
36-709: Advanced Statistical Theory I Spring 2019

Lecture 6: February 7
Lecturer: Alessandro Rinaldo Scribes: Mikaela Meyer

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

We begin this lecture by talking about how concentration inequalities can be used to give confidence intervals
and moment bounds.

6.1 Moment Bounds and Confidence Intervals

Moment bound: If P(|X| ≥ t) ≤ ce−cntα , α ∈ {1, 2}, then E(|Xn|) ≤ C ′n−1/α.

Confidence interval: If P(|Xn| ≥ t) ≤ ae
−nbt2
c+dt , a, b, c, d > 0, then ∀δ ∈ (0, 1), |Xn| ≤

√
c
nb + d

nb log(aδ ) with

probability at least 1− δ, δ = O( 1
np ), p > 0

The downside of using this confidence interval is that it might not be the sharpest interval. Knowing the
likelihood function would give better values of the constants, which would produce a tighter bound. However,
if you are not concerned about this downside, the benefit is that you have a finite sample confidence interval
that holds for all n.

6.1.1 Application: Maxima

We know how to use the union bound to bound probabilities. It turns out that bounding the expected value
of the maximum of a random variable can use a comparable trick. Being able to bound the expected value
of the maximum of a random variable is one of the most important bounds we can get in high dimensional
statistics.

Theorem 6.1 Let X1, ..., Xn be centered random variables that are not necessarily independent such that
for all λ ∈ [0, b), b ≤ ∞, E[eλXi ] ≤ ψ(λ), where ψ(.) is convex on [0, b). Then

logE[max
i
Xi] ≤ inf

λ∈[0,b)

{
log(n) + ψ(λ)

λ

}
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Proof: By Jensen’s inequality, for any λ ∈ [0, b),

exp{λE[max
i
Xi]} ≤ E

[
e
λmax

i
Xi
]

f(x) = ex is convex

= E
[
max
i
eλXi

]
≤

n∑
i=1

E
[
eλXi

]
≤ neψ(λ)

Taking the log of both sides, we get λE[max
i
Xi] ≤ log(n) + ψ(λ), so E[max

i
Xi] ≤ log(n)+ψ(λ)

λ

We didn’t see the convexity of ψ(.) used in this proof.

Result: If ψ is convex, continuously differentiable on [0, b), and ψ(0) = ψ′(0) = 0, then ∀µ > 0

inf
λ∈[0,b)

{
µ+ψ(λ)

λ

}
= inf {t ≥ 0 : ψ∗(t) ≥ µ} where ψ∗(t) = sup

λ∈[0,b)
λt− ψ(λ) (Proof found in [SB12])

Example (Sub-Gaussian Random Variables): Given all Xi ∈ SG(σ2), then ψ(λ) = λ2σ2

2 . The bound

is inf
λ>0

log(n)
λ + λ2σ2

2λ . Set λ =
√

2 log(n)
σ2 to obtain E[max

i
Xi] ≤

√
2σ2 log(n). This yields an important result:

the expected value of the maximum of sub-Gaussian random variables with the same parameter grows at a
rate of

√
log(n).

Example (Sub-Exponential Random Variables): If ψ(λ) = λ2ν2

2(1−λb) for λ ∈ (0, 1b ), then it is possible

(though not fun) to show E[max
i
Xi] ≤

√
2ν2 log(n) + b log(n). If you are really interested in showing this,

see [SB12], page 29. Note that this bound looks similar to the one for sub-Gaussian random variables, except
that it includes an additional b log(n) term. So, if Xi ∼ χ2

p, E[maxXi] ≤ 2
√
p log(n) + 2 log(n).

Going forward, we will see many examples of how to deal with this bound on the maximum. By the way,

you already know how to bound P(maxXi ≥ t) ≤ ne
−t2

2σ2 by the union bound.

6.2 Bounded Differences Inequality (a.k.a. McDiarmid’s Inequal-
ity or Azuma-Hoeffding Inequality)

Most of the time, we see bounds on averages. But averages are just one type of function of random variables
we can be interested in bounding. Picture an arbitrary function of independent random variables. Can we
create a concentration inequality for this arbitrary function?

As an aside, it should be noted that E(Y |X) is a random variable because it is a function of the ran-
dom variable, X. However, E(Y |X = x) is not a random variable because it is a function of the fixed x.

Let Z = f(X1, ..., Xn) f : Rn → R. We are interested in the concentration inequality for Z − E(Z).
Set Y0 = E(Z), making it a degenerate random variable. For k = 1, ..., n, set Yk = E(Z|X1, ..., Xk) so
Yn = Z (also a random variable). Then Z − E(Z) = Yn − Y0 =

∑n
k=1 Yk − Yk−1 =

∑n
k=1Dk. This is a sum

of n random variables, though these random variables are not independent. If we want to go about making
this bound, we will need to first spend time making an aside about Martingales.
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6.2.1 Martingales

A sequence Y0, Y1, Y2, ... of random variables is a Martingale if:

1. E[|Yi|] <∞ (integrable)

2. For every k ≥ 1, E(Yk|Y0, ..., Yk−1) = Yk−1

Doob Construction: Let Z = f(X1, ..., Xn). Let Yk = E(Z|X1, ..., Xk). Then Y1, ..., Yn is a Martingale.
If Y0, ..., Yn is a Martingale, thenD1, ..., Dn whereDk = Yk−Yk−1 for all k is called a Martingale difference.
E[Dk] = 0 for all k.

Theorem 6.2 Let D1, ..., Dn be Martingale differences such that ∀|λ| < 1
αk
, νk, αk > 0 for all k, E[eλDx |D1, ..., Dk−1] ≤

e
λ2ν2k

2 (the differences are sub-exponential). Then:

1.
∑n
k=1Dk ∈ SE

(∑n
k=1 ν

2
k ,max

k
αk

)
(same as if they were independent)

2. For t > 0, P(|
∑
kDk| ≥ t) ≤

2 exp
{
−t2

2
∑
ν2
k

}
, t ≤

∑
k ν

2
k

maxαk

2 exp
{

−t
2maxαk

}
, t >

∑
k ν

2
k

maxαk

We will prove part 1 of these results below.

Proof: Fix λ. E[eλ
∑n
k=1Dk ] = E[E[eλ

∑n
k=1Dk |D1, ..., Dn]] = E[eλ

∑n−1
k=1 Dk E[eλDn |D1, ..., Dn−1]]. We know

that E[eλDn |D1, ..., Dn−1] ≤ e
λν2n
2 if |λ| ¡ 1αn . Thus, E[eλ

∑n−1
k=1 Dk E[eλDn |D1, ..., Dn−1]] ≤ eλν2

n2E[eλ
∑n−1
k=1 Dk ].

We can repeat this process of using the law of total expectation to eventually arrive at eλν
2
n2E[eλ

∑n−1
k=1 Dk ] ≤

eλ
∑n
k=1

ν2k
2 where |λ| < 1

max
k

αk
.

Corollary (Azuma-Hoeffding Inequality): If ak ≤ Dk ≤ bk a.e. for all k, then P(|
∑n
k=1Dk| ≥ t) ≤

2 exp
{

−2t2∑n
k=1(bk−ak)2

}
because Dk ∈ SG(( bk−ak2

2
)) where Dk is conditioned on D1, ..., Dk−1.

6.2.2 Bounded Difference Property

Now that we took this brief detour of Martingales, let’s go back to bounding functions of random variables.
We know X1, ..., Xn are independent and Z = f(X1, ..., Xn), and we want to show concentration for Z−.
We need a condition that tells us if we change one coordinate at a time, the difference is still controlled. A
regularity condition on f that leads to an application of the Azuma-Hoeffding inequality is that of having
bounded differences.

Definition: f : Rn → R satisfies the bounded difference property (BDP) if ∃ L1, ..., Ln ∈ R+ such
that ∀ (x1, ..., xn) in domain of f , for any coordinate, k:

sup
x1,...,xn

|f(x1, x2, ..., xk, ..., xn)− f(x1, x2, ..., x
′
k, ..., xn)| ≤ Lk

where x′k represents that the kth coordinate was changed from its original value. This implies that the value
of the function f doesn’t depend much on the value of any one coordinate.
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Also, if ‖f‖∞ ≤ b, then Lk ≤ 2b for all k. ‖f‖ = sup
x1,...,xn

|f(x1, ..., xn)|

We will now present the final theorem, which gives a tail bound for functions that satisfy the bounded
difference property.

Theorem 6.3 Let X1, ..., Xn be independent and f : Rn → R satisfy the BDP. Let Z = f(X1, ..., Xn). Then

P(|Z − E(Z)| ≥ t) ≤ 2 exp

{
−2t2∑n
k=1 L

2
k

}
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