on Synthetic Graph Series 1

Because sparse PARAFAC does not scale well, we show the results of Sparse PARAFAC only on
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(a) Time components recovered,
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(b) Vertex components recovered,
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Figure 18: Performance of PARAFAC on Synthetic Graph Series 2

42



a) Time components recovered, b) Vertex components recovered,
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Figure 19: Performance of PARAFAC on Synthetic Graph Series 3
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Synthetic Graph Series 2 in Figure 5.5, which is the smallest of the 3. In particular, the regularization

parameter has to be tuned, so the program must be executed multiple times which is not desirable

because each run is quite slow. However, it does not suffer from the same performance drawbacks that

PARAFAC does. Specifically, as the number of components is increased, the regularization will set

these redundant components to zero and still return the correct solution.
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Figure 20: Performance of SPARAFAC on Synthetic Graph Series 2

5.6 Timing Comparisons

We compare the speed of PARAFAC and our matricized sparse PCA method (Sparse PARAFAC is

considerably slower than PARAFAC and is omitted). Both are implemented in MATLAB. The number

of time points is T = 12 and the number of vertices in each graph is varied from 300 to 2100. As

shown in Figure 21 our matricized sparse PCA approach is orders of magnitude faster than PARAFAC

since the sparse PCA greedy algorithm is much faster than the alternating minimization underlying

PARAFAC. However, it should be noted that our method is only returning edge sets (and not clusters).
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Therefore a clustering algorithm would have to be used as a post-processing step. PARAFAC however,

simultaneously clusters the vertices and time points. Also, as expected, as the number of components

in the PARAFAC decomposition increases, the computational costs increases as well.
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Figure 21: Comparison between our matricized SPCA approach and PARAFAC on synthetic data.

5.7 Evaluation on Yeast Cell Cycle Data

We apply the subgraph mining method to a yeast network learned by an existing method [12]. There

are two cell cycles of data in this set. The table below shows the approximate intervals of the time series

that correspond to the different cell cycle phases. Ideally, our matricized sparse PCA method should be

able to capture these trends in the principal components that it finds.

Cell Cycle Phase Timing in Cell Cycle 1 Timing in Cell Cycle 2

G1 Time points 1-6 Time points 13-18

S Time points 5-10 Time points 17-21

G2M Time points 10-14 Time points 22-24

Table 11: The estimated intervals of the time series where each cell cycle phase occurs.

The following are the top ten components that result from the decomposition of the covariance matrix

XTX (Figure 22). The pink vertical line indicates where one cell cycle ends and another begins. It

can be observed that the components we obtain are reasonable, as the first component represents that

there is a significant amount of edge activity in the first cell cycle phase which corresponds to G1.

Components 2, 6, and 8 are components that indicate activity in the middle of the cell cycle suggesting

S phase interactions and components 7 and 10 occupy the end of the cell cycle (G2M phase).
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Figure 22: The components in time produced by sparse PCA. Each component (shown vertically)

shows where the edges are active in time (shown horizontally).

We then made a summary graph of edges contained in each component and used the MCL package

for cluster extraction [7]. In the tables below, we show examples of graphs obtained through this

process and their biological relevance. Specifically, we use a GO (Gene Ontology) term mapper [4] to

find common functional terms amongst the genes in our cluster. There are two examples listed below,

one from G1 phase and one from S phase. The functions listed for Component 1 such as ribosome

biogenesis indicate cell growth which is pertinent to G1, and the functions listed for Component 2

describe DNA synthesis which makes biological sense for S phase.
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Component 1 (G1 Phase): GO Functional Annotation of Subgraphs

Gene Ontology term Cluster frequency

ribosome biogenesis 9 of 23 genes, 39.1%

ribonucleoprotein complex biogenesis 9 of 23 genes, 39.1%

ribosomal large subunit biogenesis 5 of 23 genes, 21.7%

cellular component biogenesis at cellular level 9 of 23 genes, 39.1%

Component 4 (S Phase): GO Functional Annotation of Subgraphs

Gene Ontology term Cluster frequency

lagging strand elongation 8 of 43 genes, 18.6%

DNA-dependent DNA replication 11 of 43 genes, 25.6%

DNA strand elongation involved in DNA replication 8 of 43 genes, 18.6%

DNA strand elongation 8 of 43 genes, 18.6%

DNA repair 13 of 43 genes, 30.2%

DNA metabolic process 17 of 43 genes, 39.5%

DNA replication 11 of 43 genes, 25.6%

response to DNA damage stimulus 13 of 43 genes, 30.2%

chromatin silencing at telomere 7 of 43 genes, 16.3%

nucleotide-excision repair 6 of 43 genes, 14.0%

base-excision repair 4 of 43 genes, 9.3%

cellular response to stress 14 of 43 genes, 32.6%

chromosome organization 12 of 43 genes, 27.9%

6 Conclusions

We tackle two related problems in data mining: graph similarity and subgraph matching. Both are motivated by

similar applications and objectives to study and analyze graphs that occur naturally as biological networks, social

networks, web graphs and many others. One of the challenges of determining the similarity between graphs is

defining a measure for similarity. Here, we approach the problem with relevant ideas from belief propagation.

We use the Linearized Belief Propagation (FaBP) algorithm with a similarity metric that is a normalized version

of the euclidean distance. This produces extremely intuitive results and is effective in both the weighted and

unweighted, connected and disconnected graph settings. One direction to consider for the future is to optimize

the algorithm such that it is scalable to larger graphs of over 10 000 nodes. In addition to graph similarity, we

investigate the related problem of subgraph matching; given a series of networks over time, the objective is to

find subgraphs that approximately repeat in the time series in contiguous blocks. We develop a method that

involves first extracting the important components in time, where edges are dominant. For this, we use sparse

PCA which allows us to create a summary of edges specific to a particular subset of time points. After testing
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several methods, we found that sparse PCA was desirable because it performs well and is fast. We then mine

these local graphs for clusters using the Markov Clustering Algorithm. Our method produces biological relevant

results and can easily handle thousands of nodes. However, more investigation is needed to determine whether

it can scale is extremely large graphs, those containing tens of thousands of nodes. In addition, future work

should also focus on providing a more principled and intuitive way of selecting the regularization and threshold

parameters.
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